BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tian Y, Glogowska A, Zhong W, Klonisch T, Xing M. Polymeric mesoporous silica nanoparticles as a pH-responsive switch to control doxorubicin intracellular delivery. J Mater Chem B 2013;1:5264. [DOI: 10.1039/c3tb20544d] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
Number Citing Articles
1 Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022. [PMID: 35642539 DOI: 10.1039/d1cs00659b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
2 Zhou J, Wen Z, Yan S, Guo H, Zhou C. Preparation and release properties of pH-sensitive mesoporous silica composite nanocarriers. J Nanopart Res 2021;24. [DOI: 10.1007/s11051-022-05433-3] [Reference Citation Analysis]
3 Tonbul H, Sahin A, Tavukcuoglu E, Ultav G, Akbas S, Aktas Y, Esendaglı G, Capan Y. Folic acid decoration of mesoporous silica nanoparticles to increase cellular uptake and cytotoxic activity of doxorubicin in human breast cancer cells. Journal of Drug Delivery Science and Technology 2021;63:102535. [DOI: 10.1016/j.jddst.2021.102535] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, Jabar A, Khan S, Elhissi A, Hussain Z, Aziz HC, Sohail M, Khan M, Thu HE. Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers (Basel) 2021;13:670. [PMID: 33562376 DOI: 10.3390/cancers13040670] [Cited by in Crossref: 5] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
5 Chen R, Ma Z, Xiang Z, Xia Y, Shi Q, Wong SC, Yin J. Hydrogen Peroxide and Glutathione Dual Redox-Responsive Nanoparticles for Controlled DOX Release. Macromol Biosci 2020;20:e1900331. [PMID: 31856396 DOI: 10.1002/mabi.201900331] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
6 Liu C, Han Y, Zhang J, Kankala RK, Wang S, Chen A. Rerouting engineered metal-dependent shapes of mesoporous silica nanocontainers to biodegradable Janus-type (sphero-ellipsoid) nanoreactors for chemodynamic therapy. Chemical Engineering Journal 2019;370:1188-99. [DOI: 10.1016/j.cej.2019.03.272] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 16.3] [Reference Citation Analysis]
7 Peralta ME, Jadhav SA, Magnacca G, Scalarone D, Mártire DO, Parolo ME, Carlos L. Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. Journal of Colloid and Interface Science 2019;544:198-205. [DOI: 10.1016/j.jcis.2019.02.086] [Cited by in Crossref: 53] [Cited by in F6Publishing: 65] [Article Influence: 17.7] [Reference Citation Analysis]
8 Farjadian F, Roointan A, Mohammadi-samani S, Hosseini M. Mesoporous silica nanoparticles: Synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chemical Engineering Journal 2019;359:684-705. [DOI: 10.1016/j.cej.2018.11.156] [Cited by in Crossref: 64] [Cited by in F6Publishing: 63] [Article Influence: 21.3] [Reference Citation Analysis]
9 Wen J, Yang K, Liu F, Li H, Xu Y, Sun S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev 2017;46:6024-45. [DOI: 10.1039/c7cs00219j] [Cited by in Crossref: 233] [Cited by in F6Publishing: 279] [Article Influence: 46.6] [Reference Citation Analysis]
10 Moreira AF, Dias DR, Correia IJ. Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review. Microporous and Mesoporous Materials 2016;236:141-57. [DOI: 10.1016/j.micromeso.2016.08.038] [Cited by in Crossref: 102] [Cited by in F6Publishing: 79] [Article Influence: 17.0] [Reference Citation Analysis]
11 Zhang S, Guo Y, Dong Y, Wu Y, Cheng L, Wang Y, Xing M, Yuan Q. A Novel Nanosilver/Nanosilica Hydrogel for Bone Regeneration in Infected Bone Defects. ACS Appl Mater Interfaces. 2016;8:13242-13250. [PMID: 27167643 DOI: 10.1021/acsami.6b01432] [Cited by in Crossref: 38] [Cited by in F6Publishing: 43] [Article Influence: 6.3] [Reference Citation Analysis]
12 John Ł, Janeta M, Rajczakowska M, Ejfler J, Łydżba D, Szafert S. Synthesis and microstructural properties of the scaffold based on a 3-(trimethoxysilyl)propyl methacrylate–POSS hybrid towards potential tissue engineering applications. RSC Adv 2016;6:66037-47. [DOI: 10.1039/c6ra10364b] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
13 Tian Y, Kong Y, Li X, Wu J, Ko AC, Xing M. Light- and pH-activated intracellular drug release from polymeric mesoporous silica nanoparticles. Colloids and Surfaces B: Biointerfaces 2015;134:147-55. [DOI: 10.1016/j.colsurfb.2015.04.069] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
14 Chang Y, Liu X, Zhao Q, Yang X, Wang K, Wang Q, Lin M, Yang M. P(VPBA-DMAEA) as a pH-sensitive nanovalve for mesoporous silica nanoparticles based controlled release. Chinese Chemical Letters 2015;26:1203-8. [DOI: 10.1016/j.cclet.2015.08.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
15 Popat A, Jambhrunkar S, Zhang J, Yang J, Zhang H, Meka A, Yu C. Programmable drug release using bioresponsive mesoporous silica nanoparticles for site-specific oral drug delivery. Chem Commun (Camb) 2014;50:5547-50. [PMID: 24603852 DOI: 10.1039/c4cc00620h] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 8.6] [Reference Citation Analysis]
16 Suhag D, Bhatia R, Das S, Shakeel A, Ghosh A, Singh A, Sinha OP, Chakrabarti S, Mukherjee M. Physically cross-linked pH-responsive hydrogels with tunable formulations for controlled drug delivery. RSC Adv 2015;5:53963-72. [DOI: 10.1039/c5ra07424j] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
17 Wang G, Zhao T, Song X, Zhong W, Yu L, Hua W, Xing MMQ, Qiu X. A 3-D multicellular tumor spheroid on ultrathin matrix coated single cancer cells provides a tumor microenvironment model to study epithelial-to-mesenchymal transitions. Polym Chem 2015;6:283-93. [DOI: 10.1039/c4py01161a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
18 Pérez-esteve É, Fuentes A, Coll C, Acosta C, Bernardos A, Amorós P, Marcos MD, Sancenón F, Martínez-máñez R, Barat JM. Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Microporous and Mesoporous Materials 2015;202:124-32. [DOI: 10.1016/j.micromeso.2014.09.049] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
19 Huang X, Zhang T, Goswami A, Luo F, Asefa T. Glutathione-triggered release of model drug molecules from mesoporous silica nanoparticles via a non-redox process. RSC Adv 2015;5:28836-9. [DOI: 10.1039/c4ra08570a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
20 Wang Y, Zhang X, Xu Z, Huang H, Li Y, Wang J. A pH-sensitive theranostics system based on doxorubicin conjugated with the comb-shaped polymer coating of quantum dots. J Mater Sci 2014;49:7539-46. [DOI: 10.1007/s10853-014-8461-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
21 Shi J, Guobao W, Chen H, Zhong W, Qiu X, Xing MMQ. Schiff based injectable hydrogel for in situ pH-triggered delivery of doxorubicin for breast tumor treatment. Polym Chem 2014;5:6180-9. [DOI: 10.1039/c4py00631c] [Cited by in Crossref: 76] [Cited by in F6Publishing: 69] [Article Influence: 9.5] [Reference Citation Analysis]
22 Chen J, Shi M, Liu P, Ko A, Zhong W, Liao W, Xing MM. Reducible polyamidoamine-magnetic iron oxide self-assembled nanoparticles for doxorubicin delivery. Biomaterials 2014;35:1240-8. [DOI: 10.1016/j.biomaterials.2013.10.057] [Cited by in Crossref: 63] [Cited by in F6Publishing: 60] [Article Influence: 7.9] [Reference Citation Analysis]
23 Liu S, Ko AC, Li W, Zhong W, Xing M. NIR initiated and pH sensitive single-wall carbon nanotubes for doxorubicin intracellular delivery. J Mater Chem B 2014;2:1125. [DOI: 10.1039/c3tb21362e] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
24 Alvarez GS, Hélary C, Mebert AM, Wang X, Coradin T, Desimone MF. Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention. J Mater Chem B 2014;2:4660. [DOI: 10.1039/c4tb00327f] [Cited by in Crossref: 96] [Cited by in F6Publishing: 91] [Article Influence: 12.0] [Reference Citation Analysis]
25 Vankayala R, Kalluru P, Tsai H, Chiang C, Hwang KC. Effects of surface functionality of carbon nanomaterials on short-term cytotoxicity and embryonic development in zebrafish. J Mater Chem B 2014;2:1038-47. [DOI: 10.1039/c3tb21497d] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
26 Chen M, He X, Wang K, He D, Yang S, Qiu P, Chen S. A pH-responsive polymer/mesoporous silica nano-container linked through an acid cleavable linker for intracellular controlled release and tumor therapy in vivo. J Mater Chem B 2014;2:428-36. [PMID: 32261387 DOI: 10.1039/c3tb21268h] [Cited by in Crossref: 69] [Cited by in F6Publishing: 66] [Article Influence: 7.7] [Reference Citation Analysis]
27 Tian Y, Chen J, Zahtabi F, Keijzer R, Xing M. Nanomedicine as an innovative therapeutic strategy for pediatric lung diseases. Pediatr Pulmonol 2013;48:1098-111. [PMID: 23997035 DOI: 10.1002/ppul.22657] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]