BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Delplace V, Couvreur P, Nicolas J. Recent trends in the design of anticancer polymer prodrug nanocarriers. Polym Chem 2014;5:1529-44. [DOI: 10.1039/c3py01384g] [Cited by in Crossref: 217] [Cited by in F6Publishing: 217] [Article Influence: 24.1] [Reference Citation Analysis]
Number Citing Articles
1 Lages M, Nicolas J. In situ encapsulation of biologically active ingredients into polymer particles by polymerization in dispersed media. Progress in Polymer Science 2023;137:101637. [DOI: 10.1016/j.progpolymsci.2022.101637] [Reference Citation Analysis]
2 Qian X, Xia C, Chen X, Li Q, Li D. Self-assembled amphiphilic copolymers-doxorubicin conjugated nanoparticles for gastric cancer therapy with low in vivo toxicity and high efficacy. J Biomater Sci Polym Ed 2022;33:2202-19. [PMID: 35924948 DOI: 10.1080/09205063.2022.2100024] [Reference Citation Analysis]
3 Peng Q, Guo X, Wang Y. Synergic Fabrication of Cabazitaxel-Loaded Dendritic Supramolecular Iron Nanomaterials for the Delivery of Tumor Regression and Magnetic Drug Targeting (MDT) in the Melanoma Tumor Model. J Clust Sci 2022. [DOI: 10.1007/s10876-022-02391-7] [Reference Citation Analysis]
4 Shim N, Jeon SI, Yang S, Park JY, Jo M, Kim J, Choi J, Yun WS, Kim J, Lee Y, Shim MK, Kim Y, Kim K. Comparative study of cathepsin B-cleavable linkers for the optimal design of cathepsin B-specific doxorubicin prodrug nanoparticles for targeted cancer therapy. Biomaterials 2022;289:121806. [PMID: 36156411 DOI: 10.1016/j.biomaterials.2022.121806] [Reference Citation Analysis]
5 Wu C, Zhang Y, Li F, Bei S, Pan M, Feng L. Precise engineering of cholesterol-loaded chitosan micelles as a promising nanocarrier system for co-delivery drug-siRNA for the treatment of gastric cancer therapy. Process Biochemistry 2022;120:265-74. [DOI: 10.1016/j.procbio.2022.05.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Su R, Zhang X, Peng Q, Wang W. Self-assembling porphyrin conjugate-carboplatin(IV) prodrug nanoparticles for enhancing high efficacy nasopharyngeal cancer and low systemic toxicity. J Biomater Sci Polym Ed 2022;:1-17. [PMID: 35686461 DOI: 10.1080/09205063.2022.2087275] [Reference Citation Analysis]
7 Zhu C, Nicolas J. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022. [PMID: 35707964 DOI: 10.1021/acs.biomac.2c00230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Jeon SI, Yang S, Shim MK, Kim K. Cathepsin B-responsive prodrugs for cancer-targeted therapy: Recent advances and progress for clinical translation. Nano Res . [DOI: 10.1007/s12274-022-4354-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Li X, Shi Y, Xu S. Local delivery of tumor‐targeting nano‐micelles harboring GSH ‐responsive drug release to improve antitumor efficiency. Polymers for Advanced Techs. [DOI: 10.1002/pat.5749] [Reference Citation Analysis]
10 Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra A, Patel M, Thakkar H. Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview. Int J Pharm 2022;:121863. [PMID: 35643347 DOI: 10.1016/j.ijpharm.2022.121863] [Reference Citation Analysis]
11 Aparin IO, Adarsh N, Reisch A, Klymchenko AS. Bulky Hydrophobic Counterions for Suppressing Aggregation‐caused Quenching of Ionic Dyes in Fluorescent Nanoparticles. Handbook of Aggregation‐Induced Emission 2022. [DOI: 10.1002/9781119643098.ch59] [Reference Citation Analysis]
12 Xu G, Tang K, Hao Y, Wang X, Sui L. Polymeric Nanocarriers Loaded with a Combination of Gemcitabine and Salinomycin: Potential Therapeutics for Liver Cancer Treatment. J Clust Sci. [DOI: 10.1007/s10876-022-02251-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Liu L, Zhang X. Carrier-free nanomedicines for cancer treatment. Progress in Materials Science 2022;125:100919. [DOI: 10.1016/j.pmatsci.2021.100919] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
14 Lefay C, Morris JC, Lin A, Guillaneuf Y, Gigmes D. Living/Controlled Radical Polymerization: Nitroxide‐mediated Polymerization. Macromolecular Engineering 2022. [DOI: 10.1002/9783527815562.mme0015] [Reference Citation Analysis]
15 Santos SS, Gonzaga RV, Scarim CB, Giarolla J, Primi MC, Chin CM, Ferreira EI. Drug/Lead Compound Hydroxymethylation as a Simple Approach to Enhance Pharmacodynamic and Pharmacokinetic Properties. Front Chem 2022;9:734983. [DOI: 10.3389/fchem.2021.734983] [Reference Citation Analysis]
16 Shen F, Tao D, Peng R, He Y, Liu Z, Ji J, Feng L. Immunogenic nanomedicine based on GSH-responsive nanoscale covalent organic polymers for chemo-sonodynamic therapy. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121428] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
17 Yildirim A, Ispirli Doğaç Y. Drug delivery systems of CoFe2O4/chitosan and MnFe2O4/chitosan magnetic composites. Prep Biochem Biotechnol 2022;:1-11. [PMID: 35001843 DOI: 10.1080/10826068.2021.2021234] [Reference Citation Analysis]
18 Misra C, Paul RK, Thotakura N, Raza K. Biodegradable self-assembled nanocarriers as the drug delivery vehicles. Nanoparticle Therapeutics 2022. [DOI: 10.1016/b978-0-12-820757-4.00007-7] [Reference Citation Analysis]
19 Ni P, Liu J, He J, Zhang M. A Codelivery System of Anticancer Drug Doxorubicin and Tumor-Suppressor Gene p53 Based on Polyphosphoester for Lung Cancer Therapy. Biomaterial Engineering 2022. [DOI: 10.1007/978-981-16-5419-0_27] [Reference Citation Analysis]
20 Zhao K, Gao Z, Song D, Zhang P, Cui J. Assembly of catechol-modified polymer brushes for drug delivery. Polym Chem 2022;13:373-8. [DOI: 10.1039/d1py00947h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
21 Zheng M, Yuan J. Polymeric nanostructures based on azobenzene and their biomedical applications: synthesis, self-assembly and stimuli-responsiveness. Org Biomol Chem 2021. [PMID: 34908082 DOI: 10.1039/d1ob01823j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Wang X, Dong H. A convergent synthetic platform for anticancer drugs formulation with nanoparticle delivery for the treatment and nursing care of glioma cancer. Process Biochemistry 2021;111:172-80. [DOI: 10.1016/j.procbio.2021.10.020] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Meng F, Yun Z, Yan G, Wang G, Lin C. Engineering of anticancer drugs entrapped polymeric nanoparticles for the treatment of colorectal cancer therapy. Process Biochemistry 2021;111:36-42. [DOI: 10.1016/j.procbio.2021.09.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
24 Yu F, Zhang F. A feasible strategy of fabricating hybrid drugs co-loaded polymer-lipid nanoparticles for the treatment of nasopharyngeal cancer therapy. Process Biochemistry 2021;111:78-86. [DOI: 10.1016/j.procbio.2021.08.027] [Reference Citation Analysis]
25 Muthiah G, Jaiswal A. Can the Union of Prodrug Therapy and Nanomedicine Lead to Better Cancer Management? Advanced NanoBiomed Research 2022;2:2100074. [DOI: 10.1002/anbr.202100074] [Reference Citation Analysis]
26 Gao P, Nicolas J, Ha-Duong T. Supramolecular Organization of Polymer Prodrug Nanoparticles Revealed by Coarse-Grained Simulations. J Am Chem Soc 2021;143:17412-23. [PMID: 34644073 DOI: 10.1021/jacs.1c05332] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
27 Hu X, Jazani AM, Oh JK. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. Polymer 2021;230:124024. [DOI: 10.1016/j.polymer.2021.124024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Götz S, Zechel S, Hager MD, Newkome GR, Schubert US. Versatile Applications of Metallopolymers. Progress in Polymer Science 2021;119:101428. [DOI: 10.1016/j.progpolymsci.2021.101428] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
29 Alemayehu YA, Ilhami FB, Manayia AH, Cheng CC. Mercury-containing supramolecular micelles with highly sensitive pH-responsiveness for selective cancer therapy. Acta Biomater 2021;129:235-44. [PMID: 34087441 DOI: 10.1016/j.actbio.2021.05.044] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Zhou N, Wang W, Li H, Jiang D, Zhong X. Development and investigation of dual potent anticancer drug-loaded nanoparticles for the treatment of lung cancer therapy. Process Biochemistry 2021;106:42-9. [DOI: 10.1016/j.procbio.2021.03.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
31 Hershberger KK, Gauger AJ, Bronstein LM. Utilizing Stimuli Responsive Linkages to Engineer and Enhance Polymer Nanoparticle-Based Drug Delivery Platforms. ACS Appl Bio Mater 2021;4:4720-36. [PMID: 35007022 DOI: 10.1021/acsabm.1c00351] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
32 Zhang Y, He P, Zhang P, Yi X, Xiao C, Chen X. Polypeptides-Drug Conjugates for Anticancer Therapy. Adv Healthc Mater 2021;10:e2001974. [PMID: 33929786 DOI: 10.1002/adhm.202001974] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
33 Liu F, Niko Y, Bouchaala R, Mercier L, Lefebvre O, Andreiuk B, Vandamme T, Goetz JG, Anton N, Klymchenko A. Drug‐Sponge Lipid Nanocarrier for in Situ Cargo Loading and Release Using Dynamic Covalent Chemistry. Angew Chem Int Ed 2021;60:6573-6580. [DOI: 10.1002/anie.202014259] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
34 Pan R, Liu G, Zeng Y, He X, Ma Z, Wei Y, Chen S, Yang L, Tao L. A multi-responsive self-healing hydrogel for controlled release of curcumin. Polym Chem 2021;12:2457-63. [DOI: 10.1039/d1py00176k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
35 Ni P, Liu J, He J, Zhang M. A Codelivery System of Anticancer Drug Doxorubicin and Tumor-Suppressor Gene p53 Based on Polyphosphoester for Lung Cancer Therapy. Biomaterial Engineering 2021. [DOI: 10.1007/978-981-33-6198-0_27-1] [Reference Citation Analysis]
36 Aghanouri R, Shirmohammadi N, Khodaee A, Rahimi M, Vanayi M. Formulation of new intelligent nanoparticle inhibited h1n1 influenza subtype and SARS coronavirus type 2 (COVID-19) in vitro. Biomed Biotechnol Res J 2021;5:389. [DOI: 10.4103/bbrj.bbrj_265_21] [Reference Citation Analysis]
37 Hu Y, Yu D, Zhang X. 9-amino acid cyclic peptide-decorated sorafenib polymeric nanoparticles for the efficient in vitro nursing care analysis of hepatocellular carcinoma. Process Biochemistry 2021;100:140-8. [DOI: 10.1016/j.procbio.2020.09.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
38 Pesenti T, Nicolas J. 100th Anniversary of Macromolecular Science Viewpoint: Degradable Polymers from Radical Ring-Opening Polymerization: Latest Advances, New Directions, and Ongoing Challenges. ACS Macro Lett 2020;9:1812-35. [PMID: 35653672 DOI: 10.1021/acsmacrolett.0c00676] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 10.3] [Reference Citation Analysis]
39 Fang W, Jin R, Mu W. Near-infrared mediated polymer-coated carbon nanodots loaded cisplatin for targeted care management of lung cancer therapy. Process Biochemistry 2020;99:27-35. [DOI: 10.1016/j.procbio.2020.08.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
40 Lamontagne HR, Lessard BH. Nitroxide-Mediated Polymerization: A Versatile Tool for the Engineering of Next Generation Materials. ACS Appl Polym Mater 2020;2:5327-44. [DOI: 10.1021/acsapm.0c00888] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
41 Soliman N, Gasser G, Thomas CM. Incorporation of Ru(II) Polypyridyl Complexes into Nanomaterials for Cancer Therapy and Diagnosis. Adv Mater 2020;32:e2003294. [PMID: 33073433 DOI: 10.1002/adma.202003294] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
42 Sallam MA, Prakash S, Krishnan V, Todorova K, Mandinova A, Mitragotri S. Hyaluronic Acid Conjugates of Vorinostat and Bexarotene for Treatment of Cutaneous Malignancies. Adv Therap 2020;3:2000116. [DOI: 10.1002/adtp.202000116] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
43 Van Herck S, De Geest BG. Nanomedicine-mediated alteration of the pharmacokinetic profile of small molecule cancer immunotherapeutics. Acta Pharmacol Sin 2020;41:881-94. [PMID: 32451411 DOI: 10.1038/s41401-020-0425-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
44 Su X, Zhuang W, Yu T, He H, Ma B, Chen L, Yang L, Li G, Wang Y. ROS and GSH Dual‐Responsive GEM Prodrug Micelles for ROS‐Triggered Fluorescence Turn on Bioimaging and Cancer Therapy. Adv Mater Interfaces 2020;7:2000294. [DOI: 10.1002/admi.202000294] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
45 Sasaki I, Daniel J, Marais S, Verlhac J, Vaultier M, Blanchard-desce M. Soft fluorescent organic nanodots as nanocarriers for porphyrins. J Porphyrins Phthalocyanines 2019;23:1463-9. [DOI: 10.1142/s108842461950158x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
46 Pan R, Zeng Y, Liu G, Wei Y, Xu Y, Tao L. Curcumin–polymer conjugates with dynamic boronic acid ester linkages for selective killing of cancer cells. Polym Chem 2020;11:1321-6. [DOI: 10.1039/c9py01596e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
47 Ruipérez F. Application of quantum chemical methods in polymer chemistry. International Reviews in Physical Chemistry 2019;38:343-403. [DOI: 10.1080/0144235x.2019.1677062] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
48 Mao T, Yang L, Liu G, Wei Y, Gou Y, Wang J, Tao L. Ferrocene-Containing Polymer via the Biginelli Reaction for In Vivo Treatment of Oxidative Stress Damage. ACS Macro Lett 2019;8:639-45. [PMID: 35619538 DOI: 10.1021/acsmacrolett.9b00210] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
49 Abdoune Y, Benguerba Y, Benabid S, Khither H, Sobhi W, Benachour D. Numerical investigation of polyethylene glycol polymer (PEG) and dithymoquinone (DTQ) interaction using molecular modeling. Journal of Molecular Liquids 2019;276:134-40. [DOI: 10.1016/j.molliq.2018.11.105] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
50 Liu B, Liu C, De Luca HG, Raman Pillai SK, Anthony DB, Li J, Bismarck A, Shaffer MSP, Chan-park MB. Synthesis of epoxidized poly(ester carbonate)- b -polyimide- b -poly(ester carbonate): reactive single-walled carbon nanotube dispersants enable synergistic reinforcement around multi-walled nanotube-grafted carbon fibers. Polym Chem 2019;10:1324-34. [DOI: 10.1039/c8py01465e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
51 Kendrick-williams LL, Harth E. Second-Generation Nanosponges: Nanonetworks in Controlled Dimensions via Backbone Ketoxime and Alkoxyamine Cross-Links for Controlled Release. Macromolecules 2018;51:10160-6. [DOI: 10.1021/acs.macromol.8b02244] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
52 Bao Y, Guégain E, Nicolas J. Drug-Initiated Synthesis of Cladribine-Based Polymer Prodrug Nanoparticles: Biological Evaluation and Structure Activity Relationships. ACS Symposium Series 2018. [DOI: 10.1021/bk-2018-1285.ch011] [Reference Citation Analysis]
53 Biswas G, Jena BC, Maiti S, Samanta P, Mandal M, Dhara D. Photoresponsive Block Copolymer Prodrug Nanoparticles as Delivery Vehicle for Single and Dual Anticancer Drugs. ACS Omega 2017;2:6677-90. [PMID: 30023528 DOI: 10.1021/acsomega.7b00911] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
54 Sun J, Chen Y, Li K, Huang Y, Fu X, Zhang X, Zhao W, Wei Y, Xu L, Zhang P, Venkataramanan R, Li S. A prodrug micellar carrier assembled from polymers with pendant farnesyl thiosalicylic acid moieties for improved delivery of paclitaxel. Acta Biomater 2016;43:282-91. [PMID: 27422196 DOI: 10.1016/j.actbio.2016.07.014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
55 Menasco D, Wang Q. Nanoparticles as Drug Delivery Vehicles. Drug Delivery 2016. [DOI: 10.1002/9781118833322.ch14] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
56 Immunotherapy and Vaccines. Controlled Release Systems 2016. [DOI: 10.1201/b19860-19] [Reference Citation Analysis]
57 Tebaldi ML, Belardi RM, Montoro SR. Polymers with Nano-Encapsulated Functional Polymers. Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems 2016. [DOI: 10.1016/b978-0-323-39408-6.00008-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
58 Bhaw-luximon A, Goonoo N, Jhurry D. Nanotherapeutics promises for colorectal cancer and pancreatic ductal adenocarcinoma. Nanobiomaterials in Cancer Therapy 2016. [DOI: 10.1016/b978-0-323-42863-7.00006-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
59 Arrowsmith M. Magnesium and Calcium Complexes in Homogeneous Catalysis. Encyclopedia of Inorganic and Bioinorganic Chemistry 2015. [DOI: 10.1002/9781119951438.eibc2299] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
60 Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:271-99. [PMID: 26314803 DOI: 10.1002/wnan.1364] [Cited by in Crossref: 231] [Cited by in F6Publishing: 245] [Article Influence: 28.9] [Reference Citation Analysis]
61 Harrisson S, Maksimenko A, Bui DT, Desmaële D, Couvreur P, Nicolas J. The Drug-Initiated Method: A Convenient Approach for the Synthesis of Efficient Polymer Prodrug Nanoparticles. ACS Symposium Series 2015. [DOI: 10.1021/bk-2015-1188.ch016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]