BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Z, Ding J, Chen X, Xiao C, He C, Zhuang X, Chen L, Chen X. Intracellular pH-sensitive supramolecular amphiphiles based on host–guest recognition between benzimidazole and β-cyclodextrin as potential drug delivery vehicles. Polym Chem 2013;4:3265. [DOI: 10.1039/c3py00141e] [Cited by in Crossref: 81] [Cited by in F6Publishing: 81] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Saji VS. Recent Updates on Supramolecular-Based Drug Delivery - Macrocycles and Supramolecular Gels. Chem Rec 2022;:e202200053. [PMID: 35510981 DOI: 10.1002/tcr.202200053] [Reference Citation Analysis]
2 Lu X, Du G, Zhang Z, Gong G, Cai W, Wu L, Zhao G. Fabrication of Redox‐ and pH‐Sensitive Self‐Assembled Nano‐Micelles with Pegylated β ‐Cyclodextrin for Codelivery of Doxorubicin and Cyclopalladated Ferrocene. Euro J of Inorganic Chem. [DOI: 10.1002/ejic.202101061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Mobley EB, Byrd N, Yim MG, Gariepy R, Rieder M, Ward S. Glutathione sensitive vesicles prepared from supramolecular amphiphiles. Soft Matter 2021;17:9664-9. [PMID: 34633020 DOI: 10.1039/d1sm01238j] [Reference Citation Analysis]
4 Zhang Z, Tang W, Li Y, Cao Y, Shang Y. Bioinspired Conjugated Tri-Porphyrin-Based Intracellular pH-Sensitive Metallo-Supramolecular Nanoparticles for Near-Infrared Photoacoustic Imaging-Guided Chemo- and Photothermal Combined Therapy. ACS Biomater Sci Eng 2021;7:4503-8. [PMID: 34437801 DOI: 10.1021/acsbiomaterials.1c00597] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
5 Yu L, Xing C, Fan S, Liu F, Li B, Zhang S. β-Cyclodextrin-Modified Polyacrylonitrile Nanofibrous Scaffolds with Breathability, Moisture-Wicking, and Antistatic Performance. Ind Eng Chem Res 2021;60:10217-10224. [DOI: 10.1021/acs.iecr.1c01744] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Qian Y, Zhang J, Xu R, Li Q, Shen Q, Zhu G. Nanoparticles based on polymers modified with pH-sensitive molecular switch and low molecular weight heparin carrying Celastrol and ferrocene for breast cancer treatment. Int J Biol Macromol 2021;183:2215-26. [PMID: 34097964 DOI: 10.1016/j.ijbiomac.2021.05.204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Cyclodextrins in the Field of Supramolecular Polymers. Supramolecular Polymers and Assemblies 2021. [DOI: 10.1002/9783527685325.ch9] [Reference Citation Analysis]
8 Wang H, Cheng L, Ma S, Ding L, Zhang W, Xu Z, Li D, Gao L. Self-Assembled Multiple-Enzyme Composites for Enhanced Synergistic Cancer Starving-Catalytic Therapy. ACS Appl Mater Interfaces 2020;12:20191-201. [PMID: 32295337 DOI: 10.1021/acsami.0c02006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
9 Wang J, Li D, Fan Y, Shi M, Yang Y, Wang L, Peng Y, Shen M, Shi X. Core-shell tecto dendrimers formed via host-guest supramolecular assembly as pH-responsive intelligent carriers for enhanced anticancer drug delivery. Nanoscale 2019;11:22343-50. [PMID: 31728477 DOI: 10.1039/c9nr08309j] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 15.0] [Reference Citation Analysis]
10 Huang M, Meng J, Li Z, Xu S. Visible light-controlled reversible self-assembly of nanorod supramolecular structures. Optik 2020;203:164075. [DOI: 10.1016/j.ijleo.2019.164075] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Dai X, Chen Y, Liu Y. Nanoscaled Cyclodextrin Supermolecular System for Drug and Gene Delivery. Handbook of Macrocyclic Supramolecular Assembly 2020. [DOI: 10.1007/978-981-15-2686-2_67] [Reference Citation Analysis]
12 Yang G, Chen G. Construction of Glyco-nanostructures Through the Self-Assembly of Saccharide-Containing Macrocyclic Amphiphiles. Handbook of Macrocyclic Supramolecular Assembly 2020. [DOI: 10.1007/978-981-15-2686-2_41] [Reference Citation Analysis]
13 Li J, Li X, Liu H, Ren T, Huang L, Deng Z, Yang Y, Zhong S. GSH and light dual stimuli-responsive supramolecular polymer drug carriers for cancer therapy. Polymer Degradation and Stability 2019;168:108956. [DOI: 10.1016/j.polymdegradstab.2019.108956] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
14 Bai Y, Liu CP, Xie FY, Ma R, Zhuo LH, Li N, Tian W. Construction of β-cyclodextrin-based supramolecular hyperbranched polymers self-assemblies using AB2-type macromonomer and their application in the drug delivery field. Carbohydr Polym 2019;213:411-8. [PMID: 30879686 DOI: 10.1016/j.carbpol.2019.03.017] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
15 Yuan Z, Wang J, Wang Y, Zhong Y, Zhang X, Li L, Wang J, Lincoln SF, Guo X. Redox-Controlled Voltage Responsive Micelles Assembled by Noncovalently Grafted Polymers for Controlled Drug Release. Macromolecules 2019;52:1400-7. [DOI: 10.1021/acs.macromol.8b02641] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
16 Yang G, Chen G. Construction of Glyco-Nanostructures Through the Self-Assembly of Saccharide-Containing Macrocyclic Amphiphiles. Handbook of Macrocyclic Supramolecular Assembly 2019. [DOI: 10.1007/978-981-13-1744-6_41-1] [Reference Citation Analysis]
17 Dai X, Chen Y, Liu Y. Nanoscaled Cyclodextrin Supermolecular System for Drug and Gene Delivery. Handbook of Macrocyclic Supramolecular Assembly 2019. [DOI: 10.1007/978-981-13-1744-6_67-1] [Reference Citation Analysis]
18 Yao X, Mu J, Zeng L, Lin J, Nie Z, Jiang X, Huang P. Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics. Mater Horiz 2019;6:846-70. [DOI: 10.1039/c9mh00166b] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 15.3] [Reference Citation Analysis]
19 Pisagatti I, Barbera L, Gattuso G, Villari V, Micali N, Fazio E, Neri F, Parisi MF, Notti A. Tuning the aggregation of an amphiphilic anionic calix[5]arene by selective host–guest interactions with bola-type dications. New J Chem 2019;43:7628-35. [DOI: 10.1039/c9nj01198f] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
20 Zhang J, Zuo T, Liang X, Xu Y, Yang Y, Fang T, Li J, Chen D, Shen Q. Fenton-reaction-stimulative nanoparticles decorated with a reactive-oxygen-species (ROS)-responsive molecular switch for ROS amplification and triple negative breast cancer therapy. J Mater Chem B 2019;7:7141-51. [DOI: 10.1039/c9tb01702j] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
21 Yuan P, Ruan Z, Li T, Tian Y, Cheng Q, Yan L. Sharp pH-sensitive amphiphilic polypeptide macrophotosensitizer for near infrared imaging-guided photodynamic therapy. Nanomedicine: Nanotechnology, Biology and Medicine 2019;15:198-207. [DOI: 10.1016/j.nano.2018.09.017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
22 Chang Y, Jiao Y, Symons HE, Xu JF, Faul CFJ, Zhang X. Molecular engineering of polymeric supra-amphiphiles. Chem Soc Rev 2019;48:989-1003. [PMID: 30681685 DOI: 10.1039/c8cs00806j] [Cited by in Crossref: 67] [Cited by in F6Publishing: 68] [Article Influence: 22.3] [Reference Citation Analysis]
23 Cui X, Wang N, Wang H, Li G, Tao Q. pH sensitive supramolecular vesicles from cyclodextrin graft copolymer and benzimidazole ended block copolymer as dual drug carriers. International Journal of Polymeric Materials and Polymeric Biomaterials 2019;68:733-40. [DOI: 10.1080/00914037.2018.1493686] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
24 Zhou Z, Li G, Wang N, Guo F, Guo L, Liu X. Synthesis of temperature/pH dual-sensitive supramolecular micelles from β-cyclodextrin-poly(N-isopropylacrylamide) star polymer for drug delivery. Colloids and Surfaces B: Biointerfaces 2018;172:136-42. [DOI: 10.1016/j.colsurfb.2018.08.031] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
25 Yang Z, Peng Y, Qiu L. pH-Responsive supramolecular micelle based on host-guest interaction of poly(β-amino ester) derivatives and adamantyl-terminated poly(ethylene glycol) for cancer inhibition. Chinese Chemical Letters 2018;29:1839-44. [DOI: 10.1016/j.cclet.2018.11.009] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
26 Xu Y, Yuan T, Nour HF, Fang L, Olson MA. Bis‐Bipyridinium Gemini Surfactant‐Based Supramolecular Helical Fibers and Solid State Thermochromism. Chem Eur J 2018;24:16558-69. [DOI: 10.1002/chem.201803496] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
27 Zhou X, Xu L, Xu J, Wu J, Kirk TB, Ma D, Xue W. Construction of a High-Efficiency Drug and Gene Co-Delivery System for Cancer Therapy from a pH-Sensitive Supramolecular Inclusion between Oligoethylenimine- graft -β-cyclodextrin and Hyperbranched Polyglycerol Derivative. ACS Appl Mater Interfaces 2018;10:35812-29. [DOI: 10.1021/acsami.8b14517] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 9.0] [Reference Citation Analysis]
28 Ramesh K, Anugrah DSB, Lim KT. Supramolecular poly(N-acryloylmorpholine)-b-poly(d,l-lactide) pseudo-block copolymer via host-guest interaction for drug delivery. Reactive and Functional Polymers 2018;131:12-21. [DOI: 10.1016/j.reactfunctpolym.2018.06.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
29 Zhou Z, Guo F, Wang N, Meng M, Li G. Dual pH-sensitive supramolecular micelles from star-shaped PDMAEMA based on β-cyclodextrin for drug release. International Journal of Biological Macromolecules 2018;116:911-9. [DOI: 10.1016/j.ijbiomac.2018.05.092] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
30 Bischoff I, Tsaryk R, Chai F, Fürst R, Kirkpatrick CJ, Unger RE. In vitro evaluation of a biomaterial-based anticancer drug delivery system as an alternative to conventional post-surgery bone cancer treatment. Mater Sci Eng C Mater Biol Appl 2018;93:115-24. [PMID: 30274043 DOI: 10.1016/j.msec.2018.07.057] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
31 Feng H, Sun Y, Zhang J, Deng L, Dong A. Influence of supramolecular layer-crosslinked structure on stability of dual pH-Responsive polymer nanoparticles for doxorubicin delivery. Journal of Drug Delivery Science and Technology 2018;45:81-92. [DOI: 10.1016/j.jddst.2018.03.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
32 Liao R, Lv P, Wang Q, Zheng J, Feng B, Yang B. Cyclodextrin-based biological stimuli-responsive carriers for smart and precision medicine. Biomater Sci 2017;5:1736-45. [PMID: 28726855 DOI: 10.1039/c7bm00443e] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 10.0] [Reference Citation Analysis]
33 Zuo C, Peng J, Cong Y, Dai X, Zhang X, Zhao S, Zhang X, Ma L, Wang B, Wei H. Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release. Journal of Colloid and Interface Science 2018;514:122-31. [DOI: 10.1016/j.jcis.2017.12.022] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
34 Zhang Y, Yang D, Chen H, Lim WQ, Phua FSZ, An G, Yang P, Zhao Y. Reduction-sensitive fluorescence enhanced polymeric prodrug nanoparticles for combinational photothermal-chemotherapy. Biomaterials 2018;163:14-24. [PMID: 29452945 DOI: 10.1016/j.biomaterials.2018.02.023] [Cited by in Crossref: 79] [Cited by in F6Publishing: 83] [Article Influence: 19.8] [Reference Citation Analysis]
35 Gao L, Wang W, Yu B, Cong H. Novel triple responsive polybenzimidazole synthesized via amine-ene Michael addition. New J Chem 2018;42:11396-403. [DOI: 10.1039/c8nj01571f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
36 Erdoğar N, Bilensoy E. Cyclodextrin-Based Nanosystems in Targeted Cancer Therapy. Environmental Chemistry for a Sustainable World 2018. [DOI: 10.1007/978-3-319-76162-6_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
37 Jia Y, Zhang M, Zhu XX. CO 2 -Switchable Self-Healing Host–Guest Hydrogels. Macromolecules 2017;50:9696-701. [DOI: 10.1021/acs.macromol.7b02163] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 7.6] [Reference Citation Analysis]
38 Gao Y, Li G, Zhou Z, Gao L, Tao Q. Sensitive complex micelles based on host-guest recognition from chitosan-graft-β-cyclodextrin for drug release. International Journal of Biological Macromolecules 2017;105:74-80. [DOI: 10.1016/j.ijbiomac.2017.06.120] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
39 Gao Y, Li G, Zhou Z, Guo L, Liu X. Supramolecular assembly of poly(β-cyclodextrin) block copolymer and benzimidazole-poly(ε-caprolactone) based on host-guest recognition for drug delivery. Colloids and Surfaces B: Biointerfaces 2017;160:364-71. [DOI: 10.1016/j.colsurfb.2017.09.047] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
40 Zhang P, Yuan K, Li C, Zhang X, Wu W, Jiang X. Cisplatin-Rich Polyoxazoline-Poly(aspartic acid) Supramolecular Nanoparticles. Macromol Biosci 2017;17:1700206. [DOI: 10.1002/mabi.201700206] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
41 Liu L, Feng X, Pei Y, Wang J, Ding J, Chen L. α-Cyclodextrin concentration-controlled thermo-sensitive supramolecular hydrogels. Mater Sci Eng C Mater Biol Appl 2018;82:25-8. [PMID: 29025655 DOI: 10.1016/j.msec.2017.08.045] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
42 Schmidt BVKJ, Barner-kowollik C. Dynamic Macromolecular Material Design-The Versatility of Cyclodextrin-Based Host-Guest Chemistry. Angew Chem Int Ed 2017;56:8350-69. [DOI: 10.1002/anie.201612150] [Cited by in Crossref: 183] [Cited by in F6Publishing: 187] [Article Influence: 36.6] [Reference Citation Analysis]
43 Schmidt BVKJ, Barner-kowollik C. Dynamisches makromolekulares Materialdesign - die Vielseitigkeit von Cyclodextrin-basierter Wirt-Gast-Chemie. Angew Chem 2017;129:8468-88. [DOI: 10.1002/ange.201612150] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
44 Zhou Y, Jie K. A triply-responsive supramolecular amphiphile fabricated by a thermal-responsive pillar[5]arene-based host–guest recognition motif. Tetrahedron Letters 2017;58:2217-22. [DOI: 10.1016/j.tetlet.2017.04.068] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
45 Peng L, Liu S, Feng A, Yuan J. Polymeric Nanocarriers Based on Cyclodextrins for Drug Delivery: Host–Guest Interaction as Stimuli Responsive Linker. Mol Pharmaceutics 2017;14:2475-86. [DOI: 10.1021/acs.molpharmaceut.7b00160] [Cited by in Crossref: 79] [Cited by in F6Publishing: 81] [Article Influence: 15.8] [Reference Citation Analysis]
46 Zhang P, Qian X, Zhang Z, Li C, Xie C, Wu W, Jiang X. Supramolecular Amphiphilic Polymer-Based Micelles with Seven-Armed Polyoxazoline Coating for Drug Delivery. ACS Appl Mater Interfaces 2017;9:5768-77. [PMID: 28124555 DOI: 10.1021/acsami.6b14464] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 6.4] [Reference Citation Analysis]
47 Kang Y, Ju X, Ding L, Zhang S, Li B. Reactive Oxygen Species and Glutathione Dual Redox-Responsive Supramolecular Assemblies with Controllable Release Capability. ACS Appl Mater Interfaces 2017;9:4475-84. [DOI: 10.1021/acsami.6b14640] [Cited by in Crossref: 69] [Cited by in F6Publishing: 73] [Article Influence: 13.8] [Reference Citation Analysis]
48 Wen J, Yang K, Liu F, Li H, Xu Y, Sun S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev 2017;46:6024-45. [DOI: 10.1039/c7cs00219j] [Cited by in Crossref: 296] [Cited by in F6Publishing: 312] [Article Influence: 59.2] [Reference Citation Analysis]
49 Yuan T, Vazquez M, Goldner AN, Xu Y, Contrucci R, Firestone MA, Olson MA, Fang L. Versatile Thermochromic Supramolecular Materials Based on Competing Charge Transfer Interactions. Adv Funct Mater 2016;26:8604-12. [DOI: 10.1002/adfm.201603364] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 6.2] [Reference Citation Analysis]
50 Schmidt BVKJ, Barner&xkowollik C. A Supramolecular Approach to Macromolecular Self&;#x02010;Assembly: Cyclodextrin Host/Guest Complexes. Macromolecular Self&;#x02010;assembly 2016. [DOI: 10.1002/9781118887813.ch1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
51 Zuo C, Dai X, Zhao S, Liu X, Ding S, Ma L, Liu M, Wei H. Fabrication of Dual-Redox Responsive Supramolecular Copolymers Using a Reducible β-Cyclodextran-Ferrocene Double-Head Unit. ACS Macro Lett 2016;5:873-8. [PMID: 35614757 DOI: 10.1021/acsmacrolett.6b00450] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 8.8] [Reference Citation Analysis]
52 Sun W, Wang Z, She M, Yang Z, Jin X, Wang Y, Shi Z, Li J. Study on the inclusion behavior and solid inclusion complex of 5-amino-6-methyl-2-benzimidazolone with cyclodextrins. Chinese Chemical Letters 2016;27:1077-82. [DOI: 10.1016/j.cclet.2016.03.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
53 Liu K, Jiang X, Hunziker P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. Nanoscale 2016;8:16091-156. [DOI: 10.1039/c6nr04489a] [Cited by in Crossref: 117] [Cited by in F6Publishing: 121] [Article Influence: 19.5] [Reference Citation Analysis]
54 Liu P, Wang X, Hiltunen K, Chen Z. Controllable Drug Release System in Living Cells Triggered by Enzyme–Substrate Recognition. ACS Appl Mater Interfaces 2015;7:26811-8. [DOI: 10.1021/acsami.5b08914] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
55 Calandra P, Caschera D, Turco Liveri V, Lombardo D. How self-assembly of amphiphilic molecules can generate complexity in the nanoscale. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015;484:164-83. [DOI: 10.1016/j.colsurfa.2015.07.058] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 7.9] [Reference Citation Analysis]
56 Chuang C, Li C, Prasannan A, Truong-le B, Hong P. Preparation of a drug carrier through α-cyclodextrin-induced micellization of poly(ε-caprolactone-block-4-vinylpyridine) for controlled delivery of doxorubicin. J Polym Res 2015;22. [DOI: 10.1007/s10965-015-0842-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
57 Zhu Y, Yao X, Chen X, Chen L. pH-sensitive hydroxyethyl starch-doxorubicin conjugates as antitumor prodrugs with enhanced anticancer efficacy. J Appl Polym Sci 2015;132:n/a-n/a. [DOI: 10.1002/app.42778] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
58 Xie C, Zhang P, Zhang Z, Yang C, Zhang J, Wu W, Jiang X. Drug-loaded pseudo-block copolymer micelles with a multi-armed star polymer as the micellar exterior. Nanoscale 2015;7:12572-80. [PMID: 26144838 DOI: 10.1039/c5nr02861b] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
59 Chen L, Zhang Z, Chen X, Yao X, He C, Chen X. Fabrication of modular multifunctional delivery for antitumor drugs based on host-guest recognition. Acta Biomater 2015;18:168-75. [PMID: 25749295 DOI: 10.1016/j.actbio.2015.02.029] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
60 Zhang Z, Lv Q, Gao X, Chen L, Cao Y, Yu S, He C, Chen X. pH-Responsive Poly(ethylene glycol)/Poly( l -lactide) Supramolecular Micelles Based on Host–Guest Interaction. ACS Appl Mater Interfaces 2015;7:8404-11. [DOI: 10.1021/acsami.5b01213] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 8.3] [Reference Citation Analysis]
61 Dan Z, Cao H, He X, Zeng L, Zou L, Shen Q, Zhang Z. Biological stimuli-responsive cyclodextrin-based host–guest nanosystems for cancer therapy. International Journal of Pharmaceutics 2015;483:63-8. [DOI: 10.1016/j.ijpharm.2015.01.035] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 5.3] [Reference Citation Analysis]
62 Yu G, Jie K, Huang F. Supramolecular Amphiphiles Based on Host–Guest Molecular Recognition Motifs. Chem Rev 2015;115:7240-303. [DOI: 10.1021/cr5005315] [Cited by in Crossref: 753] [Cited by in F6Publishing: 766] [Article Influence: 107.6] [Reference Citation Analysis]
63 Lin Z, Li J, He H, Kuang H, Chen X, Xie Z, Jing X, Huang Y. Acetalated-dextran as valves of mesoporous silica particles for pH responsive intracellular drug delivery. RSC Adv 2015;5:9546-55. [DOI: 10.1039/c4ra15663c] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
64 Simões SMN, Rey-rico A, Concheiro A, Alvarez-lorenzo C. Supramolecular cyclodextrin-based drug nanocarriers. Chem Commun 2015;51:6275-89. [DOI: 10.1039/c4cc10388b] [Cited by in Crossref: 118] [Cited by in F6Publishing: 119] [Article Influence: 16.9] [Reference Citation Analysis]
65 Wei H, Yu C. Cyclodextrin-functionalized polymers as drug carriers for cancer therapy. Biomater Sci 2015;3:1050-60. [DOI: 10.1039/c4bm00417e] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.9] [Reference Citation Analysis]
66 Frisch H, Besenius P. pH-switchable self-assembled materials. Macromol Rapid Commun 2015;36:346-63. [PMID: 25534871 DOI: 10.1002/marc.201400623] [Cited by in Crossref: 67] [Cited by in F6Publishing: 67] [Article Influence: 8.4] [Reference Citation Analysis]
67 Chen X, Yao X, Chen L. Intracellular pH-sensitive dextran-based micelles as efficient drug delivery platforms: Intracellular pH-sensitive dextran-based micelles. Polym Int 2015;64:430-6. [DOI: 10.1002/pi.4809] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
68 Hu QD, Tang GP, Chu PK. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: from design to applications. Acc Chem Res 2014;47:2017-25. [PMID: 24873201 DOI: 10.1021/ar500055s] [Cited by in Crossref: 338] [Cited by in F6Publishing: 353] [Article Influence: 42.3] [Reference Citation Analysis]
69 Yan Q, Zhang H, Zhao Y. CO2-Switchable Supramolecular Block Glycopolypeptide Assemblies. ACS Macro Lett 2014;3:472-6. [PMID: 35590785 DOI: 10.1021/mz500181q] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 6.1] [Reference Citation Analysis]
70 Bao S, Ni H, Wu Q, Gao H, Liang G, Zhu F, Wu Q. Waterborne redox-active helix–coil–helix triblock metallopolymers: Synthesis, disassembly and electrochemical behaviors. Polymer 2014;55:2205-12. [DOI: 10.1016/j.polymer.2014.03.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
71 Schmidt BV, Hetzer M, Ritter H, Barner-kowollik C. Complex macromolecular architecture design via cyclodextrin host/guest complexes. Progress in Polymer Science 2014;39:235-49. [DOI: 10.1016/j.progpolymsci.2013.09.006] [Cited by in Crossref: 157] [Cited by in F6Publishing: 157] [Article Influence: 19.6] [Reference Citation Analysis]
72 Wang D, Tong G, Dong R, Zhou Y, Shen J, Zhu X. Self-assembly of supramolecularly engineered polymers and their biomedical applications. Chem Commun 2014;50:11994-2017. [DOI: 10.1039/c4cc03155e] [Cited by in Crossref: 73] [Cited by in F6Publishing: 73] [Article Influence: 9.1] [Reference Citation Analysis]
73 Loh XJ. Supramolecular host–guest polymeric materials for biomedical applications. Mater Horiz 2014;1:185-95. [DOI: 10.1039/c3mh00057e] [Cited by in Crossref: 117] [Cited by in F6Publishing: 118] [Article Influence: 14.6] [Reference Citation Analysis]
74 Ding J, Chen L, Xiao C, Chen L, Zhuang X, Chen X. Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chem Commun 2014;50:11274-90. [DOI: 10.1039/c4cc03153a] [Cited by in Crossref: 141] [Cited by in F6Publishing: 144] [Article Influence: 17.6] [Reference Citation Analysis]
75 Schmidt BVKJ. Theoretical Background and Literature Overview. Springer Theses 2014. [DOI: 10.1007/978-3-319-06077-4_2] [Reference Citation Analysis]
76 Zhao J, Liu J, Han S, Deng H, Deng L, Liu J, Meng A, Dong A, Zhang J. Acid-induced disassemblable nanoparticles based on cyclic benzylidene acetal-functionalized graft copolymer via sequential RAFT and ATRP polymerization. Polym Chem 2014;5:1852. [DOI: 10.1039/c3py01324c] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]