BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lamanna G, Garofalo A, Popa G, Wilhelm C, Bégin-Colin S, Felder-Flesch D, Bianco A, Gazeau F, Ménard-Moyon C. Endowing carbon nanotubes with superparamagnetic properties: applications for cell labeling, MRI cell tracking and magnetic manipulations. Nanoscale 2013;5:4412-21. [PMID: 23579421 DOI: 10.1039/c3nr00636k] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Klein AL, Nugent G, Cavendish J, Geldenhuys WJ, Sriram K, Porter D, Fladeland R, Lockman PR, Sherman JH. Nanoparticles as a Tool in Neuro-Oncology Theranostics. Pharmaceutics 2021;13:948. [PMID: 34202660 DOI: 10.3390/pharmaceutics13070948] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Shen Y, Pan J, Hu X, Wen H, Xiao JQ, Hu J. Hydrogen Bubble-Directed Tubular Structure: A Novel Mechanism to Facilely Synthesize Nanotube Arrays with Controllable Wall Thickness. ACS Appl Mater Interfaces 2021;13:5418-5424. [DOI: 10.1021/acsami.0c14740] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Mosse IS, Sodisetti VR, Coleman C, Ncube S, de Sousa AS, Erasmus RM, Flahaut E, Blon T, Lassagne B, Šamořil T, Bhattacharyya S. Tuning Magnetic Properties of a Carbon Nanotube-Lanthanide Hybrid Molecular Complex through Controlled Functionalization. Molecules 2021;26:563. [PMID: 33498976 DOI: 10.3390/molecules26030563] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Mukhtar A, Wu K, Cao X, Gu L. Magnetic nanowires in biomedical applications. Nanotechnology 2020;31:433001. [DOI: 10.1088/1361-6528/aba1ba] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
5 Filippi M, Born G, Felder-Flesch D, Scherberich A. Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol 2020;35:331-50. [PMID: 31721139 DOI: 10.14670/HH-18-184] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
6 Shi C, Wang Y, Yu Y, Li J, Zhang D, Gao L. The role of cuprous ions on the click-assembled triazole films against copper corrosion. Corrosion Science 2018;145:100-8. [DOI: 10.1016/j.corsci.2018.09.019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
7 Yang CT, Ghosh KK, Padmanabhan P, Langer O, Liu J, Eng DNC, Halldin C, Gulyás B. PET-MR and SPECT-MR multimodality probes: Development and challenges. Theranostics 2018;8:6210-32. [PMID: 30613293 DOI: 10.7150/thno.26610] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 10.8] [Reference Citation Analysis]
8 Salinas HD, Restrepo J, Iglesias Ò. Change in the magnetic configurations of tubular nanostructures by tuning dipolar interactions. Sci Rep 2018;8:10275. [PMID: 29980728 DOI: 10.1038/s41598-018-28598-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
9 Gao Y. Carbon Nano-Allotrope/Magnetic Nanoparticle Hybrid Nanomaterials as T2 Contrast Agents for Magnetic Resonance Imaging Applications. J Funct Biomater 2018;9:E16. [PMID: 29415438 DOI: 10.3390/jfb9010016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
10 Ménard-moyon C. Applications of Carbon Nanotubes in the Biomedical Field. Smart Nanoparticles for Biomedicine. Elsevier; 2018. pp. 83-101. [DOI: 10.1016/b978-0-12-814156-4.00006-9] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
11 Karakoti M, Sandeep, Dhali S, Rana S, Siva Prasanna SRV, Mehta S, Sahoo NG. Surface Modification of Carbon-Based Nanomaterials for Polymer Nanocomposites. Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications 2018. [DOI: 10.1016/b978-0-12-813574-7.00002-2] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
12 Merum S, Veluru JB, Seeram R. Functionalized carbon nanotubes in bio-world: Applications, limitations and future directions. Materials Science and Engineering: B 2017;223:43-63. [DOI: 10.1016/j.mseb.2017.06.002] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 13.0] [Reference Citation Analysis]
13 Punetha VD, Rana S, Yoo HJ, Chaurasia A, Mcleskey JT, Ramasamy MS, Sahoo NG, Cho JW. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Progress in Polymer Science 2017;67:1-47. [DOI: 10.1016/j.progpolymsci.2016.12.010] [Cited by in Crossref: 381] [Cited by in F6Publishing: 391] [Article Influence: 76.2] [Reference Citation Analysis]
14 Vengatesan MR, Varghese AM, Mittal V. Nanotubes. In: John Wiley & Sons, Inc, editor. Kirk‐Othmer Encyclopedia of Chemical Technology. Wiley; 2000. pp. 1-24. [DOI: 10.1002/0471238961.koe00026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
15 Elgrabli D, Dachraoui W, Marmier H, Ménard-Moyon C, Bégin D, Bégin-Colin S, Bianco A, Alloyeau D, Gazeau F. Intracellular degradation of functionalized carbon nanotube/iron oxide hybrids is modulated by iron via Nrf2 pathway. Sci Rep 2017;7:40997. [PMID: 28120861 DOI: 10.1038/srep40997] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
16 Bordeianu C, Parat A, Affolter-zbaraszczuk C, Muller RN, Boutry S, Begin-colin S, Meyer F, Laurent S, Felder-flesch D. How a grafting anchor tailors the cellular uptake and in vivo fate of dendronized iron oxide nanoparticles. J Mater Chem B 2017;5:5152-64. [DOI: 10.1039/c7tb00781g] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
17 Metelkina ON, Lodge RW, Rudakovskaya PG, Gerasimov VM, Lucas CH, Grebennikov IS, Shchetinin IV, Savchenko AG, Pavlovskaya GE, Rance GA, del Carmen Gimenez-lopez M, Khlobystov AN, Majouga AG. Nanoscale engineering of hybrid magnetite–carbon nanofibre materials for magnetic resonance imaging contrast agents. J Mater Chem C 2017;5:2167-74. [DOI: 10.1039/c6tc04141h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
18 Chechetka SA, Doi M, Pichon BP, Bégin-Colin S, Miyako E. Photothermal and mechanical stimulation of cells via dualfunctional nanohybrids. Nanotechnology 2016;27:475102. [PMID: 27779117 DOI: 10.1088/0957-4484/27/47/475102] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
19 Kuźnik N, Tomczyk MM. Multiwalled carbon nanotube hybrids as MRI contrast agents. Beilstein J Nanotechnol 2016;7:1086-103. [PMID: 27547627 DOI: 10.3762/bjnano.7.102] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
20 Boncel S, Herman AP, Budniok S, Jędrysiak RG, Jakóbik-kolon A, Skepper JN, Müller KH. In Vitro Targeting and Selective Killing of T47D Breast Cancer Cells by Purpurin and 5-Fluorouracil Anchored to Magnetic CNTs: Nitrene-Based Functionalization versus Uptake, Cytotoxicity, and Intracellular Fate. ACS Biomater Sci Eng 2016;2:1273-85. [DOI: 10.1021/acsbiomaterials.6b00197] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
21 Al Faraj A. SWCNTs as novel theranostic nanocarriers for cancer diagnosis and therapy: towards safe translation to the clinics. Nanomedicine 2016;11:1431-45. [DOI: 10.2217/nnm-2016-0065] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
22 Cabana L, Bourgognon M, Wang JT, Protti A, Klippstein R, de Rosales RT, Shah AM, Fontcuberta J, Tobías-Rossell E, Sosabowski JK, Al-Jamal KT, Tobias G. The Shortening of MWNT-SPION Hybrids by Steam Treatment Improves Their Magnetic Resonance Imaging Properties In Vitro and In Vivo. Small 2016;12:2893-905. [PMID: 27079833 DOI: 10.1002/smll.201502721] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
23 Yao M, Hu Y, Sheng X, Lin J, Ling D, Gao J. Toxicity analysis of various Pluronic F-68-coated carbon nanotubes on mesenchymal stem cells. Chemico-Biological Interactions 2016;250:47-58. [DOI: 10.1016/j.cbi.2016.03.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
24 Fratila RM, Rivera-Fernández S, de la Fuente JM. Shape matters: synthesis and biomedical applications of high aspect ratio magnetic nanomaterials. Nanoscale 2015;7:8233-60. [PMID: 25877250 DOI: 10.1039/c5nr01100k] [Cited by in Crossref: 70] [Cited by in F6Publishing: 73] [Article Influence: 11.7] [Reference Citation Analysis]
25 Hajba L, Guttman A. The use of magnetic nanoparticles in cancer theranostics: Toward handheld diagnostic devices. Biotechnol Adv 2016;34:354-61. [PMID: 26853617 DOI: 10.1016/j.biotechadv.2016.02.001] [Cited by in Crossref: 75] [Cited by in F6Publishing: 80] [Article Influence: 12.5] [Reference Citation Analysis]
26 Mohapatra S, Rout SR, Das RK, Nayak S, Ghosh SK. Highly Hydrophilic Luminescent Magnetic Mesoporous Carbon Nanospheres for Controlled Release of Anticancer Drug and Multimodal Imaging. Langmuir 2016;32:1611-20. [DOI: 10.1021/acs.langmuir.5b03898] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 9.8] [Reference Citation Analysis]
27 Servant A, Jacobs I, Bussy C, Fabbro C, da Ros T, Pach E, Ballesteros B, Prato M, Nicolay K, Kostarelos K. Gadolinium-functionalised multi-walled carbon nanotubes as a T 1 contrast agent for MRI cell labelling and tracking. Carbon 2016;97:126-33. [DOI: 10.1016/j.carbon.2015.08.051] [Cited by in Crossref: 37] [Cited by in F6Publishing: 16] [Article Influence: 6.2] [Reference Citation Analysis]
28 Miyako E, Pichon BP, Ménard-moyon C, Vacchi IA, Lefèvre C, Bégin-colin S, Bianco A. Design, synthesis, characterization and properties of magnetic nanoparticle–nanocarbon hybrids. Carbon 2016;96:49-56. [DOI: 10.1016/j.carbon.2015.09.045] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
29 Sureshbabu AR, Kurapati R, Russier J, Ménard-moyon C, Bartolini I, Meneghetti M, Kostarelos K, Bianco A. Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes. Biomaterials 2015;72:20-8. [DOI: 10.1016/j.biomaterials.2015.08.046] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 7.3] [Reference Citation Analysis]
30 Wu Z, Huang J, Yan Y. Electrostatic Polyion Micelles with Fluorescence and MRI Dual Functions. Langmuir 2015;31:7926-33. [DOI: 10.1021/acs.langmuir.5b01516] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
31 Quyen Chau ND, Ménard-Moyon C, Kostarelos K, Bianco A. Multifunctional carbon nanomaterial hybrids for magnetic manipulation and targeting. Biochem Biophys Res Commun 2015;468:454-62. [PMID: 26129773 DOI: 10.1016/j.bbrc.2015.06.131] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
32 Rydzek G, Toulemon D, Garofalo A, Leuvrey C, Dayen J, Felder-flesch D, Schaaf P, Jierry L, Begin-colin S, Pichon BP, Boulmedais F. Selective Nanotrench Filling by One-Pot Electroclick Self-Constructed Nanoparticle Films. Small 2015;11:4638-42. [DOI: 10.1002/smll.201500639] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
33 Hong G, Diao S, Antaris AL, Dai H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem Rev 2015;115:10816-906. [PMID: 25997028 DOI: 10.1021/acs.chemrev.5b00008] [Cited by in Crossref: 934] [Cited by in F6Publishing: 958] [Article Influence: 133.4] [Reference Citation Analysis]
34 Al Faraj A, Shaik AS, Al Sayed B. Preferential magnetic targeting of carbon nanotubes to cancer sites: noninvasive tracking using MRI in a murine breast cancer model. Nanomedicine 2015;10:931-48. [DOI: 10.2217/nnm.14.145] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 4.9] [Reference Citation Analysis]
35 Peng E, Wang F, Xue JM. Nanostructured magnetic nanocomposites as MRI contrast agents. J Mater Chem B 2015;3:2241-76. [PMID: 32262055 DOI: 10.1039/c4tb02023e] [Cited by in Crossref: 90] [Cited by in F6Publishing: 90] [Article Influence: 12.9] [Reference Citation Analysis]
36 Modugno G, Ménard-Moyon C, Prato M, Bianco A. Carbon nanomaterials combined with metal nanoparticles for theranostic applications. Br J Pharmacol 2015;172:975-91. [PMID: 25323135 DOI: 10.1111/bph.12984] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 9.1] [Reference Citation Analysis]
37 Pineux F, Marega R, Stopin A, La Torre A, Garcia Y, Devlin E, Michiels C, N. Khlobystov A, Bonifazi D. Biotechnological promises of Fe-filled CNTs for cell shepherding and magnetic fluid hyperthermia applications. Nanoscale 2015;7:20474-88. [DOI: 10.1039/c5nr04824a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
38 Walter A, Garofalo A, Parat A, Martinez H, Felder-flesch D, Begin-colin S. Functionalization strategies and dendronization of iron oxide nanoparticles. Nanotechnology Reviews 2015;4. [DOI: 10.1515/ntrev-2015-0014] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
39 Liu W, Liu G, Dong X, Wang J, Yu W. Multifunctional MWCNTs–NaGdF 4 :Yb 3+ ,Er 3+ ,Eu 3+ hybrid nanocomposites with potential dual-mode luminescence, magnetism and photothermal properties. Phys Chem Chem Phys 2015;17:22659-67. [DOI: 10.1039/c5cp03725e] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
40 Liu X, Marangon I, Melinte G, Wilhelm C, Ménard-Moyon C, Pichon BP, Ersen O, Aubertin K, Baaziz W, Pham-Huu C, Bégin-Colin S, Bianco A, Gazeau F, Bégin D. Design of covalently functionalized carbon nanotubes filled with metal oxide nanoparticles for imaging, therapy, and magnetic manipulation. ACS Nano 2014;8:11290-304. [PMID: 25343751 DOI: 10.1021/nn5040923] [Cited by in Crossref: 81] [Cited by in F6Publishing: 81] [Article Influence: 10.1] [Reference Citation Analysis]
41 Chen B, Zhu Z, Ma J, Yang M, Hong J, Hu X, Qiu Y, Chen J. One-pot, solid-phase synthesis of magnetic multiwalled carbon nanotube/iron oxide composites and their application in arsenic removal. Journal of Colloid and Interface Science 2014;434:9-17. [DOI: 10.1016/j.jcis.2014.07.046] [Cited by in Crossref: 69] [Cited by in F6Publishing: 53] [Article Influence: 8.6] [Reference Citation Analysis]
42 Chechetka SA, Pichon B, Zhang M, Yudasaka M, Bégin-colin S, Bianco A, Miyako E. Multifunctional Carbon Nanohorn Complexes for Cancer Treatment. Chem Asian J 2015;10:160-5. [DOI: 10.1002/asia.201403059] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
43 Cao Y. Preparation and Magnetic Properties of a Multi-Walled Carbon Nanotube-Iron Oxide Nanoparticle Composite. Fullerenes, Nanotubes and Carbon Nanostructures 2014;23:623-6. [DOI: 10.1080/1536383x.2014.944261] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
44 Marangon I, Ménard-moyon C, Kolosnjaj-tabi J, Béoutis ML, Lartigue L, Alloyeau D, Pach E, Ballesteros B, Autret G, Ninjbadgar T, Brougham DF, Bianco A, Gazeau F. Covalent Functionalization of Multi-walled Carbon Nanotubes with a Gadolinium Chelate for Efficient T1 -Weighted Magnetic Resonance Imaging. Adv Funct Mater 2014. [DOI: 10.1002/adfm.201402234] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
45 Tuček J, Kemp KC, Kim KS, Zbořil R. Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 2014;8:7571-612. [PMID: 25000534 DOI: 10.1021/nn501836x] [Cited by in Crossref: 130] [Cited by in F6Publishing: 132] [Article Influence: 16.3] [Reference Citation Analysis]
46 Bennett KM, Jo J, Cabral H, Bakalova R, Aoki I. MR imaging techniques for nano-pathophysiology and theranostics. Adv Drug Deliv Rev 2014;74:75-94. [PMID: 24787226 DOI: 10.1016/j.addr.2014.04.007] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 6.3] [Reference Citation Analysis]
47 Wang JT, Cabana L, Bourgognon M, Kafa H, Protti A, Venner K, Shah AM, Sosabowski J, Mather SJ, Roig A, Ke X, Tendeloo GV, de Rosales RTM, Tobias G, Al-Jamal KT. Magnetically Decorated Multi-Walled Carbon Nanotubes as Dual MRI and SPECT Contrast Agents. Adv Funct Mater 2014;24:1880-94. [PMID: 26097444 DOI: 10.1002/adfm.201302892] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 6.8] [Reference Citation Analysis]
48 Singh RK, Patel KD, Kim J, Kim T, Kim J, Shin US, Lee E, Knowles JC, Kim H. Multifunctional Hybrid Nanocarrier: Magnetic CNTs Ensheathed with Mesoporous Silica for Drug Delivery and Imaging System. ACS Appl Mater Interfaces 2014;6:2201-8. [DOI: 10.1021/am4056936] [Cited by in Crossref: 83] [Cited by in F6Publishing: 85] [Article Influence: 10.4] [Reference Citation Analysis]
49 Mao H, Cai R, Kawazoe N, Chen G. Long-term stem cell labeling by collagen-functionalized single-walled carbon nanotubes. Nanoscale 2014;6:1552-9. [DOI: 10.1039/c3nr05273g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
50 Garofalo A, Parat A, Bordeianu C, Ghobril C, Kueny-stotz M, Walter A, Jouhannaud J, Begin-colin S, Felder-flesch D. Efficient synthesis of small-sized phosphonated dendrons: potential organic coatings of iron oxide nanoparticles. New J Chem 2014;38:5226-39. [DOI: 10.1039/c4nj00654b] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.3] [Reference Citation Analysis]
51 Masotti A, Caporali A. Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications. Int J Mol Sci 2013;14:24619-42. [PMID: 24351838 DOI: 10.3390/ijms141224619] [Cited by in Crossref: 72] [Cited by in F6Publishing: 76] [Article Influence: 8.0] [Reference Citation Analysis]