BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shi F, Ding J, Xiao C, Zhuang X, He C, Chen L, Chen X. Intracellular microenvironment responsive PEGylated polypeptide nanogels with ionizable cores for efficient doxorubicin loading and triggered release. J Mater Chem 2012;22:14168. [DOI: 10.1039/c2jm32033a] [Cited by in Crossref: 117] [Cited by in F6Publishing: 119] [Article Influence: 11.7] [Reference Citation Analysis]
Number Citing Articles
1 Yan A, Zhang Z, Gu J, Ding X, Chen Y, Du J, Wei S, Sun H, Xu J, Yu S, Liu J. Bioresponsive cisplatin crosslinked albumin hydrogel served for efficient cancer combination therapy. Nano Res . [DOI: 10.1007/s12274-022-4925-y] [Reference Citation Analysis]
2 Nazli A, He DL, Liao D, Zafar Irshad Khan M, Huang C, He Y. Strategies and Progresses for Enhancing Targeted Antibiotic Delivery. Adv Drug Deliv Rev 2022;:114502. [PMID: 35998828 DOI: 10.1016/j.addr.2022.114502] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Li C, Chen P, Khan IM, Wang Z, Zhang Y, Ma X. Fluorescence-Raman dual-mode quantitative detection and imaging of small-molecule thiols in cell apoptosis with DNA-modified gold nanoflowers. J Mater Chem B 2022. [PMID: 34994374 DOI: 10.1039/d1tb02437j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
4 Xu T, Skoulas D, Ding D, Cryan S, Heise A. Exploring the potential of polypeptide–polypeptoide hybrid nanogels for mucosal delivery. Polym Chem 2022;13:6054-6060. [DOI: 10.1039/d2py01126c] [Reference Citation Analysis]
5 Wang X, Song Z, Wei S, Ji G, Zheng X, Fu Z, Cheng J. Polypeptide-based drug delivery systems for programmed release. Biomaterials 2021;275:120913. [PMID: 34217020 DOI: 10.1016/j.biomaterials.2021.120913] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
6 Duro-Castano A, Sousa-Herves A, Armiñán A, Charbonnier D, Arroyo-Crespo JJ, Wedepohl S, Calderón M, Vicent MJ. Polyglutamic acid-based crosslinked doxorubicin nanogels as an anti-metastatic treatment for triple negative breast cancer. J Control Release 2021;332:10-20. [PMID: 33587988 DOI: 10.1016/j.jconrel.2021.02.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
7 Liu J, Shi J, Nie W, Wang S, Liu G, Cai K. Recent Progress in the Development of Multifunctional Nanoplatform for Precise Tumor Phototherapy. Adv Healthc Mater 2021;10:e2001207. [PMID: 33000920 DOI: 10.1002/adhm.202001207] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 13.0] [Reference Citation Analysis]
8 Carniato F, Tei L, Botta M, Ravera E, Fragai M, Parigi G, Luchinat C. 1H NMR Relaxometric Study of Chitosan-Based Nanogels Containing Mono- and Bis-Hydrated Gd(III) Chelates: Clues for MRI Probes of Improved Sensitivity. ACS Appl Bio Mater 2020;3:9065-72. [PMID: 35019583 DOI: 10.1021/acsabm.0c01295] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
9 Palakkal S, Logviniuk D, Byk G. Tuning the size and hydrophobicity of nanohydrogels exploiting a self-assembly assisted polymerization mechanism for controlled drug delivery. J Nanopart Res 2020;22. [DOI: 10.1007/s11051-020-05093-1] [Reference Citation Analysis]
10 Deng C, Zhang Q, Guo J, Zhao X, Zhong Z. Robust and smart polypeptide-based nanomedicines for targeted tumor therapy. Adv Drug Deliv Rev 2020;160:199-211. [PMID: 33137364 DOI: 10.1016/j.addr.2020.10.019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
11 Kumar P, Behl G, Kaur S, Yadav N, Liu B, Chhikara A. Tumor microenvironment responsive nanogels as a smart triggered release platform for enhanced intracellular delivery of doxorubicin. J Biomater Sci Polym Ed 2021;32:385-404. [PMID: 33054642 DOI: 10.1080/09205063.2020.1837504] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
12 Kadeeja A, Joseph S, Abraham JN. Self-assembly of novel Fmoc-cardanol compounds into hydrogels - analysis based on rheological, structural and thermal properties. Soft Matter 2020;16:6294-303. [PMID: 32462156 DOI: 10.1039/d0sm00670j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Feuser PE, Chiaradia V, Galvani NC, Scussel R, Machado-de-ávila RA, de Oliveira D, Hermes de Araújo PH, Sayer C. In vitro cytotoxicity and hyperthermia studies of superparamagnetic poly(urea-urethane) nanoparticles obtained by miniemulsion polymerization in human erythrocytes and NIH3T3 and HeLa cells. International Journal of Polymeric Materials and Polymeric Biomaterials 2021;70:476-85. [DOI: 10.1080/00914037.2020.1725763] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
14 Anas M, Jana S, Mandal TK. Vesicular assemblies of thermoresponsive amphiphilic polypeptide copolymers for guest encapsulation and release. Polym Chem 2020;11:2889-903. [DOI: 10.1039/d0py00135j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
15 Choukrani G, Maharjan B, Park CH, Kim CS, Kurup Sasikala AR. Biocompatible superparamagnetic sub-micron vaterite particles for thermo-chemotherapy: From controlled design to in vitro anticancer synergism. Materials Science and Engineering: C 2020;106:110226. [DOI: 10.1016/j.msec.2019.110226] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
16 Yang G, Chen C, Zhu Y, Liu Z, Xue Y, Zhong S, Wang C, Gao Y, Zhang W. GSH-Activatable NIR Nanoplatform with Mitochondria Targeting for Enhancing Tumor-Specific Therapy. ACS Appl Mater Interfaces 2019;11:44961-9. [DOI: 10.1021/acsami.9b15996] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
17 Qi D, Wang J, Qi Y, Wen J, Wei S, Liu D, Yu S. One pot preparation of polyurethane‐based GSH‐responsive core‐shell nanogels for controlled drug delivery. J Appl Polym Sci 2019;137:48473. [DOI: 10.1002/app.48473] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Kumar P, Liu B, Behl G. A Comprehensive Outlook of Synthetic Strategies and Applications of Redox‐Responsive Nanogels in Drug Delivery. Macromol Biosci 2019;19:1900071. [DOI: 10.1002/mabi.201900071] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
19 Etchenausia L, Villar-Alvarez E, Forcada J, Save M, Taboada P. Evaluation of cationic core-shell thermoresponsive poly(N-vinylcaprolactam)-based microgels as potential drug delivery nanocarriers. Mater Sci Eng C Mater Biol Appl 2019;104:109871. [PMID: 31499979 DOI: 10.1016/j.msec.2019.109871] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
20 Murphy RD, Bobbi E, Oliveira FCS, Cryan S, Heise A. Gelating polypeptide matrices based on the difunctional N ‐carboxyanhydride diaminopimelic acid cross‐linker. J Polym Sci Part A: Polym Chem 2019;57:1209-15. [DOI: 10.1002/pola.29376] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
21 Koseva N, Mitova V, Todorova Z, Tsacheva I. Nanomaterials Derived From Phosphorus-Containing Polymers. Polymeric Nanomaterials in Nanotherapeutics. Elsevier; 2019. pp. 183-233. [DOI: 10.1016/b978-0-12-813932-5.00005-4] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
22 Yang H, Shen W, Liu W, Chen L, Zhang P, Xiao C, Chen X. PEGylated Poly(α-lipoic acid) Loaded with Doxorubicin as a pH and Reduction Dual Responsive Nanomedicine for Breast Cancer Therapy. Biomacromolecules 2018;19:4492-503. [PMID: 30346147 DOI: 10.1021/acs.biomac.8b01394] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 9.3] [Reference Citation Analysis]
23 Raftery ED, Gharkhanian EG, Ricapito NG, Mcnamara J, Deming TJ. Influence of Sulfur‐Containing Diamino Acid Structure on Covalently Crosslinked Copolypeptide Hydrogels. Chem Asian J 2018;13:3547-53. [DOI: 10.1002/asia.201801031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
24 Ghorbani M, Hamishehkar H. Redox-responsive smart nanogels for intracellular targeting of therapeutic agents: applications and recent advances. Journal of Drug Targeting 2019;27:408-22. [DOI: 10.1080/1061186x.2018.1514041] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
25 Zhou X, Li Z. Advances and Biomedical Applications of Polypeptide Hydrogels Derived from α-Amino Acid N-Carboxyanhydride (NCA) Polymerizations. Adv Healthc Mater 2018;7:e1800020. [PMID: 29869375 DOI: 10.1002/adhm.201800020] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 10.5] [Reference Citation Analysis]
26 Jing T, Li T, Ruan Z, Yan L. pHe- and glutathione-stepwise-responsive polypeptide nanogel for smart and efficient drug delivery. J Mater Sci 2018;53:14933-43. [DOI: 10.1007/s10853-018-2689-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
27 Jing T, Li T, Ruan Z, Cheng Q, Yan L. Imaging-Guided pHe and Glutathione Dual Responsive Polypeptide Nanogel for Smart Drug Delivery. Macromol Mater Eng 2018;303:1800060. [DOI: 10.1002/mame.201800060] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
28 Zhou H, Lv S, Zhang D, Deng M, Zhang X, Tang Z, Chen X. A polypeptide based podophyllotoxin conjugate for the treatment of multi drug resistant breast cancer with enhanced efficiency and minimal toxicity. Acta Biomater 2018;73:388-99. [PMID: 29694920 DOI: 10.1016/j.actbio.2018.04.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
29 Li Y, Yang H, Yao J, Yu H, Chen X, Zhang P, Xiao C. Glutathione-triggered dual release of doxorubicin and camptothecin for highly efficient synergistic anticancer therapy. Colloids Surf B Biointerfaces 2018;169:273-9. [PMID: 29787951 DOI: 10.1016/j.colsurfb.2018.05.025] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
30 Nehate C, Moothedathu Raynold AA, Haridas V, Koul V. Comparative Assessment of Active Targeted Redox Sensitive Polymersomes Based on pPEGMA-S-S-PLA Diblock Copolymer with Marketed Nanoformulation. Biomacromolecules 2018;19:2549-66. [DOI: 10.1021/acs.biomac.8b00178] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
31 Jiang Z, Chen J, Cui L, Zhuang X, Ding J, Chen X. Advances in Stimuli-Responsive Polypeptide Nanogels. Small Methods 2018;2:1700307. [DOI: 10.1002/smtd.201700307] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
32 Li H, Wei R, Yan G, Sun J, Li C, Wang H, Shi L, Capobianco JA, Sun L. Smart Self-Assembled Nanosystem Based on Water-Soluble Pillararene and Rare-Earth-Doped Upconversion Nanoparticles for pH-Responsive Drug Delivery. ACS Appl Mater Interfaces 2018;10:4910-20. [DOI: 10.1021/acsami.7b14193] [Cited by in Crossref: 84] [Cited by in F6Publishing: 87] [Article Influence: 21.0] [Reference Citation Analysis]
33 Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B 2018;6:210-35. [DOI: 10.1039/c7tb02239e] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 15.5] [Reference Citation Analysis]
34 Kankala RK, Wang S, Chen A, Zhang YS. Self-Assembled Nanogels: From Particles to Scaffolds and Membranes. Handbook of Nanomaterials for Cancer Theranostics 2018. [DOI: 10.1016/b978-0-12-813339-2.00002-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
35 Aguirre G, Khoukh A, Chougrani K, Alard V, Billon L. Dual-responsive biocompatible microgels as high loaded cargo: understanding of encapsulation/release driving forces by NMR NOESY. Polym Chem 2018;9:757-68. [DOI: 10.1039/c7py02111a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
36 Kanwal U, Irfan Bukhari N, Ovais M, Abass N, Hussain K, Raza A. Advances in nano-delivery systems for doxorubicin: an updated insight. Journal of Drug Targeting 2018;26:296-310. [DOI: 10.1080/1061186x.2017.1380655] [Cited by in Crossref: 60] [Cited by in F6Publishing: 47] [Article Influence: 12.0] [Reference Citation Analysis]
37 Mudassir J, Darwis Y, Yusof SR. Synthesis, characterization and toxicological evaluation of pH-sensitive polyelectrolyte Nanogels. J Polym Res 2017;24. [DOI: 10.1007/s10965-017-1321-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
38 Zhou J, Song F, Tian J, Nie W, Wang X, Wang Y. Electrostatic wrapping of doxorubicin with curdlan to construct an efficient pH-responsive drug delivery system. Nanotechnology 2017;28:295601. [DOI: 10.1088/1361-6528/aa75b5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
39 Lee P, Tuan-mu H, Hsiao L, Hu J, Jan J. Nanogels comprising reduction-cleavable polymers for glutathione-induced intracellular curcumin delivery. J Polym Res 2017;24. [DOI: 10.1007/s10965-017-1207-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
40 Hu Y, Deng M, Yang H, Chen L, Xiao C, Zhuang X, Chen X. Multi-responsive core-crosslinked poly (thiolether ester) micelles for smart drug delivery. Polymer 2017;110:235-41. [DOI: 10.1016/j.polymer.2017.01.019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
41 Bose A, Jana S, Saha A, Mandal TK. Amphiphilic polypeptide-polyoxazoline graft copolymer conjugate with tunable thermoresponsiveness: Synthesis and self-assembly into various micellar structures in aqueous and nonaqueous media. Polymer 2017;110:12-24. [DOI: 10.1016/j.polymer.2016.12.068] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
42 Zhang Z, Li Y, Wan J, Long P, Guo J, Chen G, Wang C. Preparation of Pt( iv )-crosslinked polymer nanoparticles with an anti-detoxifying effect for enhanced anticancer therapy. Polym Chem 2017;8:2410-22. [DOI: 10.1039/c6py02148d] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
43 Quinn JF, Whittaker MR, Davis TP. Glutathione responsive polymers and their application in drug delivery systems. Polym Chem 2017;8:97-126. [DOI: 10.1039/c6py01365a] [Cited by in Crossref: 181] [Cited by in F6Publishing: 184] [Article Influence: 36.2] [Reference Citation Analysis]
44 Song Z, Han Z, Lv S, Chen C, Chen L, Yin L, Cheng J. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chem Soc Rev 2017;46:6570-99. [DOI: 10.1039/c7cs00460e] [Cited by in Crossref: 209] [Cited by in F6Publishing: 215] [Article Influence: 41.8] [Reference Citation Analysis]
45 Zhou T, Jia X, Zhao X, Li J, Liu P. Facile preparation of pH/reduction dual-responsive prodrug nanohydrogels for tumor-specific intracellular triggered release with enhanced anticancer efficiency. J Mater Chem B 2017;5:2840-8. [DOI: 10.1039/c7tb00433h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
46 Kim I, Han EH, Ryu J, Min JY, Ahn H, Chung YH, Lee E. One-Dimensional Supramolecular Nanoplatforms for Theranostics Based on Co-Assembly of Peptide Amphiphiles. Biomacromolecules 2016;17:3234-43. [PMID: 27589588 DOI: 10.1021/acs.biomac.6b00966] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
47 Tong H, Chen Y, Li Z, Li H, Chen T, Jin Q, Ji J. Glutathione Activatable Photosensitizer-Conjugated Pseudopolyrotaxane Nanocarriers for Photodynamic Theranostics. Small 2016;12:6223-32. [DOI: 10.1002/smll.201601966] [Cited by in Crossref: 56] [Cited by in F6Publishing: 59] [Article Influence: 9.3] [Reference Citation Analysis]
48 Tang Z, He C, Tian H, Ding J, Hsiao BS, Chu B, Chen X. Polymeric nanostructured materials for biomedical applications. Progress in Polymer Science 2016;60:86-128. [DOI: 10.1016/j.progpolymsci.2016.05.005] [Cited by in Crossref: 213] [Cited by in F6Publishing: 214] [Article Influence: 35.5] [Reference Citation Analysis]
49 Zhang Y, Xiao C, Ding J, Li M, Chen X, Tang Z, Zhuang X, Chen X. A comparative study of linear, Y-shaped and linear-dendritic methoxy poly(ethylene glycol)-block-polyamidoamine-block-poly(l-glutamic acid) block copolymers for doxorubicin delivery in vitro and in vivo. Acta Biomater 2016;40:243-53. [PMID: 27063495 DOI: 10.1016/j.actbio.2016.04.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
50 Song M, Xue Y, Chen L, Xia X, Zhou Y, Liu L, Yu B, Long S, Huang S, Yu F. Acid and reduction stimulated logic “and”-type combinational release mode achieved in DOX-loaded superparamagnetic nanogel. Materials Science and Engineering: C 2016;65:354-63. [DOI: 10.1016/j.msec.2016.04.029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
51 Qiu L, Xu CR, Zhong F, Hong CY, Pan CY. Fabrication of Functional Nano-objects through RAFT Dispersion Polymerization and Influences of Morphology on Drug Delivery. ACS Appl Mater Interfaces 2016;8:18347-59. [PMID: 27399846 DOI: 10.1021/acsami.6b04693] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 8.8] [Reference Citation Analysis]
52 Aguirre G, Ramos J, Forcada J. Advanced design of t and pH dual-responsive PDEAEMA-PVCL core-shell nanogels for siRNA delivery. J Polym Sci Part A: Polym Chem 2016;54:3203-17. [DOI: 10.1002/pola.28207] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
53 Lu S, Ding J, Chen J, Wang W, Zhuang X, Chen X. Enzymatically Synthesized Polyesters for Drug Delivery. Handbook of Polyester Drug Delivery Systems 2016. [DOI: 10.1201/b20045-4] [Reference Citation Analysis]
54 Cuggino JC, Molina M, Wedepohl S, Igarzabal CIA, Calderón M, Gugliotta LM. Responsive nanogels for application as smart carriers in endocytic pH-triggered drug delivery systems. European Polymer Journal 2016;78:14-24. [DOI: 10.1016/j.eurpolymj.2016.02.022] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
55 Akram M, Wang L, Yu H, Khalid H, Abbasi NM, ul-Abdin Z, Chen Y, Sun R, Jie S, Saleem M. Synthesis of reductive responsive polyphosphazenes and their fabrication of nanocarriers for drug delivery application. International Journal of Polymeric Materials and Polymeric Biomaterials 2016;65:581-91. [DOI: 10.1080/00914037.2016.1149847] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
56 Yang H, Wang Q, Huang S, Xiao A, Li F, Gan L, Yang X. Smart pH/Redox Dual-Responsive Nanogels for On-Demand Intracellular Anticancer Drug Release. ACS Appl Mater Interfaces 2016;8:7729-38. [PMID: 26960600 DOI: 10.1021/acsami.6b01602] [Cited by in Crossref: 98] [Cited by in F6Publishing: 98] [Article Influence: 16.3] [Reference Citation Analysis]
57 Aguirre G, Villar-alvarez E, González A, Ramos J, Taboada P, Forcada J. Biocompatible stimuli-responsive nanogels for controlled antitumor drug delivery. J Polym Sci Part A: Polym Chem 2016;54:1694-705. [DOI: 10.1002/pola.28025] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
58 Ma H, Jiang W, Ding J, Li M, Cheng Y, Sun S, Fu C, Liu Y. Polymer Nanoparticle-Based Chemotherapy for Spinal Malignancies. Journal of Nanomaterials 2016;2016:1-14. [DOI: 10.1155/2016/4754190] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
59 Qiu L, Liu Q, Hong C, Pan C. Unimolecular micelles of camptothecin-bonded hyperbranched star copolymers via β-thiopropionate linkage: synthesis and drug delivery. J Mater Chem B 2016;4:141-51. [DOI: 10.1039/c5tb01905b] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 6.0] [Reference Citation Analysis]
60 Wang W, Zhang L, Liu M, Le Y, Lv S, Wang J, Chen J. Dual-responsive star-shaped polypeptides for drug delivery. RSC Adv 2016;6:6368-77. [DOI: 10.1039/c5ra20972b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
61 Ma YC, Wang JX, Tao W, Sun CY, Wang YC, Li DD, Fan F, Qian HS, Yang XZ. Redox-Responsive Polyphosphoester-Based Micellar Nanomedicines for Overriding Chemoresistance in Breast Cancer Cells. ACS Appl Mater Interfaces 2015;7:26315-25. [PMID: 26552849 DOI: 10.1021/acsami.5b09195] [Cited by in Crossref: 35] [Cited by in F6Publishing: 44] [Article Influence: 5.0] [Reference Citation Analysis]
62 Huang K, Shi B, Xu W, Ding J, Yang Y, Liu H, Zhuang X, Chen X. Reduction-responsive polypeptide nanogel delivers antitumor drug for improved efficacy and safety. Acta Biomater 2015;27:179-93. [PMID: 26320542 DOI: 10.1016/j.actbio.2015.08.049] [Cited by in Crossref: 54] [Cited by in F6Publishing: 60] [Article Influence: 7.7] [Reference Citation Analysis]
63 Zhu Y, Yao X, Chen X, Chen L. pH-sensitive hydroxyethyl starch-doxorubicin conjugates as antitumor prodrugs with enhanced anticancer efficacy. J Appl Polym Sci 2015;132:n/a-n/a. [DOI: 10.1002/app.42778] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
64 Li Y, Maciel D, Rodrigues J, Shi X, Tomás H. Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery. Chem Rev 2015;115:8564-608. [PMID: 26259712 DOI: 10.1021/cr500131f] [Cited by in Crossref: 337] [Cited by in F6Publishing: 335] [Article Influence: 48.1] [Reference Citation Analysis]
65 Park M, Jun S, Kim I, Jin S, Kim J, Shin TJ, Lee E. Stepwise Drug-Release Behavior of Onion-Like Vesicles Generated from Emulsification-Induced Assembly of Semicrystalline Polymer Amphiphiles. Adv Funct Mater 2015;25:4570-9. [DOI: 10.1002/adfm.201501595] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.7] [Reference Citation Analysis]
66 Yang H, Wang Q, Chen W, Zhao Y, Yong T, Gan L, Xu H, Yang X. Hydrophilicity/Hydrophobicity Reversable and Redox-Sensitive Nanogels for Anticancer Drug Delivery. Mol Pharmaceutics 2015;12:1636-47. [DOI: 10.1021/acs.molpharmaceut.5b00068] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 5.4] [Reference Citation Analysis]
67 Liu T, Zeng L, Jiang W, Fu Y, Zheng W, Chen T. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine 2015;11:947-58. [PMID: 25680543 DOI: 10.1016/j.nano.2015.01.009] [Cited by in Crossref: 119] [Cited by in F6Publishing: 125] [Article Influence: 17.0] [Reference Citation Analysis]
68 Ding J, Li C, Zhang Y, Xu W, Wang J, Chen X. Chirality-mediated polypeptide micelles for regulated drug delivery. Acta Biomater 2015;11:346-55. [PMID: 25278445 DOI: 10.1016/j.actbio.2014.09.043] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 6.9] [Reference Citation Analysis]
69 Bai L, Song F, Wang X, Cao J, Han X, Wang X, Wang Y. Ligand–metal-drug coordination based micelles for efficient intracellular doxorubicin delivery. RSC Adv 2015;5:47629-39. [DOI: 10.1039/c5ra05747g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
70 Shen Y, Fu X, Fu W, Li Z. Biodegradable stimuli-responsive polypeptide materials prepared by ring opening polymerization. Chem Soc Rev 2015;44:612-22. [DOI: 10.1039/c4cs00271g] [Cited by in Crossref: 252] [Cited by in F6Publishing: 255] [Article Influence: 36.0] [Reference Citation Analysis]
71 Zhao L, Xiao C, Ding J, Zhuang X, Gai G, Wang L, Chen X. Competitive binding-accelerated insulin release from a polypeptide nanogel for potential therapy of diabetes. Polym Chem 2015;6:3807-15. [DOI: 10.1039/c5py00207a] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 6.3] [Reference Citation Analysis]
72 Su T, Peng X, Cao J, Chang J, Liu R, Gu Z, He B. Functionalization of biodegradable hyperbranched poly(α,β-malic acid) as a nanocarrier platform for anticancer drug delivery. RSC Adv 2015;5:13157-65. [DOI: 10.1039/c4ra13686a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
73 Sun D, Ding J, Xiao C, Chen J, Zhuang X, Chen X. Preclinical Evaluation of Antitumor Activity of Acid-Sensitive PEGylated Doxorubicin. ACS Appl Mater Interfaces 2014;6:21202-14. [DOI: 10.1021/am506178c] [Cited by in Crossref: 72] [Cited by in F6Publishing: 72] [Article Influence: 9.0] [Reference Citation Analysis]
74 Zhao L, Wang LY, Gai GQ. The Glucose-Responsive Nanogel Based on Phenylboronic Acid. AMM 2014;680:42-5. [DOI: 10.4028/www.scientific.net/amm.680.42] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
75 Zhao Z, Yao X, Zhang Z, Chen L, He C, Chen X. Boronic acid shell-crosslinked dextran-b-PLA micelles for acid-responsive drug delivery. Macromol Biosci 2014;14:1609-18. [PMID: 25142134 DOI: 10.1002/mabi.201400251] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 4.0] [Reference Citation Analysis]
76 Ding J, Li D, Zhuang X, Chen X. Smart Polypeptide Nanocarriers for Malignancy Therapeutics. In: Tiwari A, Nordin AN, editors. Advanced Biomaterials and Biodevices. Hoboken: John Wiley & Sons, Inc.; 2014. pp. 523-46. [DOI: 10.1002/9781118774052.ch15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
77 Wu W, Chen M, Wang J, Zhang Q, Li S, Lin Z, Li J. Nanocarriers with dual pH-sensitivity for enhanced tumor cell uptake and rapid intracellular drug release. RSC Adv 2014;4:30780. [DOI: 10.1039/c4ra05270f] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
78 Jin Q, Cai T, Han H, Wang H, Wang Y, Ji J. Light and pH Dual-Degradable Triblock Copolymer Micelles for Controlled Intracellular Drug Release. Macromol Rapid Commun 2014;35:1372-8. [DOI: 10.1002/marc.201400171] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 6.1] [Reference Citation Analysis]
79 Du M, Guo Q, Feng H, Lu G, Huang X. Derivation of Oridonin with Bioreduction-Responsive Disulfide Bond. Chin J Chem 2014;32:448-53. [DOI: 10.1002/cjoc.201300761] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
80 Chang X, Liu L, Guan Y, Dong C. Disulfide-centered star-shaped polypeptide-PEO block copolymers for reduction-triggered drug release. J Polym Sci Part A: Polym Chem 2014;52:2000-10. [DOI: 10.1002/pola.27207] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
81 Surnar B, Subash PP, Jayakannan M. Biodegradable Block Copolymer Scaffolds for Loading and Delivering Cisplatin Anticancer Drug: Biodegradable Block Copolymer Scaffolds for Loading and Delivering Cisplatin Anticancer Drug. Z anorg allg Chem 2014;640:1119-26. [DOI: 10.1002/zaac.201400030] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
82 Li M, Tang Z, Lv S, Song W, Hong H, Jing X, Zhang Y, Chen X. Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials 2014;35:3851-64. [DOI: 10.1016/j.biomaterials.2014.01.018] [Cited by in Crossref: 214] [Cited by in F6Publishing: 208] [Article Influence: 26.8] [Reference Citation Analysis]
83 Deng C, Wu J, Cheng R, Meng F, Klok H, Zhong Z. Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Progress in Polymer Science 2014;39:330-64. [DOI: 10.1016/j.progpolymsci.2013.10.008] [Cited by in Crossref: 269] [Cited by in F6Publishing: 274] [Article Influence: 33.6] [Reference Citation Analysis]
84 Sun R, Luo Q, Gao C, Wang Y, Gao L, Du H, Huang Y, Li X, Shen Z, Zhu W. Facile fabrication of reduction-responsive nanocarriers for controlled drug release. Polym Chem 2014;5:4879-83. [DOI: 10.1039/c4py00577e] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
85 Zhang X, Achazi K, Steinhilber D, Kratz F, Dernedde J, Haag R. A facile approach for dual-responsive prodrug nanogels based on dendritic polyglycerols with minimal leaching. Journal of Controlled Release 2014;174:209-16. [DOI: 10.1016/j.jconrel.2013.11.005] [Cited by in Crossref: 118] [Cited by in F6Publishing: 121] [Article Influence: 14.8] [Reference Citation Analysis]
86 Zhang S, Fu W, Li Z. Supramolecular hydrogels assembled from nonionic poly(ethylene glycol)-b-polypeptide diblocks containing OEGylated poly- l -glutamate. Polym Chem 2014;5:3346-51. [DOI: 10.1039/c4py00016a] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
87 Kashyap S, Jayakannan M. Thermo-responsive and shape transformable amphiphilic scaffolds for loading and delivering anticancer drugs. J Mater Chem B 2014;2:4142. [DOI: 10.1039/c4tb00134f] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
88 Lu H, Wang J, Song Z, Yin L, Zhang Y, Tang H, Tu C, Lin Y, Cheng J. Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications. Chem Commun 2014;50:139-55. [DOI: 10.1039/c3cc46317f] [Cited by in Crossref: 228] [Cited by in F6Publishing: 231] [Article Influence: 28.5] [Reference Citation Analysis]
89 Xiao C, Cheng Y, Zhang Y, Ding J, He C, Zhuang X, Chen X. Side chain impacts on pH- and thermo-responsiveness of tertiary amine functionalized polypeptides. J Polym Sci Part A: Polym Chem 2014;52:671-9. [DOI: 10.1002/pola.27048] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
90 Grant N, Wu H, Zhang H. Reduction-Controlled Release of Organic Nanoparticles from Disulfide Cross-linked Porous Polymer. Ind Eng Chem Res 2014;53:246-52. [DOI: 10.1021/ie403001r] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
91 Ding J, Shi F, Xiao C, Zhuang X, He C, Chen X. Facile preparation of pH and reduction responsive PEGylated polypeptide nanogel for efficient doxorubicin loading and intracellular delivery. Journal of Controlled Release 2013;172:e40-1. [DOI: 10.1016/j.jconrel.2013.08.087] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
92 Li D, Sun H, Ding J, Tang Z, Zhang Y, Xu W, Zhuang X, Chen X. Polymeric topology and composition constrained polyether-polyester micelles for directional antitumor drug delivery. Acta Biomater 2013;9:8875-84. [PMID: 23831719 DOI: 10.1016/j.actbio.2013.06.041] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 3.8] [Reference Citation Analysis]
93 Maciel D, Figueira P, Xiao S, Hu D, Shi X, Rodrigues J, Tomás H, Li Y. Redox-responsive alginate nanogels with enhanced anticancer cytotoxicity. Biomacromolecules 2013;14:3140-6. [PMID: 23927460 DOI: 10.1021/bm400768m] [Cited by in Crossref: 139] [Cited by in F6Publishing: 138] [Article Influence: 15.4] [Reference Citation Analysis]
94 Li M, Lv S, Tang Z, Song W, Yu H, Sun H, Liu H, Chen X. Polypeptide/doxorubicin hydrochloride polymersomes prepared through organic solvent-free technique as a smart drug delivery platform. Macromol Biosci 2013;13:1150-62. [PMID: 23894136 DOI: 10.1002/mabi.201300222] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 4.0] [Reference Citation Analysis]
95 Ding J, Li D, Zhuang X, Chen X. Self-Assemblies of pH-Activatable PEGylated Multiarm Poly(lactic acid- co -glycolic acid)-Doxorubicin Prodrugs with Improved Long-Term Antitumor Efficacies: pH-Activatable Prodrugs with Improved Antitumor Efficacies. Macromol Biosci 2013;13:1300-7. [DOI: 10.1002/mabi.201300160] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 2.9] [Reference Citation Analysis]
96 Zhang A, Zhang Z, Shi F, Xiao C, Ding J, Zhuang X, He C, Chen L, Chen X. Redox-sensitive shell-crosslinked polypeptide-block-polysaccharide micelles for efficient intracellular anticancer drug delivery. Macromol Biosci 2013;13:1249-58. [PMID: 23840011 DOI: 10.1002/mabi.201300175] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 5.8] [Reference Citation Analysis]
97 Ding J, Xu W, Zhang Y, Sun D, Xiao C, Liu D, Zhu X, Chen X. Self-reinforced endocytoses of smart polypeptide nanogels for "on-demand" drug delivery. J Control Release 2013;172:444-55. [PMID: 23742879 DOI: 10.1016/j.jconrel.2013.05.029] [Cited by in Crossref: 92] [Cited by in F6Publishing: 97] [Article Influence: 10.2] [Reference Citation Analysis]
98 Zhao L, Xiao C, Ding J, He P, Tang Z, Pang X, Zhuang X, Chen X. Facile one-pot synthesis of glucose-sensitive nanogel via thiol-ene click chemistry for self-regulated drug delivery. Acta Biomater 2013;9:6535-43. [PMID: 23403168 DOI: 10.1016/j.actbio.2013.01.040] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 5.9] [Reference Citation Analysis]
99 Li M, Song W, Tang Z, Lv S, Lin L, Sun H, Li Q, Yang Y, Hong H, Chen X. Nanoscaled Poly( l -glutamic acid)/Doxorubicin-Amphiphile Complex as pH-responsive Drug Delivery System for Effective Treatment of Nonsmall Cell Lung Cancer. ACS Appl Mater Interfaces 2013;5:1781-92. [DOI: 10.1021/am303073u] [Cited by in Crossref: 170] [Cited by in F6Publishing: 174] [Article Influence: 18.9] [Reference Citation Analysis]
100 Zhang S, Li Z. Stimuli-responsive polypeptide materials prepared by ring-opening polymerization of α-amino acid N -carboxyanhydrides. J Polym Sci B Polym Phys 2013;51:546-55. [DOI: 10.1002/polb.23263] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 4.4] [Reference Citation Analysis]
101 Ding J, Zhao L, Li D, Xiao C, Zhuang X, Chen X. Thermo-responsive “hairy-rod” polypeptides for smart antitumor drug delivery. Polym Chem 2013;4:3345. [DOI: 10.1039/c3py00144j] [Cited by in Crossref: 61] [Cited by in F6Publishing: 61] [Article Influence: 6.8] [Reference Citation Analysis]
102 Ding J, Chen J, Li D, Xiao C, Zhang J, He C, Zhuang X, Chen X. Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro. J Mater Chem B 2013;1:69-81. [DOI: 10.1039/c2tb00063f] [Cited by in Crossref: 125] [Cited by in F6Publishing: 126] [Article Influence: 13.9] [Reference Citation Analysis]
103 Zhang A, Zhang Z, Shi F, Ding J, Xiao C, Zhuang X, He C, Chen L, Chen X. Disulfide crosslinked PEGylated starch micelles as efficient intracellular drug delivery platforms. Soft Matter 2013;9:2224. [DOI: 10.1039/c2sm27189c] [Cited by in Crossref: 110] [Cited by in F6Publishing: 111] [Article Influence: 12.2] [Reference Citation Analysis]
104 Cheng Y, He C, Xiao C, Ding J, Ren K, Yu S, Zhuang X, Chen X. Reduction-responsive cross-linked micelles based on PEGylated polypeptides prepared via click chemistry. Polym Chem 2013;4:3851. [DOI: 10.1039/c3py00364g] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 5.3] [Reference Citation Analysis]
105 Yu S, He C, Ding J, Cheng Y, Song W, Zhuang X, Chen X. pH and reduction dual responsive polyurethane triblock copolymers for efficient intracellular drug delivery. Soft Matter 2013;9:2637. [DOI: 10.1039/c2sm27616j] [Cited by in Crossref: 100] [Cited by in F6Publishing: 99] [Article Influence: 11.1] [Reference Citation Analysis]
106 Ding J, Shi F, Li D, Chen L, Zhuang X, Chen X. Enhanced endocytosis of acid-sensitive doxorubicin derivatives with intelligent nanogel for improved security and efficacy. Biomater Sci 2013;1:633-46. [DOI: 10.1039/c3bm60024f] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 5.6] [Reference Citation Analysis]
107 Li M, Tang Z, Sun H, Ding J, Song W, Chen X. pH and reduction dual-responsive nanogel cross-linked by quaternization reaction for enhanced cellular internalization and intracellular drug delivery. Polym Chem 2013;4:1199-207. [DOI: 10.1039/c2py20871g] [Cited by in Crossref: 116] [Cited by in F6Publishing: 117] [Article Influence: 12.9] [Reference Citation Analysis]
108 Huang J, Heise A. Stimuli responsive synthetic polypeptides derived from N-carboxyanhydride (NCA) polymerisation. Chem Soc Rev 2013;42:7373. [DOI: 10.1039/c3cs60063g] [Cited by in Crossref: 263] [Cited by in F6Publishing: 264] [Article Influence: 29.2] [Reference Citation Analysis]
109 Ding J, Xiao C, Li Y, Cheng Y, Wang N, He C, Zhuang X, Zhu X, Chen X. Efficacious hepatoma-targeted nanomedicine self-assembled from galactopeptide and doxorubicin driven by two-stage physical interactions. J Control Release 2013;169:193-203. [PMID: 23247039 DOI: 10.1016/j.jconrel.2012.12.006] [Cited by in Crossref: 71] [Cited by in F6Publishing: 76] [Article Influence: 7.1] [Reference Citation Analysis]