BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Binauld S, Stenzel MH. Acid-degradable polymers for drug delivery: a decade of innovation. Chem Commun 2013;49:2082. [DOI: 10.1039/c2cc36589h] [Cited by in Crossref: 309] [Cited by in F6Publishing: 312] [Article Influence: 30.9] [Reference Citation Analysis]
Number Citing Articles
1 Cao B, Wang C, Zhou Z. Insights into the interactions between cellulose and biological molecules. Carbohydr Res 2023;523:108738. [PMID: 36587542 DOI: 10.1016/j.carres.2022.108738] [Reference Citation Analysis]
2 Brown JR, Herzberger J, Spiering GA, Wilts E, Moore RB, Long TE. Binary Thiol-Acrylate Photopolymerization for the Design of Degradable Acetal-Functionalized Hydrogels. ACS Appl Polym Mater 2022. [DOI: 10.1021/acsapm.2c01978] [Reference Citation Analysis]
3 Cherkasova AV, Kopylov AS, Aksenova NA, Zarkhina TS, Shershnev IV, Glagolev NN, Timashev PS, Solovieva AB. Effect of Pluronic F-127 on the Rate of the Release of 2-(2-Hydroxyphenyl)-4,5-Diphenyl-1H-Imidazole from Aerogel Matrices Based on Chitosan and Sodium Alginate Impregnated in an sc-Co2 Medium. Russ J Phys Chem 2022;96:2563-2570. [DOI: 10.1134/s003602442211005x] [Reference Citation Analysis]
4 Thummarati P, Suksiriworapong J, Sakchaisri K, Nawroth T, Langguth P, Roongsawang B, Junyaprasert VB. Comparative study of dual delivery of gemcitabine and curcumin using CD44 targeting hyaluronic acid nanoparticles for cancer therapy. Journal of Drug Delivery Science and Technology 2022;77:103883. [DOI: 10.1016/j.jddst.2022.103883] [Reference Citation Analysis]
5 Pereira PA, Serra MES, Serra AC, Coelho JFJ. Application of vinyl polymer‐based materials as nucleic acids carriers in cancer therapy. WIREs Nanomed Nanobiotechnol 2022;14. [DOI: 10.1002/wnan.1820] [Reference Citation Analysis]
6 Kanamaru T, Sakurai K, Fujii S. Impact of Polyethylene Glycol (PEG) Conformations on the In Vivo Fate and Drug Release Behavior of PEGylated Core-Cross-Linked Polymeric Nanoparticles. Biomacromolecules 2022. [PMID: 35943243 DOI: 10.1021/acs.biomac.2c00730] [Reference Citation Analysis]
7 Jazani AM, Arezi N, Shetty C, Oh JK. Shell-Sheddable/Core-Degradable ABA Triblock Copolymer Nanoassemblies: Synthesis via RAFT and Concurrent ATRP/RAFT Polymerization and Drug Delivery Application. Mol Pharmaceutics 2022;19:1786-94. [DOI: 10.1021/acs.molpharmaceut.1c00622] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Bingham NM, Nisa QU, Gupta P, Young NP, Velliou E, Roth PJ. Biocompatibility and Physiological Thiolytic Degradability of Radically Made Thioester-Functional Copolymers: Opportunities for Drug Release. Biomacromolecules 2022. [PMID: 35472265 DOI: 10.1021/acs.biomac.2c00039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Tan RYH, Lee CS, Pichika MR, Cheng SF, Lam KY. PH Responsive Polyurethane for the Advancement of Biomedical and Drug Delivery. Polymers (Basel) 2022;14:1672. [PMID: 35566843 DOI: 10.3390/polym14091672] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
10 Kamibe T, Guégan R, Kunitake M, Tsukahara T, Idota N, Sugahara Y. Preparation of double-layered nanosheets containing pH-responsive polymer networks in the interlayers and their conversion into single-layered nanosheets through the cleavage of cross-linking points. Dalton Trans 2022;51:6264-74. [PMID: 35377373 DOI: 10.1039/d1dt04355b] [Reference Citation Analysis]
11 Chu S, Shi X, Tian Y, Gao F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front Oncol 2022;12:855019. [PMID: 35392227 DOI: 10.3389/fonc.2022.855019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
12 Dirauf M, Muljajew I, Weber C, Schubert US. Recent advances in degradable synthetic polymers for biomedical applications – Beyond polyesters. Progress in Polymer Science 2022. [DOI: 10.1016/j.progpolymsci.2022.101547] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zhu C, Burkey AA, Adams CP, Uruchurtu Patino D, Lynd NA. Concurrent Ring-Opening/Ring-Closing Polymerization of Glycidyl Acetate to Acid-Degradable Poly(ether- co -orthoester) Materials Using a Mono(μ-alkoxo)bis(alkylaluminum) Initiator. Macromolecules. [DOI: 10.1021/acs.macromol.2c00009] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Kongkatigumjorn N, Srikamut P, Seidi F, Bureekaew S, Crespy D. Tuning the Hydrolytic Behavior of Hydroxyquinoline Derivatives for Anticorrosion Applications. Chem Mater . [DOI: 10.1021/acs.chemmater.1c04271] [Reference Citation Analysis]
15 Xiao Y, Tan A, Jackson AW, Boyd BJ. Nonspherical Nanocapsules as Long-Circulating Drug Delivery Systems. Chem Mater . [DOI: 10.1021/acs.chemmater.1c03573] [Reference Citation Analysis]
16 Xu J, Wang X, Liu J, Feng X, Gnanou Y, Hadjichristidis N. Ionic H-bonding organocatalysts for the ring-opening polymerization of cyclic esters and cyclic carbonates. Progress in Polymer Science 2022;125:101484. [DOI: 10.1016/j.progpolymsci.2021.101484] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
17 Sun P, Qin B, Xu J, Zhang X. Supramonomers for controllable supramolecular polymerization and renewable supramolecular polymeric materials. Progress in Polymer Science 2022;124:101486. [DOI: 10.1016/j.progpolymsci.2021.101486] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
18 Koo B, Kim D, Song DY, Han WJ, Kim D, Park JW, Kim M, Kim C. The formation of photodegradable nitrophenylene polymers via ring-opening metathesis polymerization. Polym Chem . [DOI: 10.1039/d2py00684g] [Reference Citation Analysis]
19 Suárez-Picado E, Coste M, Runser JY, Fossépré M, Carvalho A, Surin M, Jierry L, Ulrich S. Hierarchical Self-Assembly and Multidynamic Responsiveness of Fluorescent Dynamic Covalent Networks Forming Organogels. Biomacromolecules 2021. [PMID: 34910463 DOI: 10.1021/acs.biomac.1c01389] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
20 Wang S, Hu X, Wei W, Ma G. Transformable vesicles for cancer immunotherapy. Adv Drug Deliv Rev 2021;179:113905. [PMID: 34331988 DOI: 10.1016/j.addr.2021.113905] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
21 Wang H, Gao L, Fan T, Zhang C, Zhang B, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Qiu M, Zhang H. Strategic Design of Intelligent-Responsive Nanogel Carriers for Cancer Therapy. ACS Appl Mater Interfaces 2021;13:54621-47. [PMID: 34767342 DOI: 10.1021/acsami.1c13634] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
22 Spinthaki A, Demadis KD. Modeling Silicon Pools in Diatoms Using the Chemistry Toolbox. Diatom Morphogenesis 2021. [DOI: 10.1002/9781119488170.ch15] [Reference Citation Analysis]
23 Bayram NN, Ulu GT, Topuzoğulları M, Baran Y, Dinçer İşoğlu S. HER2-Targeted, Degradable Core Cross-Linked Micelles for Specific and Dual pH-Sensitive DOX Release. Macromol Biosci 2021;:e2100375. [PMID: 34708562 DOI: 10.1002/mabi.202100375] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
24 Arjama M, Mehnath S, Rajan M, Jeyaraj M. Engineered Hyaluronic Acid-Based Smart Nanoconjugates for Enhanced Intracellular Drug Delivery. J Pharm Sci 2021:S0022-3549(21)00546-3. [PMID: 34678274 DOI: 10.1016/j.xphs.2021.10.005] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
25 Biglione C, Neumann‐tran TMP, Kanwal S, Klinger D. Amphiphilic micro‐ and nanogels: Combining properties from internal hydrogel networks, solid particles, and micellar aggregates. Journal of Polymer Science 2021;59:2665-703. [DOI: 10.1002/pol.20210508] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
26 Shen T, Guo C, Cao Y, Lv Y, Zhang J, Yuan C, Zeng B, Chen G, Xu Y, Dai L. Amphiphilic Copolymer-Based Multichannel Toolbox with Multistage Adjustable and Visualized Catalytic Properties. ACS Appl Polym Mater 2021;3:5604-11. [DOI: 10.1021/acsapm.1c00930] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Hu X, Jazani AM, Oh JK. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. Polymer 2021;230:124024. [DOI: 10.1016/j.polymer.2021.124024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Götz S, Zechel S, Hager MD, Newkome GR, Schubert US. Versatile Applications of Metallopolymers. Progress in Polymer Science 2021;119:101428. [DOI: 10.1016/j.progpolymsci.2021.101428] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
29 Psarrou M, Kothri MG, Vamvakaki M. Photo- and Acid-Degradable Polyacylhydrazone-Doxorubicin Conjugates. Polymers (Basel) 2021;13:2461. [PMID: 34372064 DOI: 10.3390/polym13152461] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Zhang L, Jin D, Stenzel MH. Polymer-Functionalized Upconversion Nanoparticles for Light/Imaging-Guided Drug Delivery. Biomacromolecules 2021;22:3168-201. [PMID: 34304566 DOI: 10.1021/acs.biomac.1c00669] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
31 Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021;121:7059-121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 16.5] [Reference Citation Analysis]
32 Bernasconi R, Pizzetti F, Rossetti A, Perugini R, Nova A, Levi M, Rossi F. Effect of Different Physical Cross-Linkers on Drug Release from Hydrogel Layers Coated on Magnetically Steerable 3D-Printed Microdevices. Technologies 2021;9:43. [DOI: 10.3390/technologies9020043] [Reference Citation Analysis]
33 Welzen PLW, Martinez Ciriano SW, Cao S, Mason AF, Welzen‐pijpers IAB, Hest JCM. Reversibly self‐assembled pH‐responsive PEG‐p(CL‐g‐TMC) polymersomes. Journal of Polymer Science 2021;59:1241-52. [DOI: 10.1002/pol.20200871] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
34 Huang D, Qin A, Tang BZ. Click Reactions in Polymer Synthesis. Encyclopedia of Polymer Science and Technology 2021. [DOI: 10.1002/0471440264.pst565.pub2] [Reference Citation Analysis]
35 Jazani AM, Shetty C, Movasat H, Bawa KK, Oh JK. Imidazole-Mediated Dual Location Disassembly of Acid-Degradable Intracellular Drug Delivery Block Copolymer Nanoassemblies. Macromol Rapid Commun 2021;42:e2100262. [PMID: 34050688 DOI: 10.1002/marc.202100262] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
36 Rana A, Bhatnagar S. Advancements in folate receptor targeting for anti-cancer therapy: A small molecule-drug conjugate approach. Bioorg Chem 2021;112:104946. [PMID: 33989916 DOI: 10.1016/j.bioorg.2021.104946] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
37 Myrgorodska I, Jenkinson-Finch M, Moreno-Tortolero RO, Mann S, Gobbo P. A Novel Acid-Degradable PEG Crosslinker for the Fabrication of pH-Responsive Soft Materials. Macromol Rapid Commun 2021;42:e2100102. [PMID: 33749064 DOI: 10.1002/marc.202100102] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
38 Palanisamy B, Goshi N, Seker E. Chemically-Gated and Sustained Molecular Transport through Nanoporous Gold Thin Films in Biofouling Conditions. Nanomaterials (Basel) 2021;11:498. [PMID: 33669404 DOI: 10.3390/nano11020498] [Reference Citation Analysis]
39 Andrade-Gagnon B, Bélanger-Bouliga M, Trang Nguyen P, Nguyen THD, Bourgault S, Nazemi A. Degradable Spirocyclic Polyacetal-Based Core-Amphiphilic Assemblies for Encapsulation and Release of Hydrophobic Cargo. Nanomaterials (Basel) 2021;11:E161. [PMID: 33435172 DOI: 10.3390/nano11010161] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
40 Kirchhecker S, Dell'acqua A, Angenvoort A, Spannenberg A, Ito K, Tin S, Taden A, de Vries JG. HMF–glycerol acetals as additives for the debonding of polyurethane adhesives. Green Chem 2021;23:957-65. [DOI: 10.1039/d0gc04093b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
41 Zhang F, Niu Y, Li Y, Yao Q, Chen X, Zhou H, Zhou M, Xiao J. Fabrication and characterization of structurally stable pH-responsive polymeric vesicles by polymerization-induced self-assembly. RSC Adv 2021;11:29042-29051. [DOI: 10.1039/d1ra05555k] [Reference Citation Analysis]
42 Kost B, Basko M. Synthesis and properties of l -lactide/1,3-dioxolane copolymers: preparation of polyesters with enhanced acid sensitivity. Polym Chem 2021;12:2551-62. [DOI: 10.1039/d1py00358e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
43 Walker JA, Sorkin MR, Alabi CA. Quantitative Determination of Intracellular Bond Cleavage. Methods in Pharmacology and Toxicology 2021. [DOI: 10.1007/978-1-0716-1250-7_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
44 Jain S, Raza K, Agrawal AK, Vaidya A. pH-sensitive carriers for drug delivery to tumor sites. Nanotechnology Applications for Cancer Chemotherapy 2021. [DOI: 10.1016/b978-0-12-817846-1.00003-5] [Reference Citation Analysis]
45 Lo YL, Huang XS, Chen HY, Huang YC, Liao ZX, Wang LF. ROP and ATRP fabricated redox sensitive micelles based on PCL-SS-PMAA diblock copolymers to co-deliver PTX and CDDP for lung cancer therapy. Colloids Surf B Biointerfaces 2021;198:111443. [PMID: 33203600 DOI: 10.1016/j.colsurfb.2020.111443] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
46 Zhao X, Shan P, Liu H, Li D, Cai P, Li Z, Li Z. Poly(ethylene glycol)s With a Single Cinnamaldehyde Acetal Unit for Fabricating Acid-Degradable Hydrogel. Front Chem 2020;8:839. [PMID: 33102441 DOI: 10.3389/fchem.2020.00839] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
47 Li L, Yang Z, Chen X. Recent Advances in Stimuli-Responsive Platforms for Cancer Immunotherapy. Acc Chem Res 2020;53:2044-54. [PMID: 32877161 DOI: 10.1021/acs.accounts.0c00334] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 16.0] [Reference Citation Analysis]
48 Idrees H, Zaidi SZJ, Sabir A, Khan RU, Zhang X, Hassan SU. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications. Nanomaterials (Basel) 2020;10:E1970. [PMID: 33027891 DOI: 10.3390/nano10101970] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 19.7] [Reference Citation Analysis]
49 Hu X, Oh JK. Direct Polymerization Approach to Synthesize Acid‐Degradable Block Copolymers Bearing Imine Pendants for Tunable pH‐Sensitivity and Enhanced Release. Macromol Rapid Commun 2020;41:2000394. [DOI: 10.1002/marc.202000394] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
50 Tang L, Wang G, Zeng Z, Shen L, Zhu L, Zhang Y, Xue Q. Three-dimensional adsorbent with pH induced superhydrophobic and superhydrophilic transformation for oil recycle and adsorbent regeneration. Journal of Colloid and Interface Science 2020;575:231-44. [DOI: 10.1016/j.jcis.2020.04.106] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
51 Fu S, Cai Z, Liu L, Yang L, Jin R, Lu Z, Ai H. Controlled aggregation of amphiphilic aggregation‐induced emission polycation and superparamagnetic iron oxide nanoparticles as fluorescence/magnetic resonance imaging probes. J Appl Polym Sci 2020;137:48760. [DOI: 10.1002/app.48760] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
52 Zhou S, Fu S, Wang H, Deng Y, Zhou X, Sun W, Zhai Y. Acetal-linked polymeric prodrug micelles based on aliphatic polycarbonates for paclitaxel delivery: preparation, characterization, in vitro release and anti-proliferation effects. J Biomater Sci Polym Ed 2020;31:2007-23. [PMID: 32619161 DOI: 10.1080/09205063.2020.1792046] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
53 Gao X, Yu Z, Liu B, Yang J, Yang X, Yu Y. A smart drug delivery system responsive to pH/enzyme stimuli based on hydrophobic modified sodium alginate. European Polymer Journal 2020;133:109779. [DOI: 10.1016/j.eurpolymj.2020.109779] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
54 Gräfe D, Walden SL, Blinco J, Wegener M, Blasco E, Barner‐kowollik C. Es ist im Kleingedruckten: Löschbare dreidimensionale lasergedruckte Mikro‐ und Nanostrukturen. Angew Chem 2020;132:6390-401. [DOI: 10.1002/ange.201910634] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
55 Van Herck S, De Geest BG. Tweaking the acid-sensitivity of transiently thermoresponsive Polyacrylamides with cyclic acetal repeating units. Sci China Chem 2020;63:504-512. [DOI: 10.1007/s11426-019-9705-4] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
56 De Vrieze J, Van Herck S, Nuhn L, De Geest BG. Design of pH-Degradable Polymer-Lipid Amphiphiles Using a Ketal-Functionalized RAFT Chain Transfer Agent. Macromol Rapid Commun 2020;41:e2000034. [PMID: 32154953 DOI: 10.1002/marc.202000034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
57 Wang H, Yao Z, Li Z, Zhu Y, Zhang C, Luo Z, Guo T, Gao Y, Zhang L, Guo K. Biocompatible and low-cost pyridinium halides catalysts promoted ring-opening polymerizations of cyclic esters in bulk. European Polymer Journal 2020;127:109570. [DOI: 10.1016/j.eurpolymj.2020.109570] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
58 Stickdorn J, Nuhn L. Reactive-ester derived polymer nanogels for cancer immunotherapy. European Polymer Journal 2020;124:109481. [DOI: 10.1016/j.eurpolymj.2020.109481] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
59 Zhong H, Mu J, Du Y, Xu Z, Xu Y, Yu N, Zhang S, Guo S. Acid-Triggered Release of Native Gemcitabine Conjugated in Polyketal Nanoparticles for Enhanced Anticancer Therapy. Biomacromolecules 2020;21:803-14. [DOI: 10.1021/acs.biomac.9b01493] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
60 Alsehli M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery. Saudi Pharm J 2020;28:255-65. [PMID: 32194326 DOI: 10.1016/j.jsps.2020.01.004] [Cited by in Crossref: 55] [Cited by in F6Publishing: 60] [Article Influence: 18.3] [Reference Citation Analysis]
61 Gräfe D, Walden SL, Blinco J, Wegener M, Blasco E, Barner-Kowollik C. It's in the Fine Print: Erasable Three-Dimensional Laser-Printed Micro- and Nanostructures. Angew Chem Int Ed Engl 2020;59:6330-40. [PMID: 31749287 DOI: 10.1002/anie.201910634] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
62 Hsu TG, Zhou J, Su HW, Schrage BR, Ziegler CJ, Wang J. A Polymer with "Locked" Degradability: Superior Backbone Stability and Accessible Degradability Enabled by Mechanophore Installation. J Am Chem Soc 2020;142:2100-4. [PMID: 31940198 DOI: 10.1021/jacs.9b12482] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 19.3] [Reference Citation Analysis]
63 Pan R, Zeng Y, Liu G, Wei Y, Xu Y, Tao L. Curcumin–polymer conjugates with dynamic boronic acid ester linkages for selective killing of cancer cells. Polym Chem 2020;11:1321-6. [DOI: 10.1039/c9py01596e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
64 Ishtiaq S, Shah KU, Ur-rehman T, Ud-din F. Gold nanorods: new generation drug delivery platform. Metal Nanoparticles for Drug Delivery and Diagnostic Applications 2020. [DOI: 10.1016/b978-0-12-816960-5.00005-7] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
65 Spinthaki A, Demadis KD. Chemical Methods for Scaling Control. Corrosion and Fouling Control in Desalination Industry 2020. [DOI: 10.1007/978-3-030-34284-5_15] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
66 Benoit DS, Overby CT, Sims Jr. KR, Ackun-farmmer MA. Drug Delivery Systems. Biomaterials Science 2020. [DOI: 10.1016/b978-0-12-816137-1.00078-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
67 Bixenmann L, Stickdorn J, Nuhn L. Amphiphilic poly(esteracetal)s as dual pH- and enzyme-responsive micellar immunodrug delivery systems. Polym Chem 2020;11:2441-56. [DOI: 10.1039/c9py01716j] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
68 Sun L, Wei H, Zhang X, Meng C, Kang G, Ma W, Ma L, Wang B, Yu C. Synthesis of polymeric micelles with dual-functional sheddable PEG stealth for enhanced tumor-targeted drug delivery. Polym Chem 2020;11:4469-76. [DOI: 10.1039/d0py00653j] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
69 Tian Y, Lei M, Yan L, An F. Diselenide-crosslinked zwitterionic nanogels with dual redox-labile properties for controlled drug release. Polym Chem 2020;11:2360-9. [DOI: 10.1039/d0py00004c] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
70 Zhang J, Zhu X, Miao C, He Y, Zhao Y. Synthesis and properties of pH-cleavable toothbrush-like copolymers comprising multi-reactive Y junctions and a linear or cyclic backbone. Polym Chem 2020;11:2098-109. [DOI: 10.1039/d0py00084a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
71 Jazani AM, Oh JK. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym Chem 2020;11:2934-54. [DOI: 10.1039/d0py00234h] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
72 Zhang L, Wu H, Li Y, Lam KS. Reversible cross-linked polymeric micelles for drug delivery. Nanoengineered Biomaterials for Advanced Drug Delivery 2020. [DOI: 10.1016/b978-0-08-102985-5.00011-5] [Reference Citation Analysis]
73 Lin Y, Kouznetsova TB, Craig SL. A Latent Mechanoacid for Time-Stamped Mechanochromism and Chemical Signaling in Polymeric Materials. J Am Chem Soc 2020;142:99-103. [DOI: 10.1021/jacs.9b12861] [Cited by in Crossref: 79] [Cited by in F6Publishing: 79] [Article Influence: 19.8] [Reference Citation Analysis]
74 Gruber A, Navarro L, Klinger D. Reactive Precursor Particles as Synthetic Platform for the Generation of Functional Nanoparticles, Nanogels, and Microgels. Adv Mater Interfaces 2020;7:1901676. [DOI: 10.1002/admi.201901676] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
75 Kato R, Kanazawa A, Aoshima S. Desilylation-Triggered Degradable Silylacetal Polymers Synthesized via Controlled Cationic Copolymerization of Trimethylsilyl Vinyl Ether and Cyclic Acetals. ACS Macro Lett 2019;8:1498-503. [PMID: 35651183 DOI: 10.1021/acsmacrolett.9b00745] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
76 Hira SK, Mitra K, Srivastava P, Singh S, Vishwakarma S, Singh R, Ray B, Manna PP. Doxorubicin loaded pH responsive biodegradable ABA-type Amphiphilic PEG-b-aliphatic Polyketal-b-PEG block copolymer for therapy against aggressive murine lymphoma. Nanomedicine 2020;24:102128. [PMID: 31747622 DOI: 10.1016/j.nano.2019.102128] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
77 Post W, Susa A, Blaauw R, Molenveld K, Knoop RJI. A Review on the Potential and Limitations of Recyclable Thermosets for Structural Applications. Polymer Reviews 2020;60:359-88. [DOI: 10.1080/15583724.2019.1673406] [Cited by in Crossref: 97] [Cited by in F6Publishing: 66] [Article Influence: 24.3] [Reference Citation Analysis]
78 Liao Z, Fa Y, Kempson IM, Tseng S. Repolarization of M2 to M1 Macrophages Triggered by Lactate Oxidase Released from Methylcellulose Hydrogel. Bioconjugate Chem 2019;30:2697-702. [DOI: 10.1021/acs.bioconjchem.9b00618] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
79 Abtew E, Ezra AF, Basu A, Domb AJ. Biodegradable Poly(Acetonide Gluconic Acid) for Controlled Drug Delivery. Biomacromolecules 2019;20:2934-41. [PMID: 31259534 DOI: 10.1021/acs.biomac.9b00461] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
80 Tai W. Chemical modulation of siRNA lipophilicity for efficient delivery. Journal of Controlled Release 2019;307:98-107. [DOI: 10.1016/j.jconrel.2019.06.022] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
81 Guo X, Carter MCD, Appadoo V, Lynn DM. Tunable and Selective Degradation of Amine-Reactive Multilayers in Acidic Media. Biomacromolecules 2019;20:3464-74. [DOI: 10.1021/acs.biomac.9b00756] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
82 Shimomoto H, Mori T, Itoh T, Ihara E. Poly(β-keto enol ether) Prepared by Three-Component Polycondensation of Bis(diazoketone), Bis(1,3-diketone), and Tetrahydrofuran: Mild Acid-Degradable Polymers To Afford Well-Defined Low Molecular Weight Components. Macromolecules 2019;52:5761-8. [DOI: 10.1021/acs.macromol.9b00653] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
83 Brisson ERL, Griffith JC, Bhaskaran A, Franks GV, Connal LA. Temperature‐induced self‐assembly and metal‐ion stabilization of histidine functional block copolymers. J Polym Sci Part A: Polym Chem 2019;57:1964-73. [DOI: 10.1002/pola.29351] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
84 Haider T, Shyshov O, Suraeva O, Lieberwirth I, von Delius M, Wurm FR. Long-Chain Polyorthoesters as Degradable Polyethylene Mimics. Macromolecules 2019;52:2411-20. [PMID: 31496544 DOI: 10.1021/acs.macromol.9b00180] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
85 Deirram N, Zhang C, Kermaniyan SS, Johnston APR, Such GK. pH‐Responsive Polymer Nanoparticles for Drug Delivery. Macromol Rapid Commun 2019;40:1800917. [DOI: 10.1002/marc.201800917] [Cited by in Crossref: 181] [Cited by in F6Publishing: 183] [Article Influence: 45.3] [Reference Citation Analysis]
86 Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA. Nanoparticle systems for cancer vaccine. Nanomedicine (Lond) 2019;14:627-48. [PMID: 30806568 DOI: 10.2217/nnm-2018-0147] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 14.8] [Reference Citation Analysis]
87 Fukunaga K, Tsutsumi H, Mihara H. Self-Assembling Peptides as Building Blocks of Functional Materials for Biomedical Applications. BCSJ 2019;92:391-9. [DOI: 10.1246/bcsj.20180293] [Cited by in Crossref: 75] [Cited by in F6Publishing: 77] [Article Influence: 18.8] [Reference Citation Analysis]
88 Cuneo T, Graff RW, Wang X, Gao H. Synthesis of Highly Branched Copolymers in Microemulsion. Macromol Chem Phys 2019;220:1800546. [DOI: 10.1002/macp.201800546] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
89 Burek M, Kubic K, Nabiałczyk I, Waśkiewicz S, Wandzik I. Study on protein release from hydrolytically degradable hydrogels governed by substituent effects in trehalose-based crosslinker and network properties. European Polymer Journal 2019;111:123-133. [DOI: 10.1016/j.eurpolymj.2018.12.020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
90 Miller KA, Morado EG, Samanta SR, Walker BA, Nelson AZ, Sen S, Tran DT, Whitaker DJ, Ewoldt RH, Braun PV, Zimmerman SC. Acid-Triggered, Acid-Generating, and Self-Amplifying Degradable Polymers. J Am Chem Soc 2019;141:2838-42. [DOI: 10.1021/jacs.8b07705] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
91 Wu Y, Xiao Y, Huang Y, Xu Y, You D, Lu W, Yu J. Rod-Shaped Micelles Based on PHF- g -(PCL-PEG) with pH-Triggered Doxorubicin Release and Enhanced Cellular Uptake. Biomacromolecules 2019;20:1167-77. [DOI: 10.1021/acs.biomac.8b01430] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
92 Alameda BM, Palmer TC, Sisemore JD, Pierini NG, Patton DL. Hydrolytically degradable poly(β-thioether ester ketal) thermosets via radical-mediated thiol–ene photopolymerization. Polym Chem 2019;10:5635-44. [DOI: 10.1039/c9py01082c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
93 Mctaggart M, Malardier-jugroot C. Nanomedicine and Drug Delivery Systems in Overcoming Resistance to Targeted Therapy. Resistance to Targeted Anti-Cancer Therapeutics 2019. [DOI: 10.1007/978-3-030-21477-7_10] [Reference Citation Analysis]
94 He K, Li J, Shen Y, Yu Y. pH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd 2 O 3 @MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement. J Mater Chem B 2019;7:6840-54. [DOI: 10.1039/c9tb01654f] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
95 Moreno A, Lligadas G, Ronda JC, Galià M, Cádiz V. Orthogonally functionalizable polyacetals: a versatile platform for the design of acid sensitive amphiphilic copolymers. Polym Chem 2019;10:5215-27. [DOI: 10.1039/c9py01107b] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
96 De Coen R, Nuhn L, De Geest BG. Engineering mannosylated nanogels with membrane-disrupting properties. Polym Chem 2019;10:4297-304. [DOI: 10.1039/c9py00492k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
97 Ribeiro LN, Alcantara AC, Franz-montan M, Couto VM, Nista SV, de Paula E. Nanostructured organic-organic bio-hybrid delivery systems. Biomedical Applications of Nanoparticles 2019. [DOI: 10.1016/b978-0-12-816506-5.00011-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
98 Kumar P, Gajbhiye KR, Paknikar KM, Gajbhiye V. Current Status and Future Challenges of Various Polymers as Cancer Therapeutics. Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics 2019. [DOI: 10.1016/b978-0-12-816963-6.00001-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
99 Jazani AM, Arezi N, Shetty C, Hong SH, Li H, Wang X, Oh JK. Tumor-targeting intracellular drug delivery based on dual acid/reduction-degradable nanoassemblies with ketal interface and disulfide core locations. Polym Chem 2019;10:2840-53. [DOI: 10.1039/c9py00352e] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
100 Hufendiek A, Lingier S, Du Prez FE. Thermoplastic polyacetals: chemistry from the past for a sustainable future? Polym Chem 2019;10:9-33. [DOI: 10.1039/c8py01219a] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 11.0] [Reference Citation Analysis]
101 Matsumoto S, Kanazawa A, Kanaoka S, Aoshima S. Dual stimuli-responsive copolymers with precisely arranged degradable units: synthesis by controlled alternating copolymerization of oxyethylene-containing vinyl ethers and conjugated aldehydes. Polym Chem 2019;10:4134-41. [DOI: 10.1039/c9py00513g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
102 Wang Y, Huang D, Wang X, Yang F, Shen H, Wu D. Fabrication of zwitterionic and pH-responsive polyacetal dendrimers for anticancer drug delivery. Biomater Sci 2019;7:3238-48. [DOI: 10.1039/c9bm00606k] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
103 Oh JK. Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polym Chem 2019;10:1554-68. [DOI: 10.1039/c8py01808a] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
104 Gennen S, Grignard B, Jérôme C, Detrembleur C. CO 2 -Sourced Non-Isocyanate Poly(Urethane)s with pH-Sensitive Imine Linkages. Adv Synth Catal 2019;361:355-65. [DOI: 10.1002/adsc.201801230] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
105 Bingham NM, Roth PJ. Degradable vinyl copolymers through thiocarbonyl addition-ring-opening (TARO) polymerization. Chem Commun (Camb) 2018;55:55-8. [PMID: 30484445 DOI: 10.1039/c8cc08287a] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 7.4] [Reference Citation Analysis]
106 Teasdale I. Stimuli-Responsive Phosphorus-Based Polymers. Eur J Inorg Chem 2019;2019:1445-56. [PMID: 30983876 DOI: 10.1002/ejic.201801077] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
107 Huang G, Huang H. Application of dextran as nanoscale drug carriers. Nanomedicine 2018;13:3149-58. [DOI: 10.2217/nnm-2018-0331] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 10.0] [Reference Citation Analysis]
108 Hong SH, Larocque K, Jaunky DB, Piekny A, Oh JK. Dual disassembly and biological evaluation of enzyme/oxidation-responsive polyester-based nanoparticulates for tumor-targeting delivery. Colloids and Surfaces B: Biointerfaces 2018;172:608-17. [DOI: 10.1016/j.colsurfb.2018.09.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
109 Li J, Yang XL, Liu YH, Wu WX, Liu BY, Wang N, Yu XQ. Chemoenzymatic synthesis of dual-responsive graft copolymers for drug delivery: long-term stability, high loading and cell selectivity. J Mater Chem B 2018;6:6993-7003. [PMID: 32254582 DOI: 10.1039/c8tb01973h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
110 Bawa KK, Jazani AM, Shetty C, Oh JK. PLA-Based Triblock Copolymer Micelles Exhibiting Dual Acidic pH/Reduction Responses at Dual Core and Core/Corona Interface Locations. Macromol Rapid Commun 2018;39:1800477. [DOI: 10.1002/marc.201800477] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
111 Van Herck S, Deswarte K, Nuhn L, Zhong Z, Portela Catani JP, Li Y, Sanders NN, Lienenklaus S, De Koker S, Lambrecht BN, David SA, De Geest BG. Lymph-Node-Targeted Immune Activation by Engineered Block Copolymer Amphiphiles–TLR7/8 Agonist Conjugates. J Am Chem Soc 2018;140:14300-7. [DOI: 10.1021/jacs.8b08595] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 7.8] [Reference Citation Analysis]
112 Li N, Lu W, Yu J, Xiao Y, Liu S, Gan L, Huang J. Rod-like cellulose nanocrystal/cis-aconityl-doxorubicin prodrug: A fluorescence-visible drug delivery system with enhanced cellular uptake and intracellular drug controlled release. Materials Science and Engineering: C 2018;91:179-89. [DOI: 10.1016/j.msec.2018.04.099] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 6.6] [Reference Citation Analysis]
113 Jazani AM, Arezi N, Maruya-Li K, Jung S, Oh JK. Facile Strategies to Synthesize Dual Location Dual Acidic pH/Reduction-Responsive Degradable Block Copolymers Bearing Acetal/Disulfide Block Junctions and Disulfide Pendants. ACS Omega 2018;3:8980-91. [PMID: 31459031 DOI: 10.1021/acsomega.8b01310] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
114 Su S, Du F, Li Z. Facile Synthesis of a Degradable Poly(ethylene glycol) Platform with Tunable Acid Sensitivity at Physiologically Relevant pH. Macromolecules 2018;51:6571-9. [DOI: 10.1021/acs.macromol.8b01053] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
115 Mitra K, Hira SK, Singh S, Vishwakarma NK, Vishwakarma S, Gupta U, Manna PP, Ray B. In Vitro Anticancer Drug Delivery Using Amphiphilic Poly( N -vinylpyrrolidone)- b -Polyketal- b -Poly( N -vinylpyrrolidone) Block Copolymer as Micellar Nanocarrier. ChemistrySelect 2018;3:8833-43. [DOI: 10.1002/slct.201801399] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
116 Huang Y, Thanneeru S, Zhang Q, He J. A new design of cleavable acetal-containing amphiphilic block copolymers triggered by light. J Polym Sci Part A: Polym Chem 2018;56:1815-24. [DOI: 10.1002/pola.29062] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
117 Nuhn L, Van herck S, Best A, Deswarte K, Kokkinopoulou M, Lieberwirth I, Koynov K, Lambrecht BN, De geest BG. FRET Monitoring of Intracellular Ketal Hydrolysis in Synthetic Nanoparticles. Angew Chem Int Ed 2018;57:10760-4. [DOI: 10.1002/anie.201803847] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 6.8] [Reference Citation Analysis]
118 Nuhn L, Van Herck S, Best A, Deswarte K, Kokkinopoulou M, Lieberwirth I, Koynov K, Lambrecht BN, De Geest BG. Förster‐Resonanzenergietransfer‐basierter Nachweis intrazellulärer Ketal‐Hydrolyse in synthetisch vernetzten Nanopartikeln. Angew Chem 2018;130:10920-10925. [DOI: 10.1002/ange.201803847] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
119 Iturmendi A, Theis S, Maderegger D, Monkowius U, Teasdale I. Coumarin-Caged Polyphosphazenes with a Visible-Light Driven On-Demand Degradation. Macromol Rapid Commun 2018;39:e1800377. [PMID: 30048024 DOI: 10.1002/marc.201800377] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
120 Rabiee Kenaree A, Gillies ER. Controlled Polymerization of Ethyl Glyoxylate Using Alkyllithium and Alkoxide Initiators. Macromolecules 2018;51:5501-10. [DOI: 10.1021/acs.macromol.8b01007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
121 Huang D, Qian H, Qiao H, Chen W, Feijen J, Zhong Z. Bioresponsive functional nanogels as an emerging platform for cancer therapy. Expert Opin Drug Deliv 2018;15:703-16. [PMID: 29976103 DOI: 10.1080/17425247.2018.1497607] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
122 Arno MC, Brannigan RP, Policastro GM, Becker ML, Dove AP. pH-Responsive, Functionalizable Spyrocyclic Polycarbonate: A Versatile Platform for Biocompatible Nanoparticles. Biomacromolecules 2018;19:3427-34. [PMID: 29927242 DOI: 10.1021/acs.biomac.8b00744] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
123 Dararatana N, Seidi F, Crespy D. pH-Sensitive Polymer Conjugates for Anticorrosion and Corrosion Sensing. ACS Appl Mater Interfaces 2018;10:20876-83. [PMID: 29812891 DOI: 10.1021/acsami.8b05775] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 8.4] [Reference Citation Analysis]
124 Wu W, Yang X, Wang X, Zhang Y, Li H, Lan L, Deng J, Wang N, Yu X. Lipase-catalyzed synthesis of pH-responsive poly( β -thioether ester)- b -poly(ethylene glycol)- b -poly( β -thioether ester) amphiphilic triblock copolymers for drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials 2019;68:564-74. [DOI: 10.1080/00914037.2018.1473864] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
125 Dockery L, Daniel MC. Dendronized Systems for the Delivery of Chemotherapeutics. Adv Cancer Res 2018;139:85-120. [PMID: 29941108 DOI: 10.1016/bs.acr.2018.04.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
126 Simpson MJ, Corbett B, Arezina A, Hoare T. Narrowly Dispersed, Degradable, and Scalable Poly(oligoethylene glycol methacrylate)-Based Nanogels via Thermal Self-Assembly. Ind Eng Chem Res 2018;57:7495-506. [DOI: 10.1021/acs.iecr.8b00793] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
127 Löw H, Mena-Osteritz E, von Delius M. Self-assembled orthoester cryptands: orthoester scope, post-functionalization, kinetic locking and tunable degradation kinetics. Chem Sci 2018;9:4785-93. [PMID: 29910929 DOI: 10.1039/c8sc01750f] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
128 Li Y, Wang Y, Huang G, Gao J. Cooperativity Principles in Self-Assembled Nanomedicine. Chem Rev 2018;118:5359-91. [PMID: 29693377 DOI: 10.1021/acs.chemrev.8b00195] [Cited by in Crossref: 96] [Cited by in F6Publishing: 103] [Article Influence: 19.2] [Reference Citation Analysis]
129 Whang CH, Lee HK, Kundu S, Murthy SN, Jo S. Pluronic-based dual-stimuli sensitive polymers capable of thermal gelation and pH-dependent degradation for in situ biomedical application. J Appl Polym Sci 2018;135:46552. [PMID: 30319143 DOI: 10.1002/app.46552] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
130 Zhang Y, Wu X, Hou C, Shang K, Yang K, Tian Z, Pei Z, Qu Y, Pei Y. Dual-responsive dithio-polydopamine coated porous CeO2 nanorods for targeted and synergistic drug delivery. Int J Nanomedicine 2018;13:2161-73. [PMID: 29695903 DOI: 10.2147/IJN.S152002] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
131 Burek M, Wandzik I. Synthetic Hydrogels with Covalently Incorporated Saccharides Studied for Biomedical Applications – 15 Year Overview. Polymer Reviews 2017;58:537-86. [DOI: 10.1080/15583724.2018.1443122] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
132 Park JE, Kim WK, Hwang DY, Choi GH, Suh DH. Thermally Stable Bio-Based Aliphatic Polycarbonates with Quadra-Cyclic Diol from Renewable Sources. Macromol Res 2018;26:246-53. [DOI: 10.1007/s13233-018-6038-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
133 Linhardt A, König M, Iturmendi A, Henke H, Brüggemann O, Teasdale I. Degradable, Dendritic Polyols on a Branched Polyphosphazene Backbone. Ind Eng Chem Res 2018;57:3602-9. [PMID: 29568158 DOI: 10.1021/acs.iecr.7b05301] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
134 Drude N, Winz OH, Mottaghy FM, Roller M, Königs H, Möller M, Singh S, Morgenroth A. Impact of Glutathione Modulation on Stability and Pharmacokinetic Profile of Redox-Sensitive Nanogels. Small 2018;14:1704093. [DOI: 10.1002/smll.201704093] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
135 Zhao J, Lu M, Lai H, Lu H, Lalevée J, Barner-kowollik C, Stenzel MH, Xiao P. Delivery of Amonafide from Fructose-Coated Nanodiamonds by Oxime Ligation for the Treatment of Human Breast Cancer. Biomacromolecules 2018;19:481-9. [DOI: 10.1021/acs.biomac.7b01592] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
136 Sims MB, Patel KY, Bhatta M, Mukherjee S, Sumerlin BS. Harnessing Imine Diversity To Tune Hyperbranched Polymer Degradation. Macromolecules 2018;51:356-63. [DOI: 10.1021/acs.macromol.7b02323] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
137 Xu L, Wang R, Cui W, Wang L, Meier H, Tang H, Cao D. Stronger host–guest binding does not necessarily give brighter particles: a case study on polymeric AIEE-tunable and size-tunable supraspheres. Chem Commun 2018;54:9274-7. [DOI: 10.1039/c8cc04905j] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
138 Burek M, Waśkiewicz S, Lalik A, Wandzik I. Hydrogels with novel hydrolytically labile trehalose-based crosslinks: small changes – big differences in degradation behavior. Polym Chem 2018;9:3721-6. [DOI: 10.1039/c8py00488a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
139 Chen S, Wang H, Li Z, Wei F, Zhu H, Xu S, Xu J, Liu J, Gebru H, Guo K. Metallic organophosphate catalyzed bulk ring-opening polymerization. Polym Chem 2018;9:732-42. [DOI: 10.1039/c7py02086d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
140 Papathanasiou KE, Vassaki M, Spinthaki A, Moschona A, Demadis KD. Silica-Based Polymeric Gels as Platforms for Delivery of Phosphonate Pharmaceutics. Polymer Gels 2018. [DOI: 10.1007/978-981-10-6083-0_5] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
141 Ma S, Webster DC. Degradable thermosets based on labile bonds or linkages: A review. Progress in Polymer Science 2018;76:65-110. [DOI: 10.1016/j.progpolymsci.2017.07.008] [Cited by in Crossref: 159] [Cited by in F6Publishing: 164] [Article Influence: 31.8] [Reference Citation Analysis]
142 Wu W, Dai W, Zhao X, Zhang J, Zhao Y. Synthesis, self-assembly and drug release behaviors of reduction-labile multi-responsive block miktobrush quaterpolymers with linear and V-shaped grafts. Polym Chem 2018;9:1947-60. [DOI: 10.1039/c8py00245b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
143 Bouillon C, Bessin Y, Poncet F, Gary-bobo M, Dumy P, Barboiu M, Bettache N, Ulrich S. Biomolecular dynamic covalent polymers for DNA complexation and siRNA delivery. J Mater Chem B 2018;6:7239-46. [DOI: 10.1039/c8tb01278d] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
144 Shi X, Bai S, Yang C, Ma X, Hou M, Chen J, Xue P, Li CM, Kang Y, Xu Z. Improving the carrier stability and drug loading of unimolecular micelle-based nanotherapeutics for acid-activated drug delivery and enhanced antitumor therapy. J Mater Chem B 2018;6:5549-61. [DOI: 10.1039/c8tb01384e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
145 Iturmendi A, Teasdale I. Water Soluble (Bio)degradable Poly(organo)phosphazenes. Polyphosphazenes in Biomedicine, Engineering, and Pioneering Synthesis 2018. [DOI: 10.1021/bk-2018-1298.ch009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
146 Vrbata D, Uchman M. Preparation of lactic acid- and glucose-responsive poly(ε-caprolactone)- b -poly(ethylene oxide) block copolymer micelles using phenylboronic ester as a sensitive block linkage. Nanoscale 2018;10:8428-42. [DOI: 10.1039/c7nr09427b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
147 Kepola EJ, Patrickios CS. Networks Based on “Core-First” Star Polymers End-Linked Using a Degradable Ketal Cross-Linker: Synthesis, Characterization, and Cleavage. Macromol Chem Phys 2018;219:1700404. [DOI: 10.1002/macp.201700404] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
148 Han L, Xiao Y, Fan M, Wang J, Yan Z, Wang Y, Yu L, Peng H, Zhu J. Synthesis and biological evaluation of an anticancer drug delivery system: Poly(l-γ-glutamyl-l-carbocisteine)-paclitaxel nanoconjugate. Materials Science and Engineering: C 2017;81:113-9. [DOI: 10.1016/j.msec.2017.07.032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
149 Van Herck S, Van Hoecke L, Louage B, Lybaert L, De Coen R, Kasmi S, Esser-kahn AP, David SA, Nuhn L, Schepens B, Saelens X, De Geest BG. Transiently Thermoresponsive Acetal Polymers for Safe and Effective Administration of Amphotericin B as a Vaccine Adjuvant. Bioconjugate Chem 2018;29:748-60. [DOI: 10.1021/acs.bioconjchem.7b00641] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
150 Jazani AM, Oh JK. Dual Location, Dual Acidic pH/Reduction-Responsive Degradable Block Copolymer: Synthesis and Investigation of Ketal Linkage Instability under ATRP Conditions. Macromolecules 2017;50:9427-36. [DOI: 10.1021/acs.macromol.7b02070] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
151 Xiao P, Zhang J, Zhao J, Stenzel MH. Light-induced release of molecules from polymers. Progress in Polymer Science 2017;74:1-33. [DOI: 10.1016/j.progpolymsci.2017.06.002] [Cited by in Crossref: 73] [Cited by in F6Publishing: 74] [Article Influence: 12.2] [Reference Citation Analysis]
152 Fu S, Yang G, Wang J, Wang X, Cheng X, Zha Q, Tang R. pH-sensitive poly(ortho ester urethanes) copolymers with controlled degradation kinetic: Synthesis, characterization, and in vitro evaluation as drug carriers. European Polymer Journal 2017;95:275-88. [DOI: 10.1016/j.eurpolymj.2017.08.023] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
153 He N, Chen Z, Yuan J, Zhao L, Chen M, Wang T, Li X. Tumor pH-Responsive Release of Drug-Conjugated Micelles from Fiber Fragments for Intratumoral Chemotherapy. ACS Appl Mater Interfaces 2017;9:32534-44. [DOI: 10.1021/acsami.7b09519] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
154 Ibrahim A, Ashby VS. Triggered Depolymerization of Poly(Phenylcarbamate)-based Materials in Response to Orthogonal Stimuli. MRS Advances 2017;2:2513-2519. [DOI: 10.1557/adv.2017.395] [Reference Citation Analysis]
155 Luan S, Zhu Y, Wu X, Wang Y, Liang F, Song S. Hyaluronic-Acid-Based pH-Sensitive Nanogels for Tumor-Targeted Drug Delivery. ACS Biomater Sci Eng 2017;3:2410-9. [DOI: 10.1021/acsbiomaterials.7b00444] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 6.8] [Reference Citation Analysis]
156 Wang R, Cheng J, Yan G, Wang C, Wang X, Wang J, Tang R. Rational design of acid-labile branched polycation with superior gene transfection capacity. Polymer 2017;123:1-9. [DOI: 10.1016/j.polymer.2017.07.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
157 Lingier S, Spiesschaert Y, Dhanis B, De Wildeman S, Du Prez FE. Rigid Polyurethanes, Polyesters, and Polycarbonates from Renewable Ketal Monomers. Macromolecules 2017;50:5346-52. [DOI: 10.1021/acs.macromol.7b00899] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]
158 Woodruff SR, Tsarevsky NV. Synthesis of (Bio)degradable Polymers by Controlled/“Living” Radical Polymerization. Polymers for Biomedicine 2017. [DOI: 10.1002/9781118967904.ch11] [Reference Citation Analysis]
159 John JV, Uthaman S, Augustine R, Chen H, Park IK, Kim I. pH/redox dual stimuli-responsive sheddable nanodaisies for efficient intracellular tumour-triggered drug delivery. J Mater Chem B 2017;5:5027-36. [PMID: 32264019 DOI: 10.1039/c7tb00030h] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
160 Lisitskiy VA, Khan H, Popova TV, Chubarov AS, Zakharova OD, Akulov AE, Shevelev OB, Zavjalov EL, Koptyug IV, Moshkin MP, Silnikov VN, Ahmad S, Godovikova TS. Multifunctional human serum albumin-therapeutic nucleotide conjugate with redox and pH-sensitive drug release mechanism for cancer theranostics. Bioorg Med Chem Lett 2017;27:3925-30. [PMID: 28676274 DOI: 10.1016/j.bmcl.2017.05.084] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
161 Lian H, Du Y, Chen X, Duan L, Gao G, Xiao C, Zhuang X. Core cross-linked poly(ethylene glycol)-graft-Dextran nanoparticles for reduction and pH dual responsive intracellular drug delivery. Journal of Colloid and Interface Science 2017;496:201-10. [DOI: 10.1016/j.jcis.2017.02.032] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
162 Hao Y, Fowler EW, Jia X. Chemical Synthesis of Biomimetic Hydrogels for Tissue Engineering. Polym Int 2017;66:1787-99. [PMID: 31080322 DOI: 10.1002/pi.5407] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
163 Bawa KK, Oh JK. Stimulus-Responsive Degradable Polylactide-Based Block Copolymer Nanoassemblies for Controlled/Enhanced Drug Delivery. Mol Pharmaceutics 2017;14:2460-74. [DOI: 10.1021/acs.molpharmaceut.7b00284] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 8.8] [Reference Citation Analysis]
164 Louage B, De Wever O, Hennink WE, De Geest BG. Developments and future clinical outlook of taxane nanomedicines. Journal of Controlled Release 2017;253:137-52. [DOI: 10.1016/j.jconrel.2017.03.027] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
165 Battistella C, Klok H. Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines. Macromol Biosci 2017;17:1700022. [DOI: 10.1002/mabi.201700022] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
166 John JV, Uthaman S, Augustine R, Manickavasagam Lekshmi K, Park I, Kim I. Biomimetic pH/redox dual stimuli-responsive zwitterionic polymer block poly( L -histidine) micelles for intracellular delivery of doxorubicin into tumor cells. J Polym Sci Part A: Polym Chem 2017;55:2061-70. [DOI: 10.1002/pola.28602] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
167 Kalva N, Ambade AV. Synthesis and tunable thermoresponsive solution morphologies of 2,2-bis-methylolpropionic acid dendron-azobenzene-poly( N -isopropyl acrylamide) copolymers: Synthesis and thermoresponsiveness of linear-dendritic block copolymers. Polym Int 2017;66:1084-93. [DOI: 10.1002/pi.5363] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
168 Fu S, Yang G, Wang J, Wang X, Cheng X, Tang R. Acid-degradable poly(ortho ester urethanes) copolymers for potential drug carriers: Preparation, characterization, in vitro and in vivo evaluation. Polymer 2017;114:1-14. [DOI: 10.1016/j.polymer.2017.02.079] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
169 Watzek N, Berger F, Kolle SN, Kaufmann T, Becker M, van Ravenzwaay B. Assessment of skin sensitization under REACH: A case report on vehicle choice in the LLNA and its crucial role preventing false positive results. Regulatory Toxicology and Pharmacology 2017;85:25-32. [DOI: 10.1016/j.yrtph.2017.01.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
170 Lin S, Feng S, Mo Y, Tu Y, Guo Y, Hu J, Liu G, Zhong Z, Miao L, Zou H, Liu F. Dual-responsive crosslinked micelles of a multifunctional graft copolymer for drug delivery applications. J Polym Sci Part A: Polym Chem 2017;55:1536-46. [DOI: 10.1002/pola.28520] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
171 Pohlit H, Leibig D, Frey H. Poly(Ethylene Glycol) Dimethacrylates with Cleavable Ketal Sites: Precursors for Cleavable PEG-Hydrogels. Macromol Biosci 2017;17:1600532. [DOI: 10.1002/mabi.201600532] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
172 Alavarse AC, de Oliveira Silva FW, Colque JT, da Silva VM, Prieto T, Venancio EC, Bonvent JJ. Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Mater Sci Eng C Mater Biol Appl 2017;77:271-81. [PMID: 28532030 DOI: 10.1016/j.msec.2017.03.199] [Cited by in Crossref: 170] [Cited by in F6Publishing: 175] [Article Influence: 28.3] [Reference Citation Analysis]
173 Wang HC, Grolman JM, Rizvi A, Hisao GS, Rienstra CM, Zimmerman SC. pH-Triggered Release from Polyamide Microcapsules Prepared by Interfacial Polymerization of a Simple Diester Monomer. ACS Macro Lett 2017;6:321-5. [PMID: 35650910 DOI: 10.1021/acsmacrolett.6b00968] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
174 Wang H, Su L, Li R, Zhang S, Fan J, Zhang F, Nguyen TP, Wooley KL. Polyphosphoramidates That Undergo Acid-Triggered Backbone Degradation. ACS Macro Lett 2017;6:219-23. [PMID: 35650917 DOI: 10.1021/acsmacrolett.6b00966] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
175 Cheng Y, Sellers DL, Tan JY, Peeler DJ, Horner PJ, Pun SH. Development of switchable polymers to address the dilemma of stability and cargo release in polycationic nucleic acid carriers. Biomaterials 2017;127:89-96. [PMID: 28284104 DOI: 10.1016/j.biomaterials.2017.02.036] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 7.3] [Reference Citation Analysis]
176 Amato DN, Amato DV, Mavrodi OV, Martin WB, Swilley SN, Parsons KH, Mavrodi DV, Patton DL. Pro-Antimicrobial Networks via Degradable Acetals (PANDAs) Using Thiol-Ene Photopolymerization. ACS Macro Lett 2017;6:171-5. [PMID: 35632888 DOI: 10.1021/acsmacrolett.7b00009] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
177 Patil SS, Wadgaonkar PP. Temperature and pH dual stimuli responsive PCL- b -PNIPAAm block copolymer assemblies and the cargo release studies. J Polym Sci Part A: Polym Chem 2017;55:1383-96. [DOI: 10.1002/pola.28508] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
178 Liu B, Thayumanavan S. Substituent Effects on the pH Sensitivity of Acetals and Ketals and Their Correlation with Encapsulation Stability in Polymeric Nanogels. J Am Chem Soc 2017;139:2306-17. [PMID: 28106385 DOI: 10.1021/jacs.6b11181] [Cited by in Crossref: 122] [Cited by in F6Publishing: 125] [Article Influence: 20.3] [Reference Citation Analysis]
179 Wang C, Zieger MM, Schenzel A, Wegener M, Willenbacher J, Barner‐kowollik C, Bowman CN. Photoinduced Tetrazole‐Based Functionalization of Off‐Stoichiometric Clickable Microparticles. Adv Funct Mater 2017;27:1605317. [DOI: 10.1002/adfm.201605317] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
180 Macartney D. Cucurbiturils in Drug Binding and Delivery ☆. Comprehensive Supramolecular Chemistry II. Elsevier; 2017. pp. 479-94. [DOI: 10.1016/b978-0-12-409547-2.05621-3] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
181 Hoff EA, Abel BA, Tretbar CA, Mccormick CL, Patton DL. Aqueous RAFT at pH zero: enabling controlled polymerization of unprotected acyl hydrazide methacrylamides. Polym Chem 2017;8:4978-82. [DOI: 10.1039/c6py01563h] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
182 Teng W, Jia F, Han H, Qin Z, Jin Q, Ji J. Polyamino acid-based gemcitabine nanocarriers for targeted intracellular drug delivery. Polym Chem 2017;8:2490-8. [DOI: 10.1039/c7py00443e] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
183 Tan S, Ang C, Zhao Y. Smart Therapeutics Achieved via Host–Guest Assemblies. Comprehensive Supramolecular Chemistry II 2017. [DOI: 10.1016/b978-0-12-409547-2.12575-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
184 Liu J, Xu J, Li Z, Xu S, Wang X, Wang H, Guo T, Gao Y, Zhang L, Guo K. Squaramide and amine binary H-bond organocatalysis in polymerizations of cyclic carbonates, lactones, and lactides. Polym Chem 2017;8:7054-68. [DOI: 10.1039/c7py01671a] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
185 Louage B, Tack L, Wang Y, De Geest BG. Poly(glycerol sebacate) nanoparticles for encapsulation of hydrophobic anti-cancer drugs. Polym Chem 2017;8:5033-8. [DOI: 10.1039/c6py02192a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
186 Ying H, Yen J, Wang R, Lai Y, Hsu J, Hu Y, Cheng J. Degradable and biocompatible hydrogels bearing a hindered urea bond. Biomater Sci 2017;5:2398-402. [DOI: 10.1039/c7bm00669a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
187 Homyak C, Anson F, Thayumanavan S. Supramolecular Polymers in Nanomedicine. Comprehensive Supramolecular Chemistry II 2017. [DOI: 10.1016/b978-0-12-409547-2.12566-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
188 Cholkar K, Acharya G, Trinh HM, Singh G. Therapeutic Applications of Polymeric Materials. Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. Elsevier; 2017. pp. 1-19. [DOI: 10.1016/b978-0-323-42978-8.00001-2] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
189 Bansal K, Sasso L, Makwana H, Awwad S, Brocchini S, Alexander C. Nanopharmacy: Exploratory Methods for Polymeric Materials. Pharmaceutical Nanotechnology: Innovation and Production 2016. [DOI: 10.1002/9783527800681.ch10] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
190 Possanza Casey CM, Moore JS. Base-Triggered Degradation of Poly(vinyl ester sulfone)s with Tunable Sensitivity. ACS Macro Lett 2016;5:1257-60. [PMID: 35614736 DOI: 10.1021/acsmacrolett.6b00698] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
191 Shenoi RA, Abbina S, Kizhakkedathu JN. In Vivo Biological Evaluation of High Molecular Weight Multifunctional Acid-Degradable Polymeric Drug Carriers with Structurally Different Ketals. Biomacromolecules 2016;17:3683-93. [DOI: 10.1021/acs.biomac.6b01198] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
192 Fan B, Trant JF, Yardley RE, Pickering AJ, Lagugné-labarthet F, Gillies ER. Photocontrolled Degradation of Stimuli-Responsive Poly(ethyl glyoxylate): Differentiating Features and Traceless Ambient Depolymerization. Macromolecules 2016;49:7196-203. [DOI: 10.1021/acs.macromol.6b01620] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
193 Mitra K, Singh S, Hira SK, Patel VK, Singh D, Vishwakarma S, Singh R, Kumari A, Manna PP, Ray B. Study of the Fluorescence Based Applications of Pyrene-Tagged Poly( N -vinyl-2-pyrrolidone). ACS Biomater Sci Eng 2016;2:1630-40. [DOI: 10.1021/acsbiomaterials.6b00397] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
194 Altenbuchner PT, Werz PDL, Schöppner P, Adams F, Kronast A, Schwarzenböck C, Pöthig A, Jandl C, Haslbeck M, Rieger B. Next Generation Multiresponsive Nanocarriers for Targeted Drug Delivery to Cancer Cells. Chem Eur J 2016;22:14576-84. [DOI: 10.1002/chem.201601822] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
195 John JV, Thomas RG, Lee HR, Chen H, Jeong YY, Kim I. Phospholipid End-Capped Acid-Degradable Polyurethane Micelles for Intracellular Delivery of Cancer Therapeutics. Adv Healthc Mater 2016;5:1874-83. [PMID: 27245616 DOI: 10.1002/adhm.201600126] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
196 Pramanik P, Halder D, Jana SS, Ghosh S. pH-Triggered Sustained Drug Delivery from a Polymer Micelle having the β-Thiopropionate Linkage. Macromol Rapid Commun 2016;37:1499-506. [DOI: 10.1002/marc.201600260] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
197 Nuhn L, Vanparijs N, De Beuckelaer A, Lybaert L, Verstraete G, Deswarte K, Lienenklaus S, Shukla NM, Salyer AC, Lambrecht BN, Grooten J, David SA, De Koker S, De Geest BG. pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proc Natl Acad Sci U S A 2016;113:8098-103. [PMID: 27382168 DOI: 10.1073/pnas.1600816113] [Cited by in Crossref: 133] [Cited by in F6Publishing: 137] [Article Influence: 19.0] [Reference Citation Analysis]
198 Burek M, Kowalczyk M, Czuba ZP, Krol W, Pilawka R, Waskiewicz S. Poly(N-isopropylacrylamide) hydrogels cross-linked by α,α-trehalose diacetals as thermo-responsive and acid-degradable carriers for drug delivery. Polymer Degradation and Stability 2016;129:296-305. [DOI: 10.1016/j.polymdegradstab.2016.05.009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
199 Curtis LT, Rychahou P, Bae Y, Frieboes HB. A Computational/Experimental Assessment of Antitumor Activity of Polymer Nanoassemblies for pH-Controlled Drug Delivery to Primary and Metastatic Tumors. Pharm Res 2016;33:2552-64. [PMID: 27356524 DOI: 10.1007/s11095-016-1981-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
200 An X, Zhu A, Luo H, Ke H, Chen H, Zhao Y. Rational Design of Multi-Stimuli-Responsive Nanoparticles for Precise Cancer Therapy. ACS Nano 2016;10:5947-58. [PMID: 27285378 DOI: 10.1021/acsnano.6b01296] [Cited by in Crossref: 160] [Cited by in F6Publishing: 167] [Article Influence: 22.9] [Reference Citation Analysis]
201 De Coen R, Vanparijs N, Risseeuw MDP, Lybaert L, Louage B, De Koker S, Kumar V, Grooten J, Taylor L, Ayres N, Van Calenbergh S, Nuhn L, De Geest BG. pH-Degradable Mannosylated Nanogels for Dendritic Cell Targeting. Biomacromolecules 2016;17:2479-88. [DOI: 10.1021/acs.biomac.6b00685] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 7.7] [Reference Citation Analysis]
202 Su Z, Jiang X. Multi-stimuli responsive amine-containing polyethers: Novel building blocks for smart assemblies. Polymer 2016;93:221-39. [DOI: 10.1016/j.polymer.2016.04.034] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
203 Yu L, Lin C, Zheng Z, Li Z, Wang X. Self-assembly of pH-responsive biodegradable mixed micelles based on anionic and cationic polycarbonates for doxorubicin delivery. Colloids Surf B Biointerfaces 2016;145:392-400. [PMID: 27232302 DOI: 10.1016/j.colsurfb.2016.05.029] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
204 Sumer Bolu B, Manavoglu Gecici E, Sanyal R. Combretastatin A-4 Conjugated Antiangiogenic Micellar Drug Delivery Systems Using Dendron–Polymer Conjugates. Mol Pharmaceutics 2016;13:1482-90. [DOI: 10.1021/acs.molpharmaceut.5b00931] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
205 Doppalapudi S, Jain A, Domb AJ, Khan W. Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opinion on Drug Delivery 2016;13:891-909. [DOI: 10.1517/17425247.2016.1156671] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 8.6] [Reference Citation Analysis]
206 Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016;116:2602-63. [PMID: 26854975 DOI: 10.1021/acs.chemrev.5b00346] [Cited by in Crossref: 1467] [Cited by in F6Publishing: 1544] [Article Influence: 209.6] [Reference Citation Analysis]
207 Karimi M, Eslami M, Sahandi-Zangabad P, Mirab F, Farajisafiloo N, Shafaei Z, Ghosh D, Bozorgomid M, Dashkhaneh F, Hamblin MR. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:696-716. [PMID: 26762467 DOI: 10.1002/wnan.1389] [Cited by in Crossref: 120] [Cited by in F6Publishing: 130] [Article Influence: 17.1] [Reference Citation Analysis]
208 Tong M, An X, Pan W, Liu H, Zhao Y. Synthesis and properties of stimuli-sensitive heterografted toothbrush-like terpolymers with a linear handle and two types of V-shaped grafts. Polym Chem 2016;7:2209-21. [DOI: 10.1039/c6py00182c] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
209 Liu J, Cui S, Li Z, Xu S, Xu J, Pan X, Liu Y, Dong H, Sun H, Guo K. Polymerization of trimethylene carbonates using organic phosphoric acids. Polym Chem 2016;7:5526-35. [DOI: 10.1039/c6py01210h] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
210 Liu Y, Huang S, Huang X, Wu Y, Chen H, Lo Y, Wang L. The synthesis and comparison of poly(methacrylic acid)–poly(ε-caprolactone) block copolymers with and without symmetrical disulfide linkages in the center for enhanced cellular uptake. RSC Adv 2016;6:75092-103. [DOI: 10.1039/c6ra15307k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
211 Wang C, Chen X, Yao X, Chen L, Chen X. Dual acid-responsive supramolecular nanoparticles as new anticancer drug delivery systems. Biomater Sci 2016;4:104-14. [DOI: 10.1039/c5bm00235d] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
212 Collins J, Xiao Z, Müllner M, Connal LA. The emergence of oxime click chemistry and its utility in polymer science. Polym Chem 2016;7:3812-26. [DOI: 10.1039/c6py00635c] [Cited by in Crossref: 89] [Cited by in F6Publishing: 89] [Article Influence: 12.7] [Reference Citation Analysis]
213 Gallovic MD, Bandyopadhyay S, Borteh H, Montjoy DG, Collier MA, Peine KJ, Wyslouzil BE, Bachelder EM, Ainslie KM. Microparticles formulated from a family of novel silylated polysaccharides demonstrate inherent immunostimulatory properties and tunable hydrolytic degradability. J Mater Chem B 2016;4:4302-12. [DOI: 10.1039/c6tb00745g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
214 Pan W, Liu H, Zhang H, Zhao Y. Synthesis and properties of an acid-labile dual-sensitive ABCD star quaterpolymer. Polym Chem 2016;7:2870-81. [DOI: 10.1039/c6py00267f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
215 Chan L, Huang Y, Chen T. Cancer-targeted tri-block copolymer nanoparticles as payloads of metal complexes to achieve enhanced cancer theranosis. J Mater Chem B 2016;4:4517-25. [DOI: 10.1039/c6tb00514d] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
216 Lai H, Lu M, Lu H, Stenzel MH, Xiao P. pH-Triggered release of gemcitabine from polymer coated nanodiamonds fabricated by RAFT polymerization and copper free click chemistry. Polym Chem 2016;7:6220-30. [DOI: 10.1039/c6py01188h] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
217 Li D, Bu Y, Zhang L, Wang X, Yang Y, Zhuang Y, Yang F, Shen H, Wu D. Facile Construction of pH- and Redox-Responsive Micelles from a Biodegradable Poly(β-hydroxyl amine) for Drug Delivery. Biomacromolecules 2016;17:291-300. [PMID: 26682612 DOI: 10.1021/acs.biomac.5b01394] [Cited by in Crossref: 73] [Cited by in F6Publishing: 74] [Article Influence: 9.1] [Reference Citation Analysis]
218 Lago AB, Pino-Cuevas A, Carballo R, Vázquez-López EM. A new metal-organic polymeric system capable of stimuli-responsive controlled release of the drug ibuprofen. Dalton Trans 2016;45:1614-21. [PMID: 26692254 DOI: 10.1039/c5dt04031k] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
219 Flavell RR, Truillet C, Regan MK, Ganguly T, Blecha JE, Kurhanewicz J, VanBrocklin HF, Keshari KR, Chang CJ, Evans MJ, Wilson DM. Caged [(18)F]FDG Glycosylamines for Imaging Acidic Tumor Microenvironments Using Positron Emission Tomography. Bioconjug Chem 2016;27:170-8. [PMID: 26649808 DOI: 10.1021/acs.bioconjchem.5b00584] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
220 Tian M, Cheng R, Zhang J, Liu Z, Liu Z, Jiang J. Amphiphilic Polymer Micellar Disruption Based on Main-Chain Photodegradation. Langmuir 2016;32:12-8. [DOI: 10.1021/acs.langmuir.5b03856] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
221 Mielańczyk A, Neugebauer D. Designing Drug Conjugates Based on Sugar Decorated V-Shape and Star Polymethacrylates: Influence of Composition and Architecture of Polymeric Carrier. Bioconjugate Chem 2015;26:2303-10. [DOI: 10.1021/acs.bioconjchem.5b00533] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
222 Sun Y, Li Y, Nan S, Zhang L, Huang H, Wang J. Synthesis and characterization of pH-sensitive poly(itaconic acid)–poly(ethylene glycol)–folate–poly(l-histidine) micelles for enhancing tumor therapy and tunable drug release. Journal of Colloid and Interface Science 2015;458:119-29. [DOI: 10.1016/j.jcis.2015.07.008] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
223 Kim S, Linker O, Garth K, Carter KR. Degradation kinetics of acid-sensitive hydrogels. Polymer Degradation and Stability 2015;121:303-10. [DOI: 10.1016/j.polymdegradstab.2015.09.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
224 Xu H, Ma H, Yang P, Zhang X, Wu X, Yin W, Wang H, Xu D. Targeted polymer-drug conjugates: Current progress and future perspective. Colloids Surf B Biointerfaces 2015;136:729-34. [PMID: 26513756 DOI: 10.1016/j.colsurfb.2015.10.001] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
225 Choi G, Hwang DY, Suh DH. High Thermal Stability of Bio-Based Polycarbonates Containing Cyclic Ketal Moieties. Macromolecules 2015;48:6839-45. [DOI: 10.1021/acs.macromol.5b01112] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 4.3] [Reference Citation Analysis]
226 Clark AJ, Davis ME. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci U S A 2015;112:12486-91. [PMID: 26392563 DOI: 10.1073/pnas.1517048112] [Cited by in Crossref: 161] [Cited by in F6Publishing: 170] [Article Influence: 20.1] [Reference Citation Analysis]
227 Oumzil K, Benizri S, Tonelli G, Staedel C, Appavoo A, Chaffanet M, Navailles L, Barthélémy P. pH-Cleavable Nucleoside Lipids: A New Paradigm for Controlling the Stability of Lipid-Based Delivery Systems. ChemMedChem 2015;10:1797-801. [PMID: 26381578 DOI: 10.1002/cmdc.201500381] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
228 Xu L, Liang X, Zhang L, Wu J, Li Z, Yu M, Wei L. The vesicle formation of β-CD and AD self-assembly of dumbbell-shaped amphiphilic triblock copolymer. Colloid Polym Sci 2016;294:145-55. [DOI: 10.1007/s00396-015-3758-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
229 Mena-Barragán T, Narita A, Matias D, Tiscornia G, Nanba E, Ohno K, Suzuki Y, Higaki K, Garcia Fernández JM, Ortiz Mellet C. pH-Responsive Pharmacological Chaperones for Rescuing Mutant Glycosidases. Angew Chem Int Ed Engl 2015;54:11696-700. [PMID: 26386364 DOI: 10.1002/anie.201505147] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 6.6] [Reference Citation Analysis]
230 Mena-barragán T, Narita A, Matias D, Tiscornia G, Nanba E, Ohno K, Suzuki Y, Higaki K, Garcia fernández JM, Ortiz mellet C. pH-Responsive Pharmacological Chaperones for Rescuing Mutant Glycosidases. Angew Chem 2015;127:11862-6. [DOI: 10.1002/ange.201505147] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
231 Mouas Toma N, Merazig H, Daran J, Manoury É. Synthesis and characterization of new ferrocenyl bishydrazones. Comptes Rendus Chimie 2015;18:801-7. [DOI: 10.1016/j.crci.2015.06.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
232 Wang J, Xu W, Guo H, Ding J, Chen J, Guan J, Wang C. Selective intracellular drug delivery from pH-responsive polyion complex micelle for enhanced malignancy suppression in vivo. Colloids Surf B Biointerfaces 2015;135:283-90. [PMID: 26277711 DOI: 10.1016/j.colsurfb.2015.07.065] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
233 Zhang Q, Hou Z, Louage B, Zhou D, Vanparijs N, De geest BG, Hoogenboom R. Acid-Labile Thermoresponsive Copolymers That Combine Fast pH-Triggered Hydrolysis and High Stability under Neutral Conditions. Angew Chem 2015;127:11029-33. [DOI: 10.1002/ange.201505145] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
234 Zhang Q, Hou Z, Louage B, Zhou D, Vanparijs N, De geest BG, Hoogenboom R. Acid-Labile Thermoresponsive Copolymers That Combine Fast pH-Triggered Hydrolysis and High Stability under Neutral Conditions. Angew Chem Int Ed 2015;54:10879-83. [DOI: 10.1002/anie.201505145] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 4.3] [Reference Citation Analysis]
235 Huang F, Cheng R, Meng F, Deng C, Zhong Z. Micelles Based on Acid Degradable Poly(acetal urethane): Preparation, pH-Sensitivity, and Triggered Intracellular Drug Release. Biomacromolecules 2015;16:2228-36. [DOI: 10.1021/acs.biomac.5b00625] [Cited by in Crossref: 82] [Cited by in F6Publishing: 82] [Article Influence: 10.3] [Reference Citation Analysis]
236 Hirschbiel AF, Schmidt BVKJ, Krolla-sidenstein P, Blinco JP, Barner-kowollik C. Photochemical Design of Stimuli-Responsive Nanoparticles Prepared by Supramolecular Host–Guest Chemistry. Macromolecules 2015;48:4410-20. [DOI: 10.1021/acs.macromol.5b00923] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.9] [Reference Citation Analysis]
237 Sivakumaran D, Mueller E, Hoare T. Temperature-Induced Assembly of Monodisperse, Covalently Cross-Linked, and Degradable Poly( N -isopropylacrylamide) Microgels Based on Oligomeric Precursors. Langmuir 2015;31:5767-78. [DOI: 10.1021/acs.langmuir.5b01421] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
238 Chen W, Meng F, Cheng R, Deng C, Feijen J, Zhong Z. Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release. J Control Release 2015;210:125-33. [PMID: 25987525 DOI: 10.1016/j.jconrel.2015.05.273] [Cited by in Crossref: 73] [Cited by in F6Publishing: 76] [Article Influence: 9.1] [Reference Citation Analysis]
239 Khine YY, Jiang Y, Dag A, Lu H, Stenzel MH. Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs: Dual-Responsive pH and Temperature Sensitive Nanoparticles…. Macromol Biosci 2015;15:1091-104. [DOI: 10.1002/mabi.201500057] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
240 Chen J, Ding J, Xiao C, Zhuang X, Chen X. Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers. Biomater Sci 2015;3:988-1001. [PMID: 26221934 DOI: 10.1039/c5bm00044k] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 4.1] [Reference Citation Analysis]
241 Wang H, Zhang Y, Possanza CM, Zimmerman SC, Cheng J, Moore JS, Harris K, Katz JS. Trigger Chemistries for Better Industrial Formulations. ACS Appl Mater Interfaces 2015;7:6369-82. [DOI: 10.1021/acsami.5b00485] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 6.4] [Reference Citation Analysis]
242 Yu H, Sun J, Zhang Y, Zhang G, Chu Y, Zhuo R, Jiang X. pH- and β-cyclodextrin-responsive micelles based on polyaspartamide derivatives as drug carrier. J Polym Sci Part A: Polym Chem 2015;53:1387-95. [DOI: 10.1002/pola.27584] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
243 Böhme D, Beck-Sickinger AG. Drug delivery and release systems for targeted tumor therapy. J Pept Sci 2015;21:186-200. [PMID: 25703117 DOI: 10.1002/psc.2753] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 9.3] [Reference Citation Analysis]
244 Wu W, Qu L, Liu B, Zhang W, Wang N, Yu X. Lipase-catalyzed synthesis of acid-degradable poly(β-thioether ester) and poly(β-thioether ester-co-lactone) copolymers. Polymer 2015;59:187-93. [DOI: 10.1016/j.polymer.2015.01.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
245 Tian Y, Zheng J, Tang X, Ren Q, Wang Y, Yang W. Near-Infrared Light-Responsive Nanogels with Diselenide-Cross-Linkers for On-Demand Degradation and Triggered Drug Release. Part Part Syst Charact 2015;32:547-51. [DOI: 10.1002/ppsc.201400244] [Cited by in Crossref: 52] [Cited by in F6Publishing: 51] [Article Influence: 6.5] [Reference Citation Analysis]
246 Maximov AL, Nekhaev AI, Ramazanov DN. Ethers and acetals, promising petrochemicals from renewable sources. Pet Chem 2015;55:1-21. [DOI: 10.1134/s0965544115010107] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
247 Lin Z, Li J, He H, Kuang H, Chen X, Xie Z, Jing X, Huang Y. Acetalated-dextran as valves of mesoporous silica particles for pH responsive intracellular drug delivery. RSC Adv 2015;5:9546-55. [DOI: 10.1039/c4ra15663c] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.3] [Reference Citation Analysis]
248 Kawamura M, Kanazawa A, Kanaoka S, Aoshima S. Sequence-controlled degradable polymers by controlled cationic copolymerization of vinyl ethers and aldehydes: precise placement of cleavable units at predetermined positions. Polym Chem 2015;6:4102-8. [DOI: 10.1039/c5py00493d] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
249 Vasudevan SA, Xu Y, Karwal S, van Ostaay HGME, Meesters GMH, Talebi M, Sudhölter EJR, Ruud van Ommen J. Controlled release from protein particles encapsulated by molecular layer deposition. Chem Commun 2015;51:12540-3. [DOI: 10.1039/c5cc03232f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
250 Patil NG, Basutkar NB, Ambade AV. Visible light-triggered disruption of micelles of an amphiphilic block copolymer with BODIPY at the junction. Chem Commun 2015;51:17708-11. [DOI: 10.1039/c5cc06820g] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
251 Wang Y, Zheng J, Tian Y, Yang W. Acid degradable poly(vinylcaprolactam)-based nanogels with ketal linkages for drug delivery. J Mater Chem B 2015;3:5824-32. [DOI: 10.1039/c5tb00703h] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 7.0] [Reference Citation Analysis]
252 Sedláček O, Kučka J, Hrubý M. Optimized protocol for the radioiodination of hydrazone-type polymer drug delivery systems. Applied Radiation and Isotopes 2015;95:129-34. [DOI: 10.1016/j.apradiso.2014.10.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
253 Chen J, Ding J, Zhang Y, Xiao C, Zhuang X, Chen X. Polyion complex micelles with gradient pH-sensitivity for adjustable intracellular drug delivery. Polym Chem 2015;6:397-405. [DOI: 10.1039/c4py01149j] [Cited by in Crossref: 69] [Cited by in F6Publishing: 69] [Article Influence: 8.6] [Reference Citation Analysis]
254 Bartolami E, Bessin Y, Bettache N, Gary-bobo M, Garcia M, Dumy P, Ulrich S. Multivalent DNA recognition by self-assembled clusters: deciphering structural effects by fragments screening and evaluation as siRNA vectors. Org Biomol Chem 2015;13:9427-38. [DOI: 10.1039/c5ob01404b] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
255 Liu H, Li C, Tang D, An X, Guo Y, Zhao Y. Multi-responsive graft copolymer micelles comprising acetal and disulfide linkages for stimuli-triggered drug delivery. J Mater Chem B 2015;3:3959-71. [DOI: 10.1039/c5tb00473j] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 4.4] [Reference Citation Analysis]
256 Gao H, Chan N, Oh JK, Matyjaszewski K. Designing Hydrogels by ATRP. In-Situ Gelling Polymers 2015. [DOI: 10.1007/978-981-287-152-7_4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
257 Bacinello D, Garanger E, Taton D, Tam KC, Lecommandoux S. Tailored drug-release from multi-functional polymer-peptide hybrid vesicles. European Polymer Journal 2015;62:363-73. [DOI: 10.1016/j.eurpolymj.2014.09.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
258 Tang M, Yang Z, Feng Z, Zhou J, Liu J, Liu J, Wang W, Zhao J, Dong A, Deng L. Influence of 2-(diisopropylamino)ethyl methacrylate on acid-triggered hydrolysis of cyclic benzylidene acetals and their importance in efficient drug delivery. Polym Chem 2015;6:6671-9. [DOI: 10.1039/c5py00734h] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
259 Banerjee R, Parida S, Maiti C, Mandal M, Dhara D. pH-degradable and thermoresponsive water-soluble core cross-linked polymeric nanoparticles as potential drug delivery vehicle for doxorubicin. RSC Adv 2015;5:83565-75. [DOI: 10.1039/c5ra17158j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
260 Ying H, Cheng J. Hydrolyzable polyureas bearing hindered urea bonds. J Am Chem Soc 2014;136:16974-7. [PMID: 25406025 DOI: 10.1021/ja5093437] [Cited by in Crossref: 100] [Cited by in F6Publishing: 104] [Article Influence: 11.1] [Reference Citation Analysis]
261 Neitzel AE, Petersen MA, Kokkoli E, Hillmyer MA. Divergent Mechanistic Avenues to an Aliphatic Polyesteracetal or Polyester from a Single Cyclic Esteracetal. ACS Macro Lett 2014;3:1156-60. [PMID: 35610815 DOI: 10.1021/mz5005794] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
262 Wu WX, Wang N, Liu BY, Deng QF, Yu XQ. Lipase-catalyzed synthesis of azido-functionalized aliphatic polyesters towards acid-degradable amphiphilic graft copolymers. Soft Matter 2014;10:1199-213. [PMID: 24652240 DOI: 10.1039/c3sm52496e] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 3.2] [Reference Citation Analysis]
263 Pennakalathil J, Özgün A, Durmaz I, Cetin-atalay R, Tuncel D. pH-responsive near-infrared emitting conjugated polymer nanoparticles for cellular imaging and controlled-drug delivery. J Polym Sci Part A: Polym Chem 2015;53:114-22. [DOI: 10.1002/pola.27458] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
264 Lian C, Zhi D, Xu S, Liu H. A Molecular Thermodynamic Model for Restricted Swelling Behaviors of Thermo-sensitive Hydrogel. Chinese Journal of Chemical Engineering 2014;22:1307-13. [DOI: 10.1016/j.cjche.2014.08.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
265 Deng H, Liu J, Zhao X, Zhang Y, Liu J, Xu S, Deng L, Dong A, Zhang J. PEG- b -PCL Copolymer Micelles with the Ability of pH-Controlled Negative-to-Positive Charge Reversal for Intracellular Delivery of Doxorubicin. Biomacromolecules 2014;15:4281-92. [DOI: 10.1021/bm501290t] [Cited by in Crossref: 141] [Cited by in F6Publishing: 145] [Article Influence: 15.7] [Reference Citation Analysis]
266 Lu K, Lin C, Hsu C, Ho Y, Chuang E, Sung H, Mi F. FRET-Based Dual-Emission and pH-Responsive Nanocarriers for Enhanced Delivery of Protein Across Intestinal Epithelial Cell Barrier. ACS Appl Mater Interfaces 2014;6:18275-89. [DOI: 10.1021/am505441p] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
267 Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53:12320-12364. [PMID: 25294565 DOI: 10.1002/anie.201403036] [Cited by in Crossref: 558] [Cited by in F6Publishing: 699] [Article Influence: 62.0] [Reference Citation Analysis]
268 Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Maßgeschneiderte Nanopartikel für den Wirkstofftransport in der Krebstherapie. Angew Chem 2014;126:12520-68. [DOI: 10.1002/ange.201403036] [Cited by in Crossref: 74] [Cited by in F6Publishing: 74] [Article Influence: 8.2] [Reference Citation Analysis]
269 Cunningham A, Ko NR, Oh JK. Synthesis and reduction-responsive disassembly of PLA-based mono-cleavable micelles. Colloids and Surfaces B: Biointerfaces 2014;122:693-700. [DOI: 10.1016/j.colsurfb.2014.08.002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
270 Bouillon C, Paolantoni D, Rote JC, Bessin Y, Peterson LW, Dumy P, Ulrich S. Degradable Hybrid Materials Based on Cationic Acylhydrazone Dynamic Covalent Polymers Promote DNA Complexation through Multivalent Interactions. Chem Eur J 2014;20:14705-14. [DOI: 10.1002/chem.201403695] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 4.0] [Reference Citation Analysis]
271 Gao AX, Liao L, Johnson JA. Synthesis of Acid-Labile PEG and PEG-Doxorubicin-Conjugate Nanoparticles via Brush-First ROMP. ACS Macro Lett 2014;3:854-7. [PMID: 25243099 DOI: 10.1021/mz5004097] [Cited by in Crossref: 78] [Cited by in F6Publishing: 78] [Article Influence: 8.7] [Reference Citation Analysis]
272 Ji R, Cheng J, Yang T, Song C, Li L, Du F, Li Z. Shell-Sheddable, pH-Sensitive Supramolecular Nanoparticles Based on Ortho Ester-Modified Cyclodextrin and Adamantyl PEG. Biomacromolecules 2014;15:3531-9. [DOI: 10.1021/bm500711c] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.2] [Reference Citation Analysis]
273 Chen W, Meng F, Cheng R, Deng C, Feijen J, Zhong Z. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. Journal of Controlled Release 2014;190:398-414. [DOI: 10.1016/j.jconrel.2014.05.023] [Cited by in Crossref: 122] [Cited by in F6Publishing: 124] [Article Influence: 13.6] [Reference Citation Analysis]
274 Callari M, Aldrich-wright JR, de Souza PL, Stenzel MH. Polymers with platinum drugs and other macromolecular metal complexes for cancer treatment. Progress in Polymer Science 2014;39:1614-43. [DOI: 10.1016/j.progpolymsci.2014.05.002] [Cited by in Crossref: 82] [Cited by in F6Publishing: 83] [Article Influence: 9.1] [Reference Citation Analysis]
275 Ko NR, Oh JK. Glutathione-Triggered Disassembly of Dual Disulfide Located Degradable Nanocarriers of Polylactide-Based Block Copolymers for Rapid Drug Release. Biomacromolecules 2014;15:3180-9. [DOI: 10.1021/bm5008508] [Cited by in Crossref: 86] [Cited by in F6Publishing: 86] [Article Influence: 9.6] [Reference Citation Analysis]
276 Wong S, Kwon YJ. Facile synthesis of high-molecular-weight acid-labile polypeptides using urethane derivatives. J Polym Sci Part A: Polym Chem 2015;53:280-6. [DOI: 10.1002/pola.27320] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
277 Li L, Deng X, Li Z, Du F, Li Z. Multifunctional Photodegradable Polymers for Reactive Micropatterns. Macromolecules 2014;47:4660-7. [DOI: 10.1021/ma501019c] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 4.8] [Reference Citation Analysis]
278 Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 2014;190:485-99. [PMID: 24984011 DOI: 10.1016/j.jconrel.2014.06.038] [Cited by in Crossref: 495] [Cited by in F6Publishing: 442] [Article Influence: 55.0] [Reference Citation Analysis]
279 Wang X, Cui S, Li Z, Kan S, Zhang Q, Zhao C, Wu H, Liu J, Wu W, Guo K. A base–conjugate-acid pair for living/controlled ring-opening polymerization of trimethylene carbonate through hydrogen-bonding bifunctional synergistic catalysis. Polym Chem 2014;5:6051-9. [DOI: 10.1039/c4py00773e] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 4.6] [Reference Citation Analysis]
280 Soliman GM, Redon R, Sharma A, Mejía D, Maysinger D, Kakkar A. Miktoarm Star Polymer Based Multifunctional Traceable Nanocarriers for Efficient Delivery of Poorly Water Soluble Pharmacological Agents: Miktoarm Star Polymer Based Multifunctional Traceable Nanocarriers …. Macromol Biosci 2014;14:1312-24. [DOI: 10.1002/mabi.201400123] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
281 Hu J, Zhang G, Ge Z, Liu S. Stimuli-responsive tertiary amine methacrylate-based block copolymers: Synthesis, supramolecular self-assembly and functional applications. Progress in Polymer Science 2014;39:1096-143. [DOI: 10.1016/j.progpolymsci.2013.10.006] [Cited by in Crossref: 175] [Cited by in F6Publishing: 147] [Article Influence: 19.4] [Reference Citation Analysis]
282 Gao Y, Kieltyka RE, Jesse W, Norder B, Korobko AV, Kros A. Thiolated human serum albumin cross-linked dextran hydrogels as a macroscale delivery system. Soft Matter 2014;10:4869-74. [PMID: 24866323 DOI: 10.1039/c4sm00648h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
283 Guo C, Khengar RH, Sun M, Wang Z, Fan A, Zhao Y. Acid-responsive polymeric nanocarriers for topical adapalene delivery. Pharm Res 2014;31:3051-9. [PMID: 24805280 DOI: 10.1007/s11095-014-1398-z] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
284 Ponta A, Bae Y. Tumor-preferential sustained drug release enhances antitumor activity of block copolymer micelles. J Drug Target 2014;22:619-28. [PMID: 24766185 DOI: 10.3109/1061186X.2014.910793] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
285 Omran Z, Rauch C. Acid-mediated Lipinski's second rule: application to drug design and targeting in cancer. Eur Biophys J 2014;43:199-206. [PMID: 24687685 DOI: 10.1007/s00249-014-0953-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
286 Li L, Lv A, Deng XX, Du FS, Li ZC. Facile synthesis of photo-cleavable polymers via Passerini reaction. Chem Commun (Camb) 2013;49:8549-51. [PMID: 23945608 DOI: 10.1039/c3cc44557g] [Cited by in Crossref: 64] [Cited by in F6Publishing: 65] [Article Influence: 7.1] [Reference Citation Analysis]
287 Liu N, Vignolle J, Vincent J, Robert F, Landais Y, Cramail H, Taton D. One-Pot Synthesis and PEGylation of Hyperbranched Polyacetals with a Degree of Branching of 100%. Macromolecules 2014;47:1532-42. [DOI: 10.1021/ma4026509] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
288 Toita R, Murata M, Abe K, Narahara S, Piao JS, Kang JH, Hashizume M. A nanocarrier based on a genetically engineered protein cage to deliver doxorubicin to human hepatocellular carcinoma cells. Chem Commun (Camb). 2013;49:7442-7444. [PMID: 23860596 DOI: 10.1039/c3cc44508a] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.9] [Reference Citation Analysis]
289 Kumar A, Ujjwal RR, Mittal A, Bansal A, Ojha U. Polyacryloyl Hydrazide: An Efficient, Simple, and Cost Effective Precursor to a Range of Functional Materials through Hydrazide Based Click Reactions. ACS Appl Mater Interfaces 2014;6:1855-65. [DOI: 10.1021/am404837f] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
290 Han Y, Li J, Zan M, Luo S, Ge Z, Liu S. Redox-responsive core cross-linked micelles based on cypate and cisplatin prodrugs-conjugated block copolymers for synergistic photothermal–chemotherapy of cancer. Polym Chem 2014;5:3707-18. [DOI: 10.1039/c4py00064a] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 6.3] [Reference Citation Analysis]
291 Carmali S, Brocchini S. Polyacetals. Natural and Synthetic Biomedical Polymers 2014. [DOI: 10.1016/b978-0-12-396983-5.00014-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
292 Zhao J, Liu J, Han S, Deng H, Deng L, Liu J, Meng A, Dong A, Zhang J. Acid-induced disassemblable nanoparticles based on cyclic benzylidene acetal-functionalized graft copolymer via sequential RAFT and ATRP polymerization. Polym Chem 2014;5:1852. [DOI: 10.1039/c3py01324c] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
293 Zhang Q, Vanparijs N, Louage B, De Geest BG, Hoogenboom R. Dual pH- and temperature-responsive RAFT-based block co-polymer micelles and polymer–protein conjugates with transient solubility. Polym Chem 2014;5:1140-4. [DOI: 10.1039/c3py00971h] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 5.9] [Reference Citation Analysis]
294 Chan N, An SY, Oh JK. Dual location disulfide degradable interlayer-crosslinked micelles with extended sheddable coronas exhibiting enhanced colloidal stability and rapid release. Polym Chem 2014;5:1637-49. [DOI: 10.1039/c3py00852e] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 5.3] [Reference Citation Analysis]
295 Song C, Du F, Li Z. Oxidation-responsive polymers for biomedical applications. J Mater Chem B 2014;2:3413-26. [DOI: 10.1039/c3tb21725f] [Cited by in Crossref: 139] [Cited by in F6Publishing: 139] [Article Influence: 15.4] [Reference Citation Analysis]
296 Qiao Z, Qiao S, Fan G, Fan Y, Chen Y, Wang H. One-pot synthesis of pH-sensitive poly(RGD-co-β-amino ester)s for targeted intracellular drug delivery. Polym Chem 2014;5:844-53. [DOI: 10.1039/c3py01117h] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 5.1] [Reference Citation Analysis]
297 Petrova S, Jäger E, Konefał R, Jäger A, Venturini CG, Spěváček J, Pavlova E, Štěpánek P. Novel poly(ethylene oxide monomethyl ether)-b-poly(ε-caprolactone) diblock copolymers containing a pH-acid labile ketal group as a block linkage. Polym Chem 2014;5:3884-93. [DOI: 10.1039/c4py00114a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
298 Zhao J, Liu J, Xu S, Zhou J, Han S, Deng L, Zhang J, Liu J, Meng A, Dong A. Graft Copolymer Nanoparticles with pH and Reduction Dual-Induced Disassemblable Property for Enhanced Intracellular Curcumin Release. ACS Appl Mater Interfaces 2013;5:13216-26. [DOI: 10.1021/am404213w] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 4.8] [Reference Citation Analysis]
299 Li L, Xu Y, Milligan I, Fu L, Franckowiak EA, Du W. Synthesis of Highly pH-Responsive Glucose Poly(orthoester). Angew Chem 2013;125:13944-7. [DOI: 10.1002/ange.201306391] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
300 Li L, Xu Y, Milligan I, Fu L, Franckowiak EA, Du W. Synthesis of Highly pH-Responsive Glucose Poly(orthoester). Angew Chem Int Ed 2013;52:13699-702. [DOI: 10.1002/anie.201306391] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 3.8] [Reference Citation Analysis]
301 Zhao J, Wang H, Liu J, Deng L, Liu J, Dong A, Zhang J. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Biomacromolecules 2013;14:3973-84. [PMID: 24107101 DOI: 10.1021/bm401087n] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 5.2] [Reference Citation Analysis]
302 Sedláček O, Studenovský M, Větvička D, Ulbrich K, Hrubý M. Fine tuning of the pH-dependent drug release rate from polyHPMA-ellipticinium conjugates. Bioorganic & Medicinal Chemistry 2013;21:5669-72. [DOI: 10.1016/j.bmc.2013.07.038] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
303 Chen J, Kan S, Xia H, Zhou F, Chen X, Jiang X, Guo K, Li Z. Phosphoramidic acid catalyzed controlled/living ring-opening polymerization of trimethylene carbonate. Polymer 2013;54:4177-82. [DOI: 10.1016/j.polymer.2013.05.069] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
304 Deshayes S, Kasko AM. Polymeric biomaterials with engineered degradation. J Polym Sci Part A: Polym Chem 2013;51:3531-66. [DOI: 10.1002/pola.26765] [Cited by in Crossref: 61] [Cited by in F6Publishing: 62] [Article Influence: 6.1] [Reference Citation Analysis]
305 Binauld S, Stenzel MH. ChemInform Abstract: Acid-Degradable Polymers for Drug Delivery: A Decade of Innovation. ChemInform 2013;44:no-no. [DOI: 10.1002/chin.201321242] [Reference Citation Analysis]
306 Khorsand B, Lapointe G, Brett C, Oh JK. Intracellular Drug Delivery Nanocarriers of Glutathione-Responsive Degradable Block Copolymers Having Pendant Disulfide Linkages. Biomacromolecules 2013;14:2103-11. [DOI: 10.1021/bm4004805] [Cited by in Crossref: 109] [Cited by in F6Publishing: 110] [Article Influence: 10.9] [Reference Citation Analysis]
307 Dingels C, Frey H. From Biocompatible to Biodegradable: Poly(Ethylene Glycol)s with Predetermined Breaking Points. Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II 2013. [DOI: 10.1007/12_2013_235] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
308 Chan N, Khorsand B, Aleksanian S, Oh JK. A dual location stimuli-responsive degradation strategy of block copolymer nanocarriers for accelerated release. Chem Commun 2013;49:7534. [DOI: 10.1039/c3cc44200d] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 4.1] [Reference Citation Analysis]
309 Kempe K, Onbulak S, Schubert US, Sanyal A, Hoogenboom R. pH degradable dendron-functionalized poly(2-ethyl-2-oxazoline) prepared by a cascade “double-click” reaction. Polym Chem 2013;4:3236. [DOI: 10.1039/c3py00258f] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
310 Ma G, Li D, Wang J, Zhang X, Tang H. Methoxy-Poly(ethylene glycol)-block-Poly(ε-caprolactone) Bearing Pendant Aldehyde Groups as pH-Responsive Drug Delivery Carrier. Aust J Chem 2013;66:1576. [DOI: 10.1071/ch13297] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]