BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Q, Re Ko N, Kwon Oh J. Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chem Commun 2012;48:7542. [DOI: 10.1039/c2cc32408c] [Cited by in Crossref: 306] [Cited by in F6Publishing: 310] [Article Influence: 30.6] [Reference Citation Analysis]
Number Citing Articles
1 Mishra N, Nisha R, Singh N, Maurya P, Singh P, Alka, Pal RR, Singh S, Saraf SA. Bioadhesive and phase change polymers for drug delivery. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00003-9] [Reference Citation Analysis]
2 Chaudhuri A, Ramesh K, Kumar DN, Dehari D, Singh S, Kumar D, Agrawal AK. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. Journal of Drug Delivery Science and Technology 2022;77:103886. [DOI: 10.1016/j.jddst.2022.103886] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Jazani AM, Arezi N, Shetty C, Oh JK. Shell-Sheddable/Core-Degradable ABA Triblock Copolymer Nanoassemblies: Synthesis via RAFT and Concurrent ATRP/RAFT Polymerization and Drug Delivery Application. Mol Pharmaceutics 2022;19:1786-94. [DOI: 10.1021/acs.molpharmaceut.1c00622] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Choi M, Jazani AM, Oh JK, Noh SM. Perfluorocarbon Nanodroplets for Dual Delivery with Ultrasound/GSH-Responsive Release of Model Drug and Passive Release of Nitric Oxide. Polymers (Basel) 2022;14:2240. [PMID: 35683912 DOI: 10.3390/polym14112240] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Seong HG, Chen Z, Emrick T, Russell TP. Reconfiguration and Reorganization of Bottlebrush Polymer Surfactants. Angew Chem Int Ed Engl 2022;61:e202200530. [PMID: 35224828 DOI: 10.1002/anie.202200530] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Kilic Boz R, Aydin D, Kocak S, Golba B, Sanyal R, Sanyal A. Redox-Responsive Hydrogels for Tunable and "On-Demand" Release of Biomacromolecules. Bioconjug Chem 2022. [PMID: 35446015 DOI: 10.1021/acs.bioconjchem.2c00094] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Qi S, Lu X, Lou Y, Zhou R, Xue D, Liu X, Sun L. Implementing An “Impracticable” Copolymerization to Fabricate A Desired Polymer Precursor for N-doped Porous Carbons. Engineering 2022. [DOI: 10.1016/j.eng.2021.07.031] [Reference Citation Analysis]
8 Seong H, Chen Z, Emrick T, Russell TP. Reconfiguration and Reorganization of Bottlebrush Polymer Surfactants. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202200530] [Reference Citation Analysis]
9 Li D, Zhang X, Chen X, Li W. Research Progress and Prospects for Polymeric Nanovesicles in Anticancer Drug Delivery. Front Bioeng Biotechnol 2022;10:850366. [DOI: 10.3389/fbioe.2022.850366] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Abuwatfa WH, Alsawaftah NM, Husseini GA. Block copolymer micelles as long-circulating drug delivery vehicles. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00023-9] [Reference Citation Analysis]
11 Jazani AM, Oh JK. Synthesis of multiple stimuli-responsive degradable block copolymers via facile carbonyl imidazole-induced postpolymerization modification. Polym Chem . [DOI: 10.1039/d2py00729k] [Reference Citation Analysis]
12 Bera S, Barman R, Ghosh S. Hyperbranched vs. linear poly(disulfide) for intracellular drug delivery. Polym Chem . [DOI: 10.1039/d2py00896c] [Reference Citation Analysis]
13 Yadav S, Ramesh K, Kumar P, Jo SH, Yoo SI, Gal YS, Park SH, Lim KT. Near-Infrared Light-Responsive Shell-Crosslinked Micelles of Poly(d,l-lactide)-b-poly((furfuryl methacrylate)-co-(N-acryloylmorpholine)) Prepared by Diels-Alder Reaction for the Triggered Release of Doxorubicin. Materials (Basel) 2021;14:7913. [PMID: 34947507 DOI: 10.3390/ma14247913] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Razavi B, Soleymani-kashkooli M, Salami-kalajahi M, Roghani-mamaqani H. Morphology evolution of multi-responsive ABA triblock copolymers containing photo-crosslinkable coumarin molecules. Journal of Molecular Liquids 2021;344:117766. [DOI: 10.1016/j.molliq.2021.117766] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Bercea M, Plugariu I, Nita LE, Morariu S, Gradinaru RV. On the Interactions Between Bovine Serum Albumin and Reduced Glutathione in Solution. 2021 International Conference on e-Health and Bioengineering (EHB) 2021. [DOI: 10.1109/ehb52898.2021.9657616] [Reference Citation Analysis]
16 Hu X, Jazani AM, Oh JK. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. Polymer 2021;230:124024. [DOI: 10.1016/j.polymer.2021.124024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
17 Psarrou M, Kothri MG, Vamvakaki M. Photo- and Acid-Degradable Polyacylhydrazone-Doxorubicin Conjugates. Polymers (Basel) 2021;13:2461. [PMID: 34372064 DOI: 10.3390/polym13152461] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Robertson M, Zhou Q, Ye C, Qiang Z. Developing Anisotropy in Self-Assembled Block Copolymers: Methods, Properties, and Applications. Macromol Rapid Commun 2021;42:e2100300. [PMID: 34272778 DOI: 10.1002/marc.202100300] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Wang T, He W, Du Y, Wang J, Li X. Redox-sensitive irinotecan liposomes with active ultra-high loading and enhanced intracellular drug release. Colloids Surf B Biointerfaces 2021;206:111967. [PMID: 34256270 DOI: 10.1016/j.colsurfb.2021.111967] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Jazani AM, Shetty C, Movasat H, Bawa KK, Oh JK. Imidazole-Mediated Dual Location Disassembly of Acid-Degradable Intracellular Drug Delivery Block Copolymer Nanoassemblies. Macromol Rapid Commun 2021;42:e2100262. [PMID: 34050688 DOI: 10.1002/marc.202100262] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Guo S, Gao B, Li D. New GSH-responsive amphiphilic zinc(II) phthalocyanine micelles as efficient drug carriers for combinatorial cancer therapy. J Porphyrins Phthalocyanines 2021;25:262-70. [DOI: 10.1142/s1088424621500188] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Arun Y, Ghosh R, Domb AJ. Biodegradable Hydrophobic Injectable Polymers for Drug Delivery and Regenerative Medicine. Adv Funct Mater 2021;31:2010284. [DOI: 10.1002/adfm.202010284] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
23 Lin M, Dai Y, Xia F, Zhang X. Advances in non-covalent crosslinked polymer micelles for biomedical applications. Materials Science and Engineering: C 2021;119:111626. [DOI: 10.1016/j.msec.2020.111626] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 20.0] [Reference Citation Analysis]
24 Chen F, Li Y, Lin X, Qiu H, Yin S. Polymeric Systems Containing Supramolecular Coordination Complexes for Drug Delivery. Polymers (Basel) 2021;13:370. [PMID: 33503965 DOI: 10.3390/polym13030370] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
25 Damsongsang P, Hoven VP, Yusa S. Core-functionalized nanoaggregates: preparation via polymerization-induced self-assembly and their applications. New J Chem 2021;45:12776-91. [DOI: 10.1039/d1nj01791h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
26 Hashimoto PK, Oliveira LF, Riga-rocha BA, Machado AEH, Santana VT, Nascimento OR, Carvalho-jr VP, Goi BE. Manganese(ii) Schiff-base-mediated reversible deactivation controlled radical polymerization of vinyl acetate. New J Chem 2021;45:10109-10117. [DOI: 10.1039/d1nj00493j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Kim D, Matsuoka H, Yusa SI, Saruwatari Y. Collapse Behavior of Polyion Complex (PIC) Micelles upon Salt Addition and Reforming Behavior by Dialysis and Its Temperature Responsivity. Langmuir 2020;36:15485-92. [PMID: 33325225 DOI: 10.1021/acs.langmuir.0c02456] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
28 Li H, Jing F, Hao J. GSH ‐responsive polyglutamic acid nanocarriers for dual targeted cancer therapy. J Appl Polym Sci 2020;137:49339. [DOI: 10.1002/app.49339] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Dhara (Ganguly) M. Smart polymeric nanostructures for targeted delivery of therapeutics. Journal of Macromolecular Science, Part A 2021;58:269-84. [DOI: 10.1080/10601325.2020.1842766] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
30 Xu K, Liu X, Bu L, Zhang H, Zhu C, Li Y. Stimuli-Responsive Micelles with Detachable Poly(2-ethyl-2-oxazoline) Shell Based on Amphiphilic Polyurethane for Improved Intracellular Delivery of Doxorubicin. Polymers (Basel) 2020;12:E2642. [PMID: 33182767 DOI: 10.3390/polym12112642] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
31 Lo YL, Huang XS, Chen HY, Huang YC, Liao ZX, Wang LF. ROP and ATRP fabricated redox sensitive micelles based on PCL-SS-PMAA diblock copolymers to co-deliver PTX and CDDP for lung cancer therapy. Colloids Surf B Biointerfaces 2021;198:111443. [PMID: 33203600 DOI: 10.1016/j.colsurfb.2020.111443] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
32 Mirhadi E, Mashreghi M, Faal Maleki M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Redox-sensitive nanoscale drug delivery systems for cancer treatment. International Journal of Pharmaceutics 2020;589:119882. [DOI: 10.1016/j.ijpharm.2020.119882] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 18.0] [Reference Citation Analysis]
33 Li G, Zhao M, Xu F, Yang B, Li X, Meng X, Teng L, Sun F, Li Y. Synthesis and Biological Application of Polylactic Acid. Molecules 2020;25:E5023. [PMID: 33138232 DOI: 10.3390/molecules25215023] [Cited by in Crossref: 80] [Cited by in F6Publishing: 83] [Article Influence: 40.0] [Reference Citation Analysis]
34 Song F, Wang Z, Gao W, Fu Y, Wu Q, Liu S. Novel Temperature/Reduction Dual-Stimulus Responsive Triblock Copolymer [P(MEO2MA-co- OEGMA)-b-PLLA-SS-PLLA-b-P(MEO2MA-co-OEGMA)] via a Combination of ROP and ATRP: Synthesis, Characterization and Application of Self-Assembled Micelles. Polymers (Basel) 2020;12:E2482. [PMID: 33114693 DOI: 10.3390/polym12112482] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
35 Arezi N, Oh JK. Carbonylimidazole-hydroxyl coupling chemistry: Synthesis and block copolymerization of fully bio-reducible poly(carbonate-disulfide)s. Polymer 2020;206:122793. [DOI: 10.1016/j.polymer.2020.122793] [Reference Citation Analysis]
36 Huang HY, Skripka A, Zaroubi L, Findlay BL, Vetrone F, Skinner C, Oh JK, Cuccia LA. Electrospun Upconverting Nanofibrous Hybrids with Smart NIR-Light-Controlled Drug Release for Wound Dressing. ACS Appl Bio Mater 2020;3:7219-27. [DOI: 10.1021/acsabm.0c01019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
37 Hu X, Oh JK. Direct Polymerization Approach to Synthesize Acid‐Degradable Block Copolymers Bearing Imine Pendants for Tunable pH‐Sensitivity and Enhanced Release. Macromol Rapid Commun 2020;41:2000394. [DOI: 10.1002/marc.202000394] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Huang H, Ren D, Qu J. pH and temperature-responsive POSS-based poly(2-(dimethylamino)ethyl methacrylate) for highly efficient Cr(VI) adsorption. Colloid Polym Sci 2020;298:1515-21. [DOI: 10.1007/s00396-020-04737-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
39 Goncharenko AA, Tarasyuk IA, Marfin YS, Grzhegorzhevskii KV, Muslimov AR, Bondarenko AB, Lebedev MD, Kuz'min IA, Vashurin AS, Lepik KV, Timin AS, Rumyantsev EV. DDAO Controlled Synthesis of Organo-Modified Silica Nanoparticles with Encapsulated Fluorescent Boron Dipyrrins and Study of Their Uptake by Cancerous Cells. Molecules 2020;25:E3802. [PMID: 32825590 DOI: 10.3390/molecules25173802] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
40 Moreno A, Ronda JC, Cádiz V, Galià M, Percec V, Lligadas G. Programming Self-Assembly and Stimuli-Triggered Response of Hydrophilic Telechelic Polymers with Sequence-Encoded Hydrophobic Initiators. Macromolecules 2020;53:7285-97. [DOI: 10.1021/acs.macromol.0c01400] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
41 Huang Y, Jazani AM, Howell EP, Reynolds LA, Oh JK, Moffitt MG. Microfluidic Shear Processing Control of Biological Reduction Stimuli-Responsive Polymer Nanoparticles for Drug Delivery. ACS Biomater Sci Eng 2020;6:5069-83. [DOI: 10.1021/acsbiomaterials.0c00896] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
42 Bej R, Achazi K, Haag R, Ghosh S. Polymersome Formation by Amphiphilic Polyglycerol- b -polydisulfide- b -polyglycerol and Glutathione-Triggered Intracellular Drug Delivery. Biomacromolecules 2020;21:3353-63. [DOI: 10.1021/acs.biomac.0c00775] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
43 Siboro SAP, Salma SA, Kim HR, Jeong YT, Gal YS, Lim KT. Diselenide Core Cross-Linked Micelles of Poly(Ethylene Oxide)-b-Poly(Glycidyl Methacrylate) Prepared through Alkyne-Azide Click Chemistry as a Near-Infrared Controlled Drug Delivery System. Materials (Basel) 2020;13:E2846. [PMID: 32630421 DOI: 10.3390/ma13122846] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
44 Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomater Res 2020;24:12. [PMID: 32537239 DOI: 10.1186/s40824-020-00190-7] [Cited by in Crossref: 129] [Cited by in F6Publishing: 140] [Article Influence: 64.5] [Reference Citation Analysis]
45 Yu K, Yang X, He L, Zheng R, Min J, Su H, Shan S, Jia Q. Facile preparation of pH/reduction dual-stimuli responsive dextran nanogel as environment-sensitive carrier of doxorubicin. Polymer 2020;200:122585. [DOI: 10.1016/j.polymer.2020.122585] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
46 Maiti B, Abramov A, Franco L, Puiggalí J, Enshaei H, Alemán C, Díaz DD. Thermoresponsive Shape‐Memory Hydrogel Actuators Made by Phototriggered Click Chemistry. Adv Funct Mater 2020;30:2001683. [DOI: 10.1002/adfm.202001683] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
47 Bawa KK, Jazani AM, Ye Z, Oh JK. Synthesis of degradable PLA-based diblock copolymers with dual acid/reduction-cleavable junction. Polymer 2020;194:122391. [DOI: 10.1016/j.polymer.2020.122391] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
48 Fan L, Wang J, Xia C, Zhang Q, Pu Y, Chen L, Chen J, Wang Y. Glutathione-sensitive and folate-targeted nanoparticles loaded with paclitaxel to enhance oral squamous cell carcinoma therapy. J Mater Chem B 2020;8:3113-22. [PMID: 32207763 DOI: 10.1039/c9tb02818h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
49 Bisso S, Leroux J. Nanopharmaceuticals: A focus on their clinical translatability. International Journal of Pharmaceutics 2020;578:119098. [DOI: 10.1016/j.ijpharm.2020.119098] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 16.5] [Reference Citation Analysis]
50 Maruya-Li K, Shetty C, Moini Jazani A, Arezi N, Oh JK. Dual Reduction/Acid-Responsive Disassembly and Thermoresponsive Tunability of Degradable Double Hydrophilic Block Copolymer. ACS Omega 2020;5:3734-42. [PMID: 32118189 DOI: 10.1021/acsomega.9b04430] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
51 Facciotti C, Saggiomo V, Bunschoten A, Hove JB, Rood MTM, Leeuwen FWB, Velders AH. Assembly, Disassembly and Reassembly of Complex Coacervate Core Micelles with Redox‐Responsive Supramolecular Cross‐Linkers. ChemSystemsChem 2020;2. [DOI: 10.1002/syst.201900032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Lin Y, Kouznetsova TB, Craig SL. Mechanically Gated Degradable Polymers. J Am Chem Soc 2020;142:2105-9. [PMID: 31939656 DOI: 10.1021/jacs.9b13359] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 27.5] [Reference Citation Analysis]
53 Liu Q, Yang D, Shang T, Guo L, Yang B, Xu X. Chain conformation transition induced host–guest assembly between triple helical curdlan and β -CD for drug delivery. Biomater Sci 2020;8:1638-48. [DOI: 10.1039/c9bm01439j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
54 Xu Y, Morado EG, Zimmerman SC. Construction from destruction using a photo-triggered self-propagating degradable polyurethane as a one-pot epoxy. Polym Chem 2020;11:6215-20. [DOI: 10.1039/d0py00779j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
55 Wang Q, Guo X, Chen Y, Wu Z, Zhou Y, Sadaf S, Han L, Ding X, Sun T. Theranostics system caged in human serum albumin as a therapy for breast tumors. J Mater Chem B 2020;8:6877-85. [DOI: 10.1039/d0tb00377h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
56 Jazani AM, Oh JK. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym Chem 2020;11:2934-54. [DOI: 10.1039/d0py00234h] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
57 Bej R, Rajdev P, Barman R, Ghosh S. Hyperbranched polydisulfides. Polym Chem 2020;11:990-1000. [DOI: 10.1039/c9py01675a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
58 Huang Y, Moini Jazani A, Howell EP, Oh JK, Moffitt MG. Controlled Microfluidic Synthesis of Biological Stimuli-Responsive Polymer Nanoparticles. ACS Appl Mater Interfaces 2020;12:177-90. [DOI: 10.1021/acsami.9b17101] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
59 Moreno A, Ronda JC, Cádiz V, Galià M, Lligadas G, Percec V. pH-Responsive Micellar Nanoassemblies from Water-Soluble Telechelic Homopolymers Endcoding Acid-Labile Middle-Chain Groups in Their Hydrophobic Sequence-Defined Initiator Residue. ACS Macro Lett 2019;8:1200-8. [PMID: 35619448 DOI: 10.1021/acsmacrolett.9b00572] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
60 Xin-ru Dai, Geng Y, Shao G, Luo Z, Jiang X, Zhang Z. Synthesis of Polystyrene-block-trans-1,4-polyisoprene-block-polystyrene Triblock Copolymer. Polym Sci Ser B 2019;61:550-559. [DOI: 10.1134/s1560090419050026] [Reference Citation Analysis]
61 Yao W, Zhang Q, Qi F, Zhang J, Liu K, Li J, Chen W, Du Y, Jin Y, Liang Y, Liu N. Epoxy containing solid polymer electrolyte for lithium ion battery. Electrochimica Acta 2019;318:302-13. [DOI: 10.1016/j.electacta.2019.06.069] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
62 Ali MW, Cheng S, Si J, Siddiq M, Ye X. Synthesis and characterization of degradable hyperbranched poly(2‐ethyl‐2‐oxazoline). J Polym Sci Part A: Polym Chem 2019;57:2030-7. [DOI: 10.1002/pola.29467] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
63 Bu L, Zhang H, Xu K, Du B, Zhu C, Li Y. pH and reduction dual-responsive micelles based on novel polyurethanes with detachable poly(2-ethyl-2-oxazoline) shell for controlled release of doxorubicin. Drug Deliv 2019;26:300-8. [PMID: 30895837 DOI: 10.1080/10717544.2019.1580323] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
64 Luo Z, Li M, Zhou M, Li H, Chen Y, Ren X, Dai Y. O2-evolving and ROS-activable nanoparticles for treatment of multi-drug resistant Cancer by combination of photodynamic therapy and chemotherapy. Nanomedicine: Nanotechnology, Biology and Medicine 2019;19:49-57. [DOI: 10.1016/j.nano.2019.03.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
65 Hailemeskel BZ, Hsu WH, Addisu KD, Andrgie AT, Chou HY, Lai JY, Tsai HC. Diselenide linkage containing triblock copolymer nanoparticles based on Bi(methoxyl poly(ethylene glycol))-poly(ε-carprolactone): Selective intracellular drug delivery in cancer cells. Mater Sci Eng C Mater Biol Appl 2019;103:109803. [PMID: 31349440 DOI: 10.1016/j.msec.2019.109803] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
66 Zhang S, Chen F, Yang Y, Chen H, Du J, Kong J. “A~A+B3~” strategy to construct redox-responsive core-crosslinked copolymers as potential drug carrier. Reactive and Functional Polymers 2019;138:122-8. [DOI: 10.1016/j.reactfunctpolym.2019.03.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Di Sacco F, Pucci A, Raffa P. Versatile Multi-Functional Block Copolymers Made by Atom Transfer Radical Polymerization and Post-Synthetic Modification: Switching from Volatile Organic Compound Sensors to Polymeric Surfactants for Water Rheology Control via Hydrolysis. Nanomaterials (Basel) 2019;9:E458. [PMID: 30893878 DOI: 10.3390/nano9030458] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
68 Ding Y, Du C, Qian J, Dong C. Zwitterionic polypeptide nanomedicine with dual NIR/reduction-responsivity for synergistic cancer photothermal-chemotherapy. Polym Chem 2019;10:4825-36. [DOI: 10.1039/c9py00986h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
69 Reduwan Billah SM, Mondal MIH, Somoal SH, Nahid Pervez M. Cellulose-Based Hydrogel for Industrial Applications. Polymers and Polymeric Composites: A Reference Series 2019. [DOI: 10.1007/978-3-319-77830-3_63] [Reference Citation Analysis]
70 Jazani AM, Arezi N, Shetty C, Hong SH, Li H, Wang X, Oh JK. Tumor-targeting intracellular drug delivery based on dual acid/reduction-degradable nanoassemblies with ketal interface and disulfide core locations. Polym Chem 2019;10:2840-53. [DOI: 10.1039/c9py00352e] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
71 Campbell S, Smeets N. Drug Delivery: Polymers in the Development of Controlled Release Systems. Polymers and Polymeric Composites: A Reference Series 2019. [DOI: 10.1007/978-3-319-92067-2_20-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
72 Li SP, Shum J, Lo KK. Iridium( iii ) polypyridine complexes with a disulfide linker as biological sensors and cytotoxic agents. Dalton Trans 2019;48:9692-702. [DOI: 10.1039/c9dt00793h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
73 Campbell S, Smeets N. Drug Delivery: Polymers in the Development of Controlled Release Systems. Polymers and Polymeric Composites: A Reference Series 2019. [DOI: 10.1007/978-3-319-95987-0_20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
74 Oh JK. Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polym Chem 2019;10:1554-68. [DOI: 10.1039/c8py01808a] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
75 Chuang CC, Cheng CC, Chen PY, Lo C, Chen YN, Shih MH, Chang CW. Gold nanorod-encapsulated biodegradable polymeric matrix for combined photothermal and chemo-cancer therapy. Int J Nanomedicine 2019;14:181-93. [PMID: 30613145 DOI: 10.2147/IJN.S177851] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
76 Li J, Liu P. One-pot fabrication of pH/reduction dual-stimuli responsive chitosan-based supramolecular nanogels for leakage-free tumor-specific DOX delivery with enhanced anti-cancer efficacy. Carbohydrate Polymers 2018;201:583-90. [DOI: 10.1016/j.carbpol.2018.08.102] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
77 Hong SH, Larocque K, Jaunky DB, Piekny A, Oh JK. Dual disassembly and biological evaluation of enzyme/oxidation-responsive polyester-based nanoparticulates for tumor-targeting delivery. Colloids and Surfaces B: Biointerfaces 2018;172:608-17. [DOI: 10.1016/j.colsurfb.2018.09.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
78 Nishimura T, Akiyoshi K. Biotransporting Biocatalytic Reactors toward Therapeutic Nanofactories. Adv Sci (Weinh) 2018;5:1800801. [PMID: 30479925 DOI: 10.1002/advs.201800801] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 8.5] [Reference Citation Analysis]
79 Bawa KK, Jazani AM, Shetty C, Oh JK. PLA-Based Triblock Copolymer Micelles Exhibiting Dual Acidic pH/Reduction Responses at Dual Core and Core/Corona Interface Locations. Macromol Rapid Commun 2018;39:1800477. [DOI: 10.1002/marc.201800477] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
80 Syamala PS, Ramesan RM. Thiol redox-sensitive cationic polymers for dual delivery of drug and gene. Ther Deliv 2018;9:751-73. [PMID: 30277132 DOI: 10.4155/tde-2018-0041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
81 Lavrador P, Gaspar VM, Mano JF. Bioinstructive Naringin-Loaded Micelles for Guiding Stem Cell Osteodifferentiation. Adv Healthc Mater 2018;7:e1800890. [PMID: 30106519 DOI: 10.1002/adhm.201800890] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
82 Wang Y, Yang P, Zhao X, Gao D, Sun N, Tian Z, Ma T, Yang Z. Multifunctional Cargo-Free Nanomedicine for Cancer Therapy. Int J Mol Sci 2018;19:E2963. [PMID: 30274177 DOI: 10.3390/ijms19102963] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
83 Zhou X, Su X, Tan Z, Zhou C. Synthesis of triblock amphiphilic copolypeptides with excellent antibacterial activity. European Polymer Journal 2018;106:175-81. [DOI: 10.1016/j.eurpolymj.2018.07.017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
84 Jazani AM, Arezi N, Maruya-Li K, Jung S, Oh JK. Facile Strategies to Synthesize Dual Location Dual Acidic pH/Reduction-Responsive Degradable Block Copolymers Bearing Acetal/Disulfide Block Junctions and Disulfide Pendants. ACS Omega 2018;3:8980-91. [PMID: 31459031 DOI: 10.1021/acsomega.8b01310] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
85 Zheng L, Zhang X, Wang Y, Liu F, Peng J, Zhao X, Yang H, Ma L, Wang B, Chang C, Wei H. Fabrication of Acidic pH-Cleavable Polymer for Anticancer Drug Delivery Using a Dual Functional Monomer. Biomacromolecules 2018;19:3874-82. [PMID: 30107727 DOI: 10.1021/acs.biomac.8b01001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
86 Lima TC, Lucarini R, Luz PP, de Faria EH, Marçal L, Magalhães LG, Badoco FR, Esperandim VR, Molina EF, Laurentz RS, Lima RG, Cunha WR, Bastos JK, Silva MLA. In vitro schistosomicidal activity of the lignan (-)-6,6'-dinitrohinokinin (DNHK) loaded into poly(lactic-co-glycolic acid) nanoparticles against Schistosoma mansoni. Pharm Biol 2017;55:2270-6. [PMID: 29172838 DOI: 10.1080/13880209.2017.1405996] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
87 Romero-azogil L, Benito E, Martínez de Ilarduya A, García-martín M, Galbis JA. Hydrolytic degradation of d-mannitol-based polyurethanes. Polymer Degradation and Stability 2018;153:262-71. [DOI: 10.1016/j.polymdegradstab.2018.05.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
88 You C, Wu H, Wang M, Gao Z, Sun B, Zhang X. Synthesis and biological evaluation of redox/NIR dual stimulus-responsive polymeric nanoparticles for targeted delivery of cisplatin. Mater Sci Eng C Mater Biol Appl 2018;92:453-62. [PMID: 30184771 DOI: 10.1016/j.msec.2018.06.044] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
89 Zeng M, Huo M, Feng Y, Yuan J. CO2 -Breathing Polymer Assemblies via One-Pot Sequential RAFT Dispersion Polymerization. Macromol Rapid Commun 2018;39:e1800291. [PMID: 29924440 DOI: 10.1002/marc.201800291] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
90 Samaddar P, Deep A, Kim K. An engineering insight into block copolymer self-assembly: Contemporary application from biomedical research to nanotechnology. Chemical Engineering Journal 2018;342:71-89. [DOI: 10.1016/j.cej.2018.01.062] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
91 Liu S, Hu C, Wei Y, Duan M, Chen X, Hu Y. Transformation of H-Aggregates and J-Dimers of Water-Soluble Tetrakis (4-carboxyphenyl) Porphyrin in Polyion Complex Micelles. Polymers (Basel) 2018;10:E494. [PMID: 30966528 DOI: 10.3390/polym10050494] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
92 Saravanakumar G, Park H, Kim J, Park D, Pramanick S, Kim DH, Kim WJ. Miktoarm Amphiphilic Block Copolymer with Singlet Oxygen-Labile Stereospecific β-Aminoacrylate Junction: Synthesis, Self-Assembly, and Photodynamically Triggered Drug Release. Biomacromolecules 2018;19:2202-13. [DOI: 10.1021/acs.biomac.8b00290] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 11.0] [Reference Citation Analysis]
93 Ye Q, Huo M, Zeng M, Liu L, Peng L, Wang X, Yuan J. Photoinduced Reversible Worm-to-Vesicle Transformation of Azo-Containing Block Copolymer Assemblies Prepared by Polymerization-Induced Self-Assembly. Macromolecules 2018;51:3308-14. [DOI: 10.1021/acs.macromol.8b00340] [Cited by in Crossref: 70] [Cited by in F6Publishing: 73] [Article Influence: 17.5] [Reference Citation Analysis]
94 Xi M, Jiang Y. A pH-responsive self-fluorescent polymeric micelle as a potential optical imaging probe. Polym Adv Technol 2018;29:2002-9. [DOI: 10.1002/pat.4308] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
95 Wei C, Zhang Y, Song Z, Xia Y, Xu H, Lang M. Enhanced bioreduction-responsive biodegradable diselenide-containing poly(ester urethane) nanocarriers. Biomater Sci 2017;5:669-77. [PMID: 28154853 DOI: 10.1039/c6bm00960c] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
96 Hong SH, Patel T, Ip S, Garg S, Oh JK. Microfluidic Assembly To Synthesize Dual Enzyme/Oxidation-Responsive Polyester-Based Nanoparticulates with Controlled Sizes for Drug Delivery. Langmuir 2018;34:3316-25. [PMID: 29485889 DOI: 10.1021/acs.langmuir.8b00338] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
97 Sayers EJ, Magnusson JP, Moody PR, Mastrotto F, Conte C, Brazzale C, Borri P, Caliceti P, Watson P, Mantovani G, Aylott J, Salmaso S, Jones AT, Alexander C. Switching of Macromolecular Ligand Display by Thermoresponsive Polymers Mediates Endocytosis of Multiconjugate Nanoparticles. Bioconjugate Chem 2018;29:1030-46. [DOI: 10.1021/acs.bioconjchem.7b00704] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
98 Gao Y, Dong C. Triple redox/temperature responsive diselenide-containing homopolypeptide micelles and supramolecular hydrogels thereof. J Polym Sci Part A: Polym Chem 2018;56:1067-77. [DOI: 10.1002/pola.28984] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
99 Datta LP, De D, Ghosh U, Das TK. RAFT derived fatty acid based stimuli responsive fluorescent block copolymers as DNA sensor and cargo delivery agent. Polymer 2018;138:103-12. [DOI: 10.1016/j.polymer.2018.01.044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
100 Czarnecki S, Bertin A. Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol-Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science. Chemistry 2018;24:3354-73. [PMID: 29218744 DOI: 10.1002/chem.201705286] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
101 Kunitskaya L, Zheltonozhskaya T. BEHAVIOR OF ACID HYDROLYSIS IN BLOCK COPOLYMERS COMPRISING POLYACRYLAMIDE AND POLY(ETHYLENE OXIDE). Bull T Shevchenko Nat Univ Kyiv Chem 2018. [DOI: 10.17721/1728-2209.2018.1(55).15] [Reference Citation Analysis]
102 Ding Y, Du C, Qian J, Zhou L, Su Y, Zhang R, Dong C. Tumor pH and intracellular reduction responsive polypeptide nanomedicine with a sheddable PEG corona and a disulfide-cross-linked core. Polym Chem 2018;9:3488-98. [DOI: 10.1039/c8py00579f] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
103 Billah SMR, Mondal MIH, Somoal SH, Pervez MN. Cellulose-Based Hydrogel for Industrial Applications. Polymers and Polymeric Composites: A Reference Series 2018. [DOI: 10.1007/978-3-319-76573-0_63-1] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
104 Sun T, Zhu C, Xu J. Multiple stimuli-responsive selenium-functionalized biodegradable starch-based hydrogels. Soft Matter 2018;14:921-6. [DOI: 10.1039/c7sm02137b] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 9.0] [Reference Citation Analysis]
105 Tan LR, Xia PF, Li Q, Yuan XZ, Wang SG. Micelle-mediated transport disturbance providing extracellular strategy for alleviating n-butanol stress on Escherichia coli. Bioprocess Biosyst Eng 2018;41:443-7. [PMID: 29209846 DOI: 10.1007/s00449-017-1872-1] [Reference Citation Analysis]
106 Kim H, Kim E, Ha T, Lee SG, Lee SJ, Jeong SW. Highly stable and reduction responsive micelles from a novel polymeric surfactant with a repeating disulfide-based gemini structure for efficient drug delivery. Polymer 2017;133:102-9. [DOI: 10.1016/j.polymer.2017.11.032] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
107 Jazani AM, Oh JK. Dual Location, Dual Acidic pH/Reduction-Responsive Degradable Block Copolymer: Synthesis and Investigation of Ketal Linkage Instability under ATRP Conditions. Macromolecules 2017;50:9427-36. [DOI: 10.1021/acs.macromol.7b02070] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
108 Biswas G, Jena BC, Maiti S, Samanta P, Mandal M, Dhara D. Photoresponsive Block Copolymer Prodrug Nanoparticles as Delivery Vehicle for Single and Dual Anticancer Drugs. ACS Omega 2017;2:6677-90. [PMID: 30023528 DOI: 10.1021/acsomega.7b00911] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
109 Bej R, Sarkar J, Ghosh S. Structural diversity in poly(disulfide)s. J Polym Sci Part A: Polym Chem 2018;56:194-202. [DOI: 10.1002/pola.28882] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
110 Fan H, Li Y, Yang J, Ye X. Effect of Hydrophobic Chain Length on the Stability and Guest Exchange Behavior of Shell-Sheddable Micelles Formed by Disulfide-Linked Diblock Copolymers. J Phys Chem B 2017;121:9708-17. [PMID: 28925709 DOI: 10.1021/acs.jpcb.7b06165] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
111 Barouti G, Jaffredo CG, Guillaume SM. Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers. Progress in Polymer Science 2017;73:1-31. [DOI: 10.1016/j.progpolymsci.2017.05.002] [Cited by in Crossref: 60] [Cited by in F6Publishing: 33] [Article Influence: 12.0] [Reference Citation Analysis]
112 Xiong D, Zhang R, Luo W, Gu H, Peng S, Zhang L. Hydrazone cross-linked micelles based on redox degradable block copolymer for enhanced stability and controlled drug release. Reactive and Functional Polymers 2017;119:64-74. [DOI: 10.1016/j.reactfunctpolym.2017.08.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
113 Du C, Qian J, Zhou L, Su Y, Zhang R, Dong C. Biopolymer–Drug Conjugate Nanotheranostics for Multimodal Imaging-Guided Synergistic Cancer Photothermal–Chemotherapy. ACS Appl Mater Interfaces 2017;9:31576-88. [DOI: 10.1021/acsami.7b10163] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 7.6] [Reference Citation Analysis]
114 Romero-azogil L, Benito E, García-martín MG, Galbis JA. Tunable hydrophilicity of redox d -mannitol-based polyurethanes modulates glutathione response. European Polymer Journal 2017;94:259-69. [DOI: 10.1016/j.eurpolymj.2017.07.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
115 Lu B, Wei L, Meng G, Hou J, Liu Z, Guo X. Synthesis of self-assemble pH-responsive cyclodextrin block copolymer for sustained anticancer drug delivery. Chin J Polym Sci 2017;35:924-38. [DOI: 10.1007/s10118-017-1947-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
116 Zhang J, Zhou H, Liu H, Hu J, Liu S. Fabrication of pH‐ and Thermoresponsive Three‐Layered Micelles via Host–Guest Interactions. Macromol Rapid Commun 2018;39:1700225. [DOI: 10.1002/marc.201700225] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
117 Yan S, Wan LY, Ju XJ, Wu JF, Zhang L, Li M, Liu Z, Wang W, Xie R, Chu LY. K+ -Responsive Block Copolymer Micelles for Targeted Intracellular Drug Delivery. Macromol Biosci 2017;17. [PMID: 28597995 DOI: 10.1002/mabi.201700143] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
118 Bawa KK, Oh JK. Stimulus-Responsive Degradable Polylactide-Based Block Copolymer Nanoassemblies for Controlled/Enhanced Drug Delivery. Mol Pharmaceutics 2017;14:2460-74. [DOI: 10.1021/acs.molpharmaceut.7b00284] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 10.6] [Reference Citation Analysis]
119 Uz M, Alsoy Altinkaya S, Mallapragada SK. Stimuli responsive polymer-based strategies for polynucleotide delivery. J Mater Res 2017;32:2930-53. [DOI: 10.1557/jmr.2017.116] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
120 Zhu W, Zhang L, Chen Y, Zhang K. A UV-Cleavable Bottlebrush Polymer with o -Nitrobenzyl-Linked Side Chains. Macromol Rapid Commun 2017;38:1700007. [DOI: 10.1002/marc.201700007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
121 Quadir MA, Morton SW, Mensah LB, Shopsowitz K, Dobbelaar J, Effenberger N, Hammond PT. Ligand-decorated click polypeptide derived nanoparticles for targeted drug delivery applications. Nanomedicine 2017;13:1797-808. [PMID: 28263813 DOI: 10.1016/j.nano.2017.02.010] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 5.4] [Reference Citation Analysis]
122 Biswas D, An SY, Li Y, Wang X, Oh JK. Intracellular Delivery of Colloidally Stable Core-Cross-Linked Triblock Copolymer Micelles with Glutathione-Responsive Enhanced Drug Release for Cancer Therapy. Mol Pharmaceutics 2017;14:2518-28. [DOI: 10.1021/acs.molpharmaceut.6b01146] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
123 Guan Y, Su Y, Zhao L, Meng F, Wang Q, Yao Y, Luo J. Biodegradable polyurethane micelles with pH and reduction responsive properties for intracellular drug delivery. Mater Sci Eng C Mater Biol Appl 2017;75:1221-30. [PMID: 28415410 DOI: 10.1016/j.msec.2017.02.124] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
124 Chen F, Zhang J, He Y, Fang X, Wang Y, Chen M. Glycyrrhetinic acid-decorated and reduction-sensitive micelles to enhance the bioavailability and anti-hepatocellular carcinoma efficacy of tanshinone IIA. Biomater Sci 2016;4:167-82. [PMID: 26484363 DOI: 10.1039/c5bm00224a] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 9.4] [Reference Citation Analysis]
125 Kang Y, Ju X, Ding L, Zhang S, Li B. Reactive Oxygen Species and Glutathione Dual Redox-Responsive Supramolecular Assemblies with Controllable Release Capability. ACS Appl Mater Interfaces 2017;9:4475-84. [DOI: 10.1021/acsami.6b14640] [Cited by in Crossref: 69] [Cited by in F6Publishing: 73] [Article Influence: 13.8] [Reference Citation Analysis]
126 Wang Y, Li G, Cheng R, Zhang X, Jiang J. NIR- and UV-dual responsive amphiphilic copolymer micelles with light-dissociable PAG-side groups. Colloid Polym Sci 2017;295:371-8. [DOI: 10.1007/s00396-017-4013-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
127 Kunitskaya L, Zheltonozhskaya T, Destarac M, Mazieres S. Block copolymers containing polyacrylamide and polyacrylic acid: Bulk structure and hydrogen bonds system. Molecular Crystals and Liquid Crystals 2017;642:89-98. [DOI: 10.1080/15421406.2016.1255522] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
128 Liu H, Zhang J, Dai W, Zhao Y. Synthesis and self-assembly of a dual-responsive monocleavable ABCD star quaterpolymer. Polym Chem 2017;8:6865-78. [DOI: 10.1039/c7py01638g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
129 Macartney D. Cucurbiturils in Drug Binding and Delivery ☆. Comprehensive Supramolecular Chemistry II. Elsevier; 2017. pp. 479-94. [DOI: 10.1016/b978-0-12-409547-2.05621-3] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
130 Zou H, Lu Y, Yuan W, Wang S. UV light- and thermo-responsive hierarchical assemblies based on the inclusion complexation of β-cyclodextrin and azobenzene. Polym Chem 2017;8:661-5. [DOI: 10.1039/c6py02016j] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
131 Huo M, Du H, Zeng M, Pan L, Fang T, Xie X, Wei Y, Yuan J. CO 2 -Stimulated morphology transition of ABC miktoarm star terpolymer assemblies. Polym Chem 2017;8:2833-40. [DOI: 10.1039/c7py00214a] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
132 Kang Y, Ju X, Wang L, Ding L, Liu G, Zhang S, Li B. pH and glutathione dual-triggered supramolecular assemblies as synergistic and controlled drug release carriers. Polym Chem 2017;8:7260-70. [DOI: 10.1039/c7py01644a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
133 Gao Y, Dong C. Reduction- and thermo-sensitive core-cross-linked polypeptide hybrid micelles for triggered and intracellular drug release. Polym Chem 2017;8:1223-32. [DOI: 10.1039/c6py01929c] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
134 Gulfam M, Matini T, Monteiro PF, Riva R, Collins H, Spriggs K, Howdle SM, Jérôme C, Alexander C. Bioreducible cross-linked core polymer micelles enhance in vitro activity of methotrexate in breast cancer cells. Biomater Sci 2017;5:532-50. [DOI: 10.1039/c6bm00888g] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
135 Liu C, Guan Y, Su Y, Zhao L, Meng F, Yao Y, Luo J. Surface charge switchable and core cross-linked polyurethane micelles as a reduction-triggered drug delivery system for cancer therapy. RSC Adv 2017;7:11021-9. [DOI: 10.1039/c7ra00346c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
136 Kunitskaya L, Zheltonozhskaya T, Stoika R, Klymchuk D. Compositions of Anticancer Drug with Micellar Nanocarriers and Their Cytotoxicity. Fr Ukr J Chem 2017;5:103-20. [DOI: 10.17721/fujcv5i2p103-120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
137 Ding C, Tong L, Feng J, Fu J. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment. Molecules 2016;21:E1715. [PMID: 27999414 DOI: 10.3390/molecules21121715] [Cited by in Crossref: 90] [Cited by in F6Publishing: 92] [Article Influence: 15.0] [Reference Citation Analysis]
138 Saini P, Arora M, Kumar MNVR. Poly(lactic acid) blends in biomedical applications. Adv Drug Deliv Rev 2016;107:47-59. [PMID: 27374458 DOI: 10.1016/j.addr.2016.06.014] [Cited by in Crossref: 277] [Cited by in F6Publishing: 290] [Article Influence: 46.2] [Reference Citation Analysis]
139 Chen C, Huang S. Preparation of Reductant–Responsive N -Maleoyl-Functional Chitosan/Poly(vinyl alcohol) Nanofibers for Drug Delivery. Mol Pharmaceutics 2016;13:4152-67. [DOI: 10.1021/acs.molpharmaceut.6b00758] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
140 Possanza Casey CM, Moore JS. Base-Triggered Degradation of Poly(vinyl ester sulfone)s with Tunable Sensitivity. ACS Macro Lett 2016;5:1257-60. [PMID: 35614736 DOI: 10.1021/acsmacrolett.6b00698] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
141 Wang J, Li S, Wu B, He Y. Enzyme responsive self-assembled amphiphilic diblock copolymer synthesized by the combination of NMP and macromolecular azo coupling reaction. European Polymer Journal 2016;84:236-44. [DOI: 10.1016/j.eurpolymj.2016.09.030] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
142 Reddy TL, Garikapati KR, Reddy SG, Reddy BV, Yadav JS, Bhadra U, Bhadra MP. Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nanocarrier for the synergistic treatment of melanoma. Sci Rep 2016;6:35223. [PMID: 27786239 DOI: 10.1038/srep35223] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 6.2] [Reference Citation Analysis]
143 Koo H, Hahn SK, Yun SH. Controlled Detachment of Chemically Glued Cells. Bioconjug Chem 2016;27:2601-4. [PMID: 27779857 DOI: 10.1021/acs.bioconjchem.6b00546] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
144 Chen Y, Zhang Z, Han X, Yin J, Wu Z. Oxidation and Acid Milieu-Disintegratable Nanovectors with Rapid Cell-Penetrating Helical Polymer Chains for Programmed Drug Release and Synergistic Chemo-Photothermal Therapy. Macromolecules 2016;49:7718-27. [DOI: 10.1021/acs.macromol.6b02063] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 7.7] [Reference Citation Analysis]
145 Freudenberg U, Liang Y, Kiick KL, Werner C. Glycosaminoglycan-Based Biohybrid Hydrogels: A Sweet and Smart Choice for Multifunctional Biomaterials. Adv Mater 2016;28:8861-91. [PMID: 27461855 DOI: 10.1002/adma.201601908] [Cited by in Crossref: 124] [Cited by in F6Publishing: 125] [Article Influence: 20.7] [Reference Citation Analysis]
146 Sun L, Xiong X, Zou Q, Ouyang P, Burkhardt C, Krastev R. Design of intelligent chitosan/heparin hollow microcapsules for drug delivery. J Appl Polym Sci 2017;134. [DOI: 10.1002/app.44425] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
147 Neumann K, Jain S, Geng J, Bradley M. Nanoparticle "switch-on" by tetrazine triggering. Chem Commun (Camb) 2016;52:11223-6. [PMID: 27559829 DOI: 10.1039/c6cc05118a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
148 Gu L, Wang N, Nusblat LM, Soskind R, Roth CM, Uhrich KE. pH-responsive amphiphilic macromolecular carrier for doxorubicin delivery. Journal of Bioactive and Compatible Polymers 2017;32:3-16. [DOI: 10.1177/0883911516643219] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
149 Yin J, Chen Y, Zhang ZH, Han X. Stimuli-Responsive Block Copolymer-Based Assemblies for Cargo Delivery and Theranostic Applications. Polymers (Basel) 2016;8:E268. [PMID: 30974545 DOI: 10.3390/polym8070268] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 8.5] [Reference Citation Analysis]
150 Zhu Y, Zhang J, Meng F, Deng C, Cheng R, Feijen J, Zhong Z. cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. Journal of Controlled Release 2016;233:29-38. [DOI: 10.1016/j.jconrel.2016.05.014] [Cited by in Crossref: 109] [Cited by in F6Publishing: 106] [Article Influence: 18.2] [Reference Citation Analysis]
151 Wu X, Zhou L, Su Y, Dong CM. Plasmonic, Targeted, and Dual Drugs-Loaded Polypeptide Composite Nanoparticles for Synergistic Cocktail Chemotherapy with Photothermal Therapy. Biomacromolecules 2016;17:2489-501. [PMID: 27310705 DOI: 10.1021/acs.biomac.6b00721] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 7.0] [Reference Citation Analysis]
152 Kim H, Kim B, Lee C, Ryu JL, Hong S, Kim J, Ha E, Paik H. Redox-responsive biodegradable nanogels for photodynamic therapy using Chlorin e6. J Mater Sci 2016;51:8442-51. [DOI: 10.1007/s10853-016-0104-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
153 Ratcliffe LP, Couchon C, Armes SP, Paulusse JM. Inducing an Order-Order Morphological Transition via Chemical Degradation of Amphiphilic Diblock Copolymer Nano-Objects. Biomacromolecules 2016;17:2277-83. [PMID: 27228898 DOI: 10.1021/acs.biomac.6b00540] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 6.7] [Reference Citation Analysis]
154 Sedlák M. A novel approach to controlled self-assembly of pH-responsive thermosensitive homopolymer polyelectrolytes into stable nanoparticles. Adv Colloid Interface Sci 2016;232:57-69. [PMID: 26792020 DOI: 10.1016/j.cis.2015.12.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
155 Zhang Q, Voorhaar L, Filippov SK, Yeşil BF, Hoogenboom R. Tuning of Polymeric Nanoparticles by Coassembly of Thermoresponsive Polymers and a Double Hydrophilic Thermoresponsive Block Copolymer. J Phys Chem B 2016;120:4635-43. [DOI: 10.1021/acs.jpcb.6b03414] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
156 Shin WS, Han J, Verwilst P, Kumar R, Kim J, Kim JS. Cancer Targeted Enzymatic Theranostic Prodrug: Precise Diagnosis and Chemotherapy. Bioconjugate Chem 2016;27:1419-26. [DOI: 10.1021/acs.bioconjchem.6b00184] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 10.3] [Reference Citation Analysis]
157 Wang P, Yin T, Li J, Zheng B, Wang X, Wang Y, Zheng J, Zheng R, Shuai X. Ultrasound-responsive microbubbles for sonography-guided siRNA delivery. Nanomedicine: Nanotechnology, Biology and Medicine 2016;12:1139-49. [DOI: 10.1016/j.nano.2015.12.361] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 5.5] [Reference Citation Analysis]
158 Schaefer JJ, Crawford AC, Porter MD, Harris JM. Confocal Raman microscopy for investigating synthesis and characterization of individual optically trapped vinyl-polymerized surfactant particles. Appl Spectrosc 2014;68:633-41. [PMID: 25014718 DOI: 10.1366/13-07337] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
159 Huang M, Zhao K, Wang L, Lin S, Li J, Chen J, Zhao C, Ge Z. Dual Stimuli-Responsive Polymer Prodrugs Quantitatively Loaded by Nanoparticles for Enhanced Cellular Internalization and Triggered Drug Release. ACS Appl Mater Interfaces 2016;8:11226-36. [PMID: 27100328 DOI: 10.1021/acsami.5b12227] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 5.2] [Reference Citation Analysis]
160 Rongbin H, Lei X, Ying L, Xiangping D, Xuan C, Lanfang L, Cuiyun Y, Yanming C, Guotao T. Synthesis and in vitro evaluation of pH-sensitive PEG-I-dC16 block polymer micelles for anticancer drug delivery. Journal of Pharmacy and Pharmacology 2016;68:751-61. [DOI: 10.1111/jphp.12545] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
161 Kunitskaya L, Kiev Taras Shevchenko National University 60 Vladimirskaya Str., 01033, Kiev, Ukraine, Zheltonozhskaya T, Stoika R, Boiko N, Kiev Taras Shevchenko National University 60 Vladimirskaya Str., 01033, Kiev, Ukraine, Institute of Cell Biology NAS of Ukraine 14/6 Dragomanova Str., 79005 Lviv, Ukraine, Institute of Cell Biology NAS of Ukraine 14/6 Dragomanova Str., 79005 Lviv, Ukraine. Micellar compositions with doxorubicin and their cytotoxicity. Polym z 2016;38:66-75. [DOI: 10.15407/polymerj.38.01.066] [Reference Citation Analysis]
162 Permyakova N, National Taras Shevchenko University of Kiev, Faculty of Chemistry 60, Vladimirskaya str., Kyiv, 01033, Ukraine, Zheltonozhskaya T, Ignatovskaya M, Maksin V, Iakubchak O, Klymchuk D, Poliyan M, Grishchenko L, National Taras Shevchenko University of Kiev, Faculty of Chemistry 60, Vladimirskaya str., Kyiv, 01033, Ukraine, National University of Life and Environmental Sciences of Ukraine 17, Heroyiv Oborony str., Kyiv, 03041, Ukraine, National University of Life and Environmental Sciences of Ukraine 17, Heroyiv Oborony str., Kyiv, 03041, Ukraine, National University of Life and Environmental Sciences of Ukraine 17, Heroyiv Oborony str., Kyiv, 03041, Ukraine, Institute of Botany NAS of Ukraine 2, Tereschenkovskaya str., Kyiv, 01601, Ukraine, National Taras Shevchenko University of Kiev, Faculty of Chemistry 60, Vladimirskaya str., Kyiv, 01033, Ukraine, National Taras Shevchenko University of Kiev, Faculty of Chemistry 60, Vladimirskaya str., Kyiv, 01033, Ukraine. Double-hydrophilic block copolymer micelles for drag delivery of poorly soluble vitamins in living organisms. Polym z 2016;38:81-90. [DOI: 10.15407/polymerj.38.01.081] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
163 Zeng YP, Luo SL, Yang ZY, Huang JW, Li H, Liu C, Wang WD, Li R. A folic acid conjugated polyethylenimine-modified PEGylated nanographene loaded photosensitizer: photodynamic therapy and toxicity studies in vitro and in vivo. J Mater Chem B 2016;4:2190-8. [PMID: 32263186 DOI: 10.1039/c6tb00108d] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
164 Kemp JA, Shim MS, Heo CY, Kwon YJ. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev 2016;98:3-18. [PMID: 26546465 DOI: 10.1016/j.addr.2015.10.019] [Cited by in Crossref: 313] [Cited by in F6Publishing: 334] [Article Influence: 52.2] [Reference Citation Analysis]
165 Li J, Ke W, Wang L, Huang M, Yin W, Zhang P, Chen Q, Ge Z. Self-sufficing H2O2-responsive nanocarriers through tumor-specific H2O2 production for synergistic oxidation-chemotherapy. Journal of Controlled Release 2016;225:64-74. [DOI: 10.1016/j.jconrel.2016.01.029] [Cited by in Crossref: 75] [Cited by in F6Publishing: 76] [Article Influence: 12.5] [Reference Citation Analysis]
166 Parlak O, Turner AP. Switchable bioelectronics. Biosensors and Bioelectronics 2016;76:251-65. [DOI: 10.1016/j.bios.2015.06.023] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 4.7] [Reference Citation Analysis]
167 Petrelli A, Borsali R, Fort S, Halila S. Redox tunable delivery systems: sweet block copolymer micelles via thiol–(bromo)maleimide conjugation. Chem Commun 2016;52:12202-5. [DOI: 10.1039/c6cc07136h] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
168 Khuphe M, Mahon CS, Thornton PD. Glucose-bearing biodegradable poly(amino acid) and poly(amino acid)-poly(ester) conjugates for controlled payload release. Biomater Sci 2016;4:1792-801. [DOI: 10.1039/c6bm00535g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
169 Wei C, Zhang Y, Xu H, Xu Y, Xu Y, Lang M. Well-defined labile diselenide-centered poly(ε-caprolactone)-based micelles for activated intracellular drug release. J Mater Chem B 2016;4:5059-67. [DOI: 10.1039/c6tb01040g] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
170 An SY, Hong SH, Tang C, Oh JK. Rosin-based block copolymer intracellular delivery nanocarriers with reduction-responsive sheddable coronas for cancer therapy. Polym Chem 2016;7:4751-60. [DOI: 10.1039/c6py00914j] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
171 Tabatabaei Rezaei SJ, Sarbaz L, Niknejad H. Folate-decorated redox/pH dual-responsive degradable prodrug micelles for tumor triggered targeted drug delivery. RSC Adv 2016;6:62630-9. [DOI: 10.1039/c6ra11824k] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
172 Fang J, Lin Y, Wang S, Yu Y, Lee R. Dual-stimuli-responsive glycopolymer bearing a reductive and photo-cleavable unit at block junction. RSC Adv 2016;6:107669-82. [DOI: 10.1039/c6ra22207b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
173 Liu Y, Huang S, Huang X, Wu Y, Chen H, Lo Y, Wang L. The synthesis and comparison of poly(methacrylic acid)–poly(ε-caprolactone) block copolymers with and without symmetrical disulfide linkages in the center for enhanced cellular uptake. RSC Adv 2016;6:75092-103. [DOI: 10.1039/c6ra15307k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
174 Chen Q, Lin W, Wang H, Wang J, Zhang L. PDEAEMA-based pH-sensitive amphiphilic pentablock copolymers for controlled anticancer drug delivery. RSC Adv 2016;6:68018-27. [DOI: 10.1039/c6ra10757e] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
175 Koziolová E, Machová D, Pola R, Janoušková O, Chytil P, Laga R, Filippov SK, Šubr V, Etrych T, Pechar M. Micelle-forming HPMA copolymer conjugates of ritonavir bound via a pH-sensitive spacer with improved cellular uptake designed for enhanced tumor accumulation. J Mater Chem B 2016;4:7620-9. [DOI: 10.1039/c6tb02225a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
176 Ban Q, Kong J. Intramolecular cyclization of long-chain hyperbranched polymers (HyperMacs) from A 2 + B n step-wise polymerization. Polym Chem 2016;7:4717-27. [DOI: 10.1039/c6py00986g] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
177 Gallovic MD, Bandyopadhyay S, Borteh H, Montjoy DG, Collier MA, Peine KJ, Wyslouzil BE, Bachelder EM, Ainslie KM. Microparticles formulated from a family of novel silylated polysaccharides demonstrate inherent immunostimulatory properties and tunable hydrolytic degradability. J Mater Chem B 2016;4:4302-12. [DOI: 10.1039/c6tb00745g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
178 Zhu J, Liu KL, Wen Y, Song X, Li J. Host–guest interaction induced supramolecular amphiphilic star architecture and uniform nanovesicle formation for anticancer drug delivery. Nanoscale 2016;8:1332-7. [DOI: 10.1039/c5nr06744h] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
179 Sultanova ED, Atlanderova AA, Mukhitova RD, Salnikov VV, Osin YN, Ziganshina AY, Konovalov AI. Reduction-controlled substrate release from a polymer nanosphere based on a viologen-cavitand. RSC Adv 2016;6:70072-6. [DOI: 10.1039/c6ra15165e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
180 Sun C, Liu Y, Du J, Cao Z, Xu C, Wang J. Facile Generation of Tumor-pH-Labile Linkage-Bridged Block Copolymers for Chemotherapeutic Delivery. Angew Chem Int Ed 2016;55:1010-4. [DOI: 10.1002/anie.201509507] [Cited by in Crossref: 114] [Cited by in F6Publishing: 118] [Article Influence: 16.3] [Reference Citation Analysis]
181 Sun C, Liu Y, Du J, Cao Z, Xu C, Wang J. Facile Generation of Tumor-pH-Labile Linkage-Bridged Block Copolymers for Chemotherapeutic Delivery. Angew Chem 2016;128:1022-6. [DOI: 10.1002/ange.201509507] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
182 Asadul Hoque M, Komiyama H, Nishiyama H, Nagai K, Kawauchi T, Iyoda T. Amphiphilic liquid-crystalline 4-miktoarm star copolymers with a siloxane junction leading to cylindrically nanostructured templates for a siloxane-based nanodot array. J Polym Sci Part A: Polym Chem 2016;54:1175-88. [DOI: 10.1002/pola.27960] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
183 Wang F, Yang T, Hsu C, Chen Y, Li M, Hsu Y, Chuang M, Peng C. The Mechanism and Thermodynamic Studies of CMRP: Different Control Mechanisms Demonstrated by Co II (TMP), Co II (salen*), and Co II (acac) 2 Mediated Polymerization, and the Correlation of Reduction Potential, Equilibrium Constant, and Control Mechanism. Macromol Chem Phys 2016;217:422-32. [DOI: 10.1002/macp.201500311] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
184 Sun Y, Li Y, Nan S, Zhang L, Huang H, Wang J. Synthesis and characterization of pH-sensitive poly(itaconic acid)–poly(ethylene glycol)–folate–poly(l-histidine) micelles for enhancing tumor therapy and tunable drug release. Journal of Colloid and Interface Science 2015;458:119-29. [DOI: 10.1016/j.jcis.2015.07.008] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
185 Parlak O, Ashaduzzaman M, Kollipara SB, Tiwari A, Turner APF. Switchable Bioelectrocatalysis Controlled by Dual Stimuli-Responsive Polymeric Interface. ACS Appl Mater Interfaces 2015;7:23837-47. [DOI: 10.1021/acsami.5b06048] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
186 Whitton G, Gauthier M. Arborescent micelles: Dendritic poly(γ-benzyl l -glutamate) cores grafted with hydrophilic chain segments. J Polym Sci Part A: Polym Chem 2016;54:1197-209. [DOI: 10.1002/pola.27943] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
187 Ma Y, Zhang G, Li L, Yu H, Liu J, Wang C, Chu Y, Zhuo R, Jiang X. Temperature and pH dual-sensitive polyaspartamide derivatives for antitumor drug delivery. J Polym Sci Part A: Polym Chem 2016;54:879-88. [DOI: 10.1002/pola.27930] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
188 Dong X, Yang B, Jia H, Zhu J, Zhuo R, Feng J, Zhang X. Acidity-Induced Destabilization of Nano-Sized Supramolecular Linear-Hyperbranched Polymersome for Controlled Release of Encapsulated Cargoes: Acidity-Induced Destabilization of Nano-Sized. Macromol Biosci 2016;16:175-81. [DOI: 10.1002/mabi.201500298] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
189 Holm R, Klinker K, Weber B, Barz M. Synthesis of Amphiphilic Block Copolypept(o)ides by Bifunctional Initiators: Making PeptoMicelles Redox Sensitive. Macromol Rapid Commun 2015;36:2083-91. [DOI: 10.1002/marc.201500402] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
190 Sun T, Li P, Oh JK. Dual Location Dual Reduction/Photoresponsive Block Copolymer Micelles: Disassembly and Synergistic Release. Macromol Rapid Commun 2015;36:1742-8. [DOI: 10.1002/marc.201500306] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
191 Pearson S, Vitucci D, Khine YY, Dag A, Lu H, Save M, Billon L, Stenzel MH. Light-responsive azobenzene-based glycopolymer micelles for targeted drug delivery to melanoma cells. European Polymer Journal 2015;69:616-27. [DOI: 10.1016/j.eurpolymj.2015.04.001] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 6.3] [Reference Citation Analysis]
192 Rahimian K, Wen Y, Oh JK. Redox-responsive cellulose-based thermoresponsive grafted copolymers and in-situ disulfide crosslinked nanogels. Polymer 2015;72:387-94. [DOI: 10.1016/j.polymer.2015.01.024] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 5.3] [Reference Citation Analysis]
193 Yan Y, Xue L, Miller JB, Zhou K, Kos P, Elkassih S, Liu L, Nagai A, Xiong H, Siegwart DJ. One-pot Synthesis of Functional Poly(amino ester sulfide)s and Utility in Delivering pDNA and siRNA. Polymer (Guildf) 2015;72:271-80. [PMID: 26726270 DOI: 10.1016/j.polymer.2015.02.020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
194 Khare A, Grover K, Pawar P, Singh I. Mucoadhesive Polymers for Enhancing Retention in Ocular Drug Delivery. In: Mittal K, editor. Progress in Adhesion and Adhesives. Hoboken: John Wiley & Sons, Inc.; 2015. pp. 451-84. [DOI: 10.1002/9781119162346.ch13] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
195 Wang H, Zhang W, Gao C. Shape Transformation of Light-Responsive Pyrene-Containing Micelles and Their Influence on Cytoviability. Biomacromolecules 2015;16:2276-81. [PMID: 26133965 DOI: 10.1021/acs.biomac.5b00497] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
196 Topete A, Barbosa S, Taboada P. Intelligent micellar polymeric nanocarriers for therapeutics and diagnosis. J Appl Polym Sci 2015;132:n/a-n/a. [DOI: 10.1002/app.42650] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
197 Lu Y, Mo R, Tai W, Sun W, Pacardo DB, Qian C, Shen Q, Ligler FS, Gu Z. Self-folded redox/acid dual-responsive nanocarriers for anticancer drug delivery. Chem Commun (Camb) 2014;50:15105-8. [PMID: 25331017 DOI: 10.1039/c4cc07004f] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
198 Li L, Raghupathi K, Song C, Prasad P, Thayumanavan S. Self-assembly of random copolymers. Chem Commun (Camb) 2014;50:13417-32. [PMID: 25036552 DOI: 10.1039/c4cc03688c] [Cited by in Crossref: 147] [Cited by in F6Publishing: 168] [Article Influence: 21.0] [Reference Citation Analysis]
199 Liu H, Tang D, Tang R, Zhao Y. Synthesis of multifunctional ABC stars with a reduction-labile arm by consecutive ROP, RAFT and ATRP processes. Sci China Chem 2015;58:1724-33. [DOI: 10.1007/s11426-015-5436-4] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
200 Luo Y, Han M, Xu F, Chen Y, Zhang Y. pH-Responsive H-Type PMAA 2 - b -HTPBN- b -PMAA 2 Four-Arm Star Block Copolymer Micelles for PTX Drug Release: pH-Responsive H-Type Block Copolymer Micelles. Macromol Biosci 2015;15:1411-22. [DOI: 10.1002/mabi.201500103] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
201 Stebbins ND, Faig JJ, Yu W, Guliyev R, Uhrich KE. Polyactives: controlled and sustained bioactive release via hydrolytic degradation. Biomater Sci 2015;3:1171-87. [PMID: 26222033 DOI: 10.1039/c5bm00051c] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
202 Chen H, Qian G, Ruan X, Frost RL. Abatement of aqueous anionic contaminants by thermo-responsive nanocomposites: (Poly(N-isopropylacrylamide))-co-silylanized Magnesium/Aluminun layered double hydroxides. Journal of Colloid and Interface Science 2015;448:65-72. [DOI: 10.1016/j.jcis.2015.02.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
203 Mishra K, Joy A. Dual functionalized telechelic block copolymers with reproducible block sizes prepared by microwave assisted RAFT polymerization. Polymer 2015;66:110-21. [DOI: 10.1016/j.polymer.2015.04.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
204 Feng A, Yan Q, Zhang H, Peng L, Yuan J. Electrochemical redox responsive polymeric micelles formed from amphiphilic supramolecular brushes. Chem Commun (Camb) 2014;50:4740-2. [PMID: 24681929 DOI: 10.1039/c4cc00463a] [Cited by in Crossref: 68] [Cited by in F6Publishing: 68] [Article Influence: 9.7] [Reference Citation Analysis]
205 Yang Q, Tan L, He C, Liu B, Xu Y, Zhu Z, Shao Z, Gong B, Shen YM. Redox-responsive micelles self-assembled from dynamic covalent block copolymers for intracellular drug delivery. Acta Biomater 2015;17:193-200. [PMID: 25662913 DOI: 10.1016/j.actbio.2015.01.044] [Cited by in Crossref: 64] [Cited by in F6Publishing: 66] [Article Influence: 9.1] [Reference Citation Analysis]
206 Wang W, Lin J, Cai C, Lin S. Optical properties of amphiphilic copolymer-based self-assemblies. European Polymer Journal 2015;65:112-31. [DOI: 10.1016/j.eurpolymj.2015.01.023] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
207 Hrubý M, Filippov SK, Štěpánek P. Smart polymers in drug delivery systems on crossroads: Which way deserves following? European Polymer Journal 2015;65:82-97. [DOI: 10.1016/j.eurpolymj.2015.01.016] [Cited by in Crossref: 96] [Cited by in F6Publishing: 97] [Article Influence: 13.7] [Reference Citation Analysis]
208 Nakayama M, Akimoto J, Okano T. Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting. J Drug Target 2014;22:584-99. [PMID: 25012066 DOI: 10.3109/1061186X.2014.936872] [Cited by in Crossref: 64] [Cited by in F6Publishing: 68] [Article Influence: 9.1] [Reference Citation Analysis]
209 Yang S, Lee RJ, Yang X, Zheng B, Xie J, Meng L, Liu Y, Teng L. A novel reduction-sensitive modified polyethylenimine oligonucleotide vector. Int J Pharm 2015;484:44-50. [PMID: 25698089 DOI: 10.1016/j.ijpharm.2015.02.036] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
210 Cai M, Leng M, Lu A, He L, Xie X, Huang L, Ma Y, Cao J, Chen Y, Luo X. Synthesis of amphiphilic copolymers containing zwitterionic sulfobetaine as pH and redox responsive drug carriers. Colloids and Surfaces B: Biointerfaces 2015;126:1-9. [DOI: 10.1016/j.colsurfb.2014.12.005] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
211 Liu G, Liu N, Zhou L, Su Y, Dong C. NIR-responsive polypeptide copolymer upconversion composite nanoparticles for triggered drug release and enhanced cytotoxicity. Polym Chem 2015;6:4030-9. [DOI: 10.1039/c5py00479a] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
212 Kotsuchibashi Y, Ebara M, Hoffman AS, Narain R, Aoyagi T. Temperature-responsive mixed core nanoparticle properties determined by the composition of statistical and block copolymers in the core. Polym Chem 2015;6:1693-7. [DOI: 10.1039/c4py01794c] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
213 Wu X, Zhou L, Su Y, Dong C. Comb-like poly( l -cysteine) derivatives with different side groups: synthesis via photochemistry and click chemistry, multi-responsive nanostructures, triggered drug release and cytotoxicity. Polym Chem 2015;6:6857-69. [DOI: 10.1039/c5py01113b] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
214 Zheng R, Wu Z, Yan Y, Wang J, Huang J. Suppressing singlet oxygen formation from 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin using polyion complex micelles. RSC Adv 2015;5:17253-6. [DOI: 10.1039/c4ra16259e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
215 Peng L, Zhang H, Feng A, Huo M, Wang Z, Hu J, Gao W, Yuan J. Electrochemical redox responsive supramolecular self-healing hydrogels based on host–guest interaction. Polym Chem 2015;6:3652-9. [DOI: 10.1039/c5py00296f] [Cited by in Crossref: 81] [Cited by in F6Publishing: 82] [Article Influence: 11.6] [Reference Citation Analysis]
216 Yang F, Cao Z, Wang G. Micellar assembly of a photo- and temperature-responsive amphiphilic block copolymer for controlled release. Polym Chem 2015;6:7995-8002. [DOI: 10.1039/c5py01435b] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 6.9] [Reference Citation Analysis]
217 Ding Y, Kang Y, Zhang X. Enzyme-responsive polymer assemblies constructed through covalent synthesis and supramolecular strategy. Chem Commun 2015;51:996-1003. [DOI: 10.1039/c4cc05878j] [Cited by in Crossref: 66] [Cited by in F6Publishing: 52] [Article Influence: 9.4] [Reference Citation Analysis]
218 Liu X, Chen B, Li X, Zhang L, Xu Y, Liu Z, Cheng Z, Zhu X. Self-assembly of BODIPY based pH-sensitive near-infrared polymeric micelles for drug controlled delivery and fluorescence imaging applications. Nanoscale 2015;7:16399-416. [DOI: 10.1039/c5nr04655f] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 6.3] [Reference Citation Analysis]
219 Shi Y, Cardoso RM, van Nostrum CF, Hennink WE. Anthracene functionalized thermosensitive and UV-crosslinkable polymeric micelles. Polym Chem 2015;6:2048-53. [DOI: 10.1039/c4py01759e] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
220 Basak D, Bej R, Ghosh S. Amphiphilic poly(disulfide) micelles and a remarkable impact of the core hydrophobicity on redox responsive disassembly. Polym Chem 2015;6:6465-74. [DOI: 10.1039/c5py00969c] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
221 Li Y, Wang S, Zhu D, Shen Y, Du B, Liu X, Zheng Y. Reversibly cross-linked poly(ethylene glycol)–poly(amino acid)s copolymer micelles: a promising approach to overcome the extracellular stability versus intracellular drug release challenge. RSC Adv 2015;5:20025-34. [DOI: 10.1039/c4ra12255k] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
222 Li J, Guo S, Wang M, Ye L, Yao F. Poly(lactic acid)/poly(ethylene glycol) block copolymer based shell or core cross-linked micelles for controlled release of hydrophobic drug. RSC Adv 2015;5:19484-92. [DOI: 10.1039/c4ra14376k] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
223 Korchia L, Bouilhac C, Lapinte V, Travelet C, Borsali R, Robin J. Photodimerization as an alternative to photocrosslinking of nanoparticles: proof of concept with amphiphilic linear polyoxazoline bearing coumarin unit. Polym Chem 2015;6:6029-39. [DOI: 10.1039/c5py00834d] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
224 Liang M, Yang T, Chang H, Wang Y. Dual-responsive polymer–drug nanoparticles for drug delivery. Reactive and Functional Polymers 2015;86:27-36. [DOI: 10.1016/j.reactfunctpolym.2014.11.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
225 Li S, Chen G, Zhou Z, Li Q. Stimuli-induced multiple dissociation and micellization transitions of random copolymers. RSC Adv 2015;5:65847-55. [DOI: 10.1039/c5ra07158e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
226 Shuai X, Cheng D. Stimulation-Sensitive Drug Delivery Systems. Bioinspired and Biomimetic Polymer Systems for Drug and Gene Delivery 2014. [DOI: 10.1002/9783527672752.ch12] [Reference Citation Analysis]
227 Zhao Q, Wang Y, Yan Y, Huang J. Smart nanocarrier: self-assembly of bacteria-like vesicles with photoswitchable cilia. ACS Nano 2014;8:11341-9. [PMID: 25363552 DOI: 10.1021/nn5042366] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 8.6] [Reference Citation Analysis]
228 Ma X, Zhao Y. Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chem Rev 2015;115:7794-839. [DOI: 10.1021/cr500392w] [Cited by in Crossref: 766] [Cited by in F6Publishing: 792] [Article Influence: 95.8] [Reference Citation Analysis]
229 Guerry A, Cottaz S, Fleury E, Bernard J, Halila S. Redox-stimuli responsive micelles from DOX-encapsulating polycaprolactone-g-chitosan oligosaccharide. Carbohydrate Polymers 2014;112:746-52. [DOI: 10.1016/j.carbpol.2014.06.052] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 5.9] [Reference Citation Analysis]
230 Chen M, Li YF, Besenbacher F. Electrospun nanofibers-mediated on-demand drug release. Adv Healthc Mater 2014;3:1721-32. [PMID: 24891134 DOI: 10.1002/adhm.201400166] [Cited by in Crossref: 77] [Cited by in F6Publishing: 79] [Article Influence: 9.6] [Reference Citation Analysis]
231 Wen Y, Oh JK. Recent Strategies to Develop Polysaccharide-Based Nanomaterials for Biomedical Applications. Macromol Rapid Commun 2014. [DOI: 10.1002/marc.201400406] [Cited by in Crossref: 24] [Cited by in F6Publishing: 30] [Article Influence: 3.0] [Reference Citation Analysis]
232 Gao H, Chan N, Oh JK, Matyjaszewski K. Designing Hydrogels by ATRP. In: Loh XJ, editor. In-Situ Gelling Polymers. Singapore: Springer; 2015. pp. 69-105. [DOI: 10.1007/978-981-287-152-7_4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
233 Cunningham A, Ko NR, Oh JK. Synthesis and reduction-responsive disassembly of PLA-based mono-cleavable micelles. Colloids and Surfaces B: Biointerfaces 2014;122:693-700. [DOI: 10.1016/j.colsurfb.2014.08.002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
234 Dong Y, Zhang C, Wu L, Chen Y, Hu Y. Self-Storage: A Novel Family of Stimuli-Responsive Polymer Materials for Optical and Electrochemical Switching. Macromol Rapid Commun 2014;35:1943-8. [DOI: 10.1002/marc.201400356] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
235 Li S, Hu K, Cao W, Sun Y, Sheng W, Li F, Wu Y, Liang X. pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery. Nanoscale 2014;6:13701-9. [DOI: 10.1039/c4nr04054f] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 6.8] [Reference Citation Analysis]
236 Liu G, Zhou L, Guan Y, Su Y, Dong C. Multi-Responsive Polypeptidosome: Characterization, Morphology Transformation, and Triggered Drug Delivery. Macromol Rapid Commun 2014;35:1673-8. [DOI: 10.1002/marc.201400343] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 7.1] [Reference Citation Analysis]
237 Romulus J, Henssler JT, Weck M. Postpolymerization Modification of Block Copolymers. Macromolecules 2014;47:5437-49. [DOI: 10.1021/ma5009918] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 8.1] [Reference Citation Analysis]
238 Li J, Zhou Z, Ma L, Chen G, Li Q. Hierarchical Assembly of Amphiphilic POSS-Cyclodextrin Molecules and Azobenzene End-Capped Polymers. Macromolecules 2014;47:5739-48. [DOI: 10.1021/ma501100r] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 5.8] [Reference Citation Analysis]
239 Feng A, Zhan C, Yan Q, Liu B, Yuan J. A CO 2 - and temperature-switchable “schizophrenic” block copolymer: from vesicles to micelles. Chem Commun 2014;50:8958. [DOI: 10.1039/c4cc03156c] [Cited by in Crossref: 101] [Cited by in F6Publishing: 101] [Article Influence: 12.6] [Reference Citation Analysis]
240 Yang KN, Zhang CQ, Wang W, Wang PC, Zhou JP, Liang XJ. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biol Med 2014;11:34-43. [PMID: 24738037 DOI: 10.7497/j.issn.2095-3941.2014.01.003] [Cited by in F6Publishing: 27] [Reference Citation Analysis]
241 Jin Q, Cai T, Han H, Wang H, Wang Y, Ji J. Light and pH Dual-Degradable Triblock Copolymer Micelles for Controlled Intracellular Drug Release. Macromol Rapid Commun 2014;35:1372-8. [DOI: 10.1002/marc.201400171] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 6.1] [Reference Citation Analysis]
242 Li Q, Gu W, Gao H, Yang Y. Self-assembly and applications of poly(glycidyl methacrylate)s and their derivatives. Chem Commun 2014;50:13201-15. [DOI: 10.1039/c4cc03036b] [Cited by in Crossref: 85] [Cited by in F6Publishing: 85] [Article Influence: 10.6] [Reference Citation Analysis]
243 Yu S, Ding J, He C, Cao Y, Xu W, Chen X. Disulfide cross-linked polyurethane micelles as a reduction-triggered drug delivery system for cancer therapy. Adv Healthc Mater 2014;3:752-60. [PMID: 24574261 DOI: 10.1002/adhm.201300308] [Cited by in Crossref: 88] [Cited by in F6Publishing: 91] [Article Influence: 11.0] [Reference Citation Analysis]
244 Chan N, Yee N, An SY, Oh JK. Tuning amphiphilicity/temperature-induced self-assembly and in-situ disulfide crosslinking of reduction-responsive block copolymers. J Polym Sci Part A: Polym Chem 2014;52:2057-67. [DOI: 10.1002/pola.27216] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
245 Chang X, Liu L, Guan Y, Dong C. Disulfide-centered star-shaped polypeptide-PEO block copolymers for reduction-triggered drug release. J Polym Sci Part A: Polym Chem 2014;52:2000-10. [DOI: 10.1002/pola.27207] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
246 Liu B, Zhou H, Zhou S, Zhang H, Feng A, Jian C, Hu J, Gao W, Yuan J. Synthesis and Self-Assembly of CO 2 –Temperature Dual Stimuli-Responsive Triblock Copolymers. Macromolecules 2014;47:2938-46. [DOI: 10.1021/ma5001404] [Cited by in Crossref: 131] [Cited by in F6Publishing: 131] [Article Influence: 16.4] [Reference Citation Analysis]
247 Yin T, Wang P, Li J, Wang Y, Zheng B, Zheng R, Cheng D, Shuai X. Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes. Biomaterials. 2014;35:5932-5943. [PMID: 24746965 DOI: 10.1016/j.biomaterials.2014.03.072] [Cited by in Crossref: 120] [Cited by in F6Publishing: 129] [Article Influence: 15.0] [Reference Citation Analysis]
248 Chu Y, Yu H, Ma Y, Zhang Y, Chen W, Zhang G, Wei H, Zhang X, Zhuo R, Jiang X. Synthesis and characterization of biodegradable pH and reduction dual-sensitive polymeric micelles for doxorubicin delivery. J Polym Sci Part A: Polym Chem 2014;52:1771-80. [DOI: 10.1002/pola.27192] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
249 Patra HK, Ul Khaliq N, Romu T, Wiechec E, Borga M, Turner AP, Tiwari A. MRI-visual order-disorder micellar nanostructures for smart cancer theranostics. Adv Healthc Mater 2014;3:526-35. [PMID: 23983185 DOI: 10.1002/adhm.201300225] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
250 Guo H, Yang C, Wang W, Wu Y, Lai Q, Yuan Z. Studies on antineoplastic effect by adjusting ratios of targeted-ligand and antitumor drug. Chin J Polym Sci 2014;32:540-50. [DOI: 10.1007/s10118-014-1432-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
251 Liu N, Vignolle J, Vincent J, Robert F, Landais Y, Cramail H, Taton D. One-Pot Synthesis and PEGylation of Hyperbranched Polyacetals with a Degree of Branching of 100%. Macromolecules 2014;47:1532-42. [DOI: 10.1021/ma4026509] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 4.0] [Reference Citation Analysis]
252 Fu X, Ma Y, Shen Y, Fu W, Li Z. Oxidation-Responsive OEGylated Poly- l -cysteine and Solution Properties Studies. Biomacromolecules 2014;15:1055-61. [DOI: 10.1021/bm5000554] [Cited by in Crossref: 74] [Cited by in F6Publishing: 74] [Article Influence: 9.3] [Reference Citation Analysis]
253 Feng A, Yuan J. Smart Nanocontainers: Progress on Novel Stimuli-Responsive Polymer Vesicles. Macromol Rapid Commun 2014;35:767-79. [DOI: 10.1002/marc.201300866] [Cited by in Crossref: 104] [Cited by in F6Publishing: 104] [Article Influence: 13.0] [Reference Citation Analysis]
254 Phillips DJ, Gibson MI. Redox-sensitive materials for drug delivery: targeting the correct intracellular environment, tuning release rates, and appropriate predictive systems. Antioxid Redox Signal 2014;21:786-803. [PMID: 24219144 DOI: 10.1089/ars.2013.5728] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 6.9] [Reference Citation Analysis]
255 Chen W, Zou Y, Meng F, Cheng R, Deng C, Feijen J, Zhong Z. Glyco-nanoparticles with sheddable saccharide shells: a unique and potent platform for hepatoma-targeting delivery of anticancer drugs. Biomacromolecules 2014;15:900-7. [PMID: 24460130 DOI: 10.1021/bm401749t] [Cited by in Crossref: 85] [Cited by in F6Publishing: 90] [Article Influence: 10.6] [Reference Citation Analysis]
256 Colombo C, Dragoni L, Gatti S, Pesce RM, Rooney TR, Mavroudakis E, Ferrari R, Moscatelli D. Tunable Degradation Behavior of PEGylated Polyester-Based Nanoparticles Obtained Through Emulsion Free Radical Polymerization. Ind Eng Chem Res 2014;53:9128-35. [DOI: 10.1021/ie4036077] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
257 Aoshima S, Oda Y, Matsumoto S, Shinke Y, Kanazawa A, Kanaoka S. Efficient Design for Stimuli-Responsive Polymers with Quantitative Acid-Degradability: Specifically Designed Alternating Controlled Cationic Copolymerization and Facile Complete Degradation. ACS Macro Lett 2014;3:80-5. [PMID: 35651114 DOI: 10.1021/mz400563v] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
258 Yuan W, Guo W. Ultraviolet light-breakable and tunable thermoresponsive amphiphilic block copolymer: from self-assembly, disassembly to re-self-assembly. Polym Chem 2014;5:4259. [DOI: 10.1039/c3py01681a] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
259 Sarkar A, Rakshit S, Chall S, Mati SS, Singharoy D, Bañuelos J, López Arbeloa I, Bhattacharya SC. Micellar charge induced emissive response of a bio-active 3-pyrazolyl-2-pyrazoline derivative: a spectroscopic and quantum chemical analysis. RSC Adv 2014;4:56361-72. [DOI: 10.1039/c4ra06497f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
260 Miao K, Shao W, Liu H, Zhao Y. Synthesis and properties of a dually cleavable graft copolymer comprising pendant acetal linkages. Polym Chem 2014;5:1191-201. [DOI: 10.1039/c3py01049j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
261 Liu H, Miao K, Zhao G, Li C, Zhao Y. Synthesis of an amphiphilic PEG-PCL-PSt-PLLA-PAA star quintopolymer and its self-assembly for pH-sensitive drug delivery. Polym Chem 2014;5:3071-80. [DOI: 10.1039/c3py01601c] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
262 Aleksanian S, Wen Y, Chan N, Oh JK. Thiol-responsive hydrogel scaffolds for rapid change in thermoresponsiveness. RSC Adv 2014;4:3699-707. [DOI: 10.1039/c3ra43841d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
263 Wen Y, Oh JK. Dual-stimuli reduction and acidic pH-responsive bionanogels: intracellular delivery nanocarriers with enhanced release. RSC Adv 2014;4:229-37. [DOI: 10.1039/c3ra46072j] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
264 Sun L, Zhu B, Su Y, Dong C. Light-responsive linear-dendritic amphiphiles and their nanomedicines for NIR-triggered drug release. Polym Chem 2014;5:1605-13. [DOI: 10.1039/c3py00533j] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.9] [Reference Citation Analysis]
265 Wang X, Wang J, Bao Y, Wang B, Wang X, Chen L. Novel reduction-sensitive pullulan-based micelles with good hemocompatibility for efficient intracellular doxorubicin delivery. RSC Adv 2014;4:60064-74. [DOI: 10.1039/c4ra12276c] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
266 Chan N, An SY, Oh JK. Dual location disulfide degradable interlayer-crosslinked micelles with extended sheddable coronas exhibiting enhanced colloidal stability and rapid release. Polym Chem 2014;5:1637-49. [DOI: 10.1039/c3py00852e] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 6.0] [Reference Citation Analysis]
267 Petrova S, Jäger E, Konefał R, Jäger A, Venturini CG, Spěváček J, Pavlova E, Štěpánek P. Novel poly(ethylene oxide monomethyl ether)-b-poly(ε-caprolactone) diblock copolymers containing a pH-acid labile ketal group as a block linkage. Polym Chem 2014;5:3884-93. [DOI: 10.1039/c4py00114a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
268 Xuan J, Han D, Xia H, Zhao Y. Dual-Stimuli-Responsive Micelle of an ABC Triblock Copolymer Bearing a Redox-Cleavable Unit and a Photocleavable Unit at Two Block Junctions. Langmuir 2014;30:410-7. [DOI: 10.1021/la404493n] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 7.2] [Reference Citation Analysis]
269 Grant N, Wu H, Zhang H. Reduction-Controlled Release of Organic Nanoparticles from Disulfide Cross-linked Porous Polymer. Ind Eng Chem Res 2014;53:246-52. [DOI: 10.1021/ie403001r] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
270 Chan N, Jung HW, Noh SM, Oh JK. Functional amphiphilic oligo(ethylene oxide) methacrylate-based block copolymers: synthesis by an activator regenerated by electron transfer process for atom transfer radical polymerization and aqueous micellization: Functional amphiphilic oligo(ethylene oxide). Polym Int 2014;63:858-67. [DOI: 10.1002/pi.4654] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
271 Kim H, Kim E, Lee SG, Lee SJ, Kim H, Jeong SW. Thiol-responsive micelles based on nonionic gemini surfactants with a cystine disulfide spacer. J Polym Sci Part A: Polym Chem 2014;52:582-9. [DOI: 10.1002/pola.27036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
272 Liu T, Hu J, Jin Z, Jin F, Liu S. Two-photon ratiometric fluorescent mapping of intracellular transport pathways of pH-responsive block copolymer micellar nanocarriers. Adv Healthc Mater 2013;2:1576-81. [PMID: 23703785 DOI: 10.1002/adhm.201200436] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 4.8] [Reference Citation Analysis]
273 Yin Q, Shen J, Zhang Z, Yu H, Li Y. Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Adv Drug Deliv Rev 2013;65:1699-715. [PMID: 23611952 DOI: 10.1016/j.addr.2013.04.011] [Cited by in Crossref: 286] [Cited by in F6Publishing: 278] [Article Influence: 31.8] [Reference Citation Analysis]
274 Sun T, Jin Y, Qi R, Peng S, Fan B. Post-Assembly of Oxidation-Responsive Amphiphilic Triblock Polymer Containing a Single Diselenide. Macromol Chem Phys 2013;214:2875-81. [DOI: 10.1002/macp.201300579] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
275 Ko NR, Sabbatier G, Cunningham A, Laroche G, Oh JK. Air-Spun PLA Nanofibers Modified with Reductively Sheddable Hydrophilic Surfaces for Vascular Tissue Engineering: Synthesis and Surface Modification. Macromol Rapid Commun 2014;35:447-53. [DOI: 10.1002/marc.201300609] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
276 Favaro G, Ortica F, Romani A. Role of heteroaromatic cycles in the inter- and intra-molecular dynamics of excited aryl ketones. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2013;16:22-45. [DOI: 10.1016/j.jphotochemrev.2013.03.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
277 Lee SY, Tyler JY, Kim S, Park K, Cheng JX. FRET imaging reveals different cellular entry routes of self-assembled and disulfide bonded polymeric micelles. Mol Pharm 2013;10:3497-506. [PMID: 23901940 DOI: 10.1021/mp4003333] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 4.7] [Reference Citation Analysis]
278 Ghiulai R, Galusca M, Sisu I, Sisu E, Zamfir A. High resolution mass spectrometric characterization of amino linked oligosaccharides — a preliminary study. Open Chemistry 2013;11:1309-19. [DOI: 10.2478/s11532-013-0265-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
279 Joglekar M, Trewyn BG. Polymer-based stimuli-responsive nanosystems for biomedical applications. Biotechnol J 2013;8:931-45. [PMID: 23843342 DOI: 10.1002/biot.201300073] [Cited by in Crossref: 78] [Cited by in F6Publishing: 79] [Article Influence: 8.7] [Reference Citation Analysis]
280 Khorsand B, Lapointe G, Brett C, Oh JK. Intracellular Drug Delivery Nanocarriers of Glutathione-Responsive Degradable Block Copolymers Having Pendant Disulfide Linkages. Biomacromolecules 2013;14:2103-11. [DOI: 10.1021/bm4004805] [Cited by in Crossref: 109] [Cited by in F6Publishing: 110] [Article Influence: 12.1] [Reference Citation Analysis]
281 Li Z, Zhang Y, Chen H, Zhao J, Liu Y. Hierarchical Organization of Spherical Assembly with Reversibly Photocontrollable Cross-Links. J Org Chem 2013;78:5110-4. [DOI: 10.1021/jo400772j] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.1] [Reference Citation Analysis]
282 Wang Y, Wu G, Li X, Wang Y, Gao H, Ma J. Synthesis, characterization and controlled drug release from temperature-responsive poly(ether-urethane) particles based on PEG-diisocyanates and aliphatic diols. Journal of Biomaterials Science, Polymer Edition 2013;24:1676-91. [DOI: 10.1080/09205063.2013.792129] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
283 Chen H, Ruckenstein E. Formation and Degradation of Multicomponent Multicore Micelles: Insights from Dissipative Particle Dynamics Simulations. Langmuir 2013;29:5428-34. [DOI: 10.1021/la400033s] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 4.3] [Reference Citation Analysis]
284 Bian J, Zhang M, He J, Ni P. Preparation and self-assembly of double hydrophilic poly(ethylethylene phosphate)-block-poly[2-(succinyloxy)ethyl methacrylate] diblock copolymers for drug delivery. Reactive and Functional Polymers 2013;73:579-87. [DOI: 10.1016/j.reactfunctpolym.2012.12.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
285 Qiu X, Hu S. "Smart" Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications. Materials (Basel) 2013;6:738-81. [PMID: 28809338 DOI: 10.3390/ma6030738] [Cited by in Crossref: 341] [Cited by in F6Publishing: 344] [Article Influence: 37.9] [Reference Citation Analysis]
286 Li S, Jiao X, Yang H. Hydrophobic core/hydrophilic shell structured mesoporous silica nanospheres: enhanced adsorption of organic compounds from water. Langmuir 2013;29:1228-37. [PMID: 23293877 DOI: 10.1021/la303733w] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 5.7] [Reference Citation Analysis]
287 Khorsand B, Oh JK. pH-responsive destabilization and facile bioconjugation of new hydroxyl-terminated block copolymer micelles. J Polym Sci A Polym Chem 2013;51:1620-9. [DOI: 10.1002/pola.26533] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
288 Chen W, Zhong P, Meng F, Cheng R, Deng C, Feijen J, Zhong Z. Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. J Control Release 2013;169:171-9. [PMID: 23306022 DOI: 10.1016/j.jconrel.2013.01.001] [Cited by in Crossref: 308] [Cited by in F6Publishing: 318] [Article Influence: 34.2] [Reference Citation Analysis]
289 Atanase LI, Riess G. Micellization of pH-stimulable poly(2-vinylpyridine)-b-poly(ethylene oxide) copolymers and their complexation with anionic surfactants. J Colloid Interface Sci 2013;395:190-7. [PMID: 23390984 DOI: 10.1016/j.jcis.2012.12.058] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.9] [Reference Citation Analysis]
290 Binauld S, Stenzel MH. Acid-degradable polymers for drug delivery: a decade of innovation. Chem Commun 2013;49:2082. [DOI: 10.1039/c2cc36589h] [Cited by in Crossref: 309] [Cited by in F6Publishing: 312] [Article Influence: 34.3] [Reference Citation Analysis]
291 Sun T, Jin Y, Qi R, Peng S, Fan B. Oxidation responsive mono-cleavable amphiphilic di-block polymer micelles labeled with a single diselenide. Polym Chem 2013;4:4017. [DOI: 10.1039/c3py00406f] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 5.8] [Reference Citation Analysis]
292 Yuan W, Zou H, Guo W, Shen T, Ren J. Supramolecular micelles with dual temperature and redox responses for multi-controlled drug release. Polym Chem 2013;4:2658. [DOI: 10.1039/c3py00211j] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
293 Huang X, Jiang X, Yang Q, Chu Y, Zhang G, Yang B, Zhuo R. Triple-stimuli (pH/thermo/reduction) sensitive copolymers for intracellular drug delivery. J Mater Chem B 2013;1:1860. [DOI: 10.1039/c3tb00424d] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 5.1] [Reference Citation Analysis]
294 Liu D, Chang X, Dong C. Reduction- and thermo-sensitive star polypeptide micelles and hydrogels for on-demand drug delivery. Chem Commun 2013;49:1229. [DOI: 10.1039/c2cc38343h] [Cited by in Crossref: 74] [Cited by in F6Publishing: 74] [Article Influence: 8.2] [Reference Citation Analysis]
295 Zhou H, Ding X, Zheng Z, Peng Y. Self-regulated intelligent systems: where adaptive entities meet chemical oscillators. Soft Matter 2013;9:4956. [DOI: 10.1039/c3sm00021d] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
296 Liu G, Liu W, Dong C. UV- and NIR-responsive polymeric nanomedicines for on-demand drug delivery. Polym Chem 2013;4:3431. [DOI: 10.1039/c3py21121e] [Cited by in Crossref: 154] [Cited by in F6Publishing: 155] [Article Influence: 17.1] [Reference Citation Analysis]
297 Rahimian-bajgiran K, Chan N, Zhang Q, Noh SM, Lee H, Oh JK. Tuning LCST with thiol-responsiveness of thermoresponsive copolymers containing pendant disulfides. Chem Commun 2013;49:807-9. [DOI: 10.1039/c2cc37804c] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
298 Chan N, Khorsand B, Aleksanian S, Oh JK. A dual location stimuli-responsive degradation strategy of block copolymer nanocarriers for accelerated release. Chem Commun 2013;49:7534. [DOI: 10.1039/c3cc44200d] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 4.6] [Reference Citation Analysis]
299 Chen C, Li D, Wang H, Zhao J, Ji J. Fabrication of dual-responsive micelles based on the supramolecular interaction of cucurbit[8]uril. Polym Chem 2013;4:242-5. [DOI: 10.1039/c2py20549a] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
300 Shao W, Miao K, Liu H, Ye C, Du J, Zhao Y. Acid and reduction dually cleavable amphiphilic comb-like copolymer micelles for controlled drug delivery. Polym Chem 2013;4:3398. [DOI: 10.1039/c3py00252g] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 4.1] [Reference Citation Analysis]
301 Zhang Q, Aleksanian S, Noh SM, Oh JK. Thiol-responsive block copolymer nanocarriers exhibiting tunable release with morphology changes. Polym Chem 2013;4:351-9. [DOI: 10.1039/c2py20582c] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 5.7] [Reference Citation Analysis]
302 Ge Z, Liu S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev 2013;42:7289. [DOI: 10.1039/c3cs60048c] [Cited by in Crossref: 733] [Cited by in F6Publishing: 752] [Article Influence: 81.4] [Reference Citation Analysis]
303 Zhang Q, Ko NR, Oh JK. ChemInform Abstract: Recent Advances in Stimuli-responsive Degradable Block Copolymer Micelles: Synthesis and Controlled Drug Delivery Applications. ChemInform 2012;43:no-no. [DOI: 10.1002/chin.201242256] [Reference Citation Analysis]
304 Cunningham A, Oh JK. New Design of Thiol-Responsive Degradable Polylactide-Based Block Copolymer Micelles. Macromol Rapid Commun 2013;34:163-8. [DOI: 10.1002/marc.201200532] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 3.5] [Reference Citation Analysis]
305 Ko NR, Yao K, Tang C, Oh JK. Synthesis and thiol-responsive degradation of polylactide-based block copolymers having disulfide junctions using ATRP and ROP. J Polym Sci Part A: Polym Chem 2013;51:3071-80. [DOI: 10.1002/pola.26335] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
306 Zhang Q, Re Ko N, Kwon Oh J. Modulated morphologies and tunable thiol-responsive shedding of aqueous block copolymer aggregates. RSC Adv 2012;2:8079. [DOI: 10.1039/c2ra21209a] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]