BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Le EPV, Rundo L, Tarkin JM, Evans NR, Chowdhury MM, Coughlin PA, Pavey H, Wall C, Zaccagna F, Gallagher FA, Huang Y, Sriranjan R, Le A, Weir-McCall JR, Roberts M, Gilbert FJ, Warburton EA, Schönlieb CB, Sala E, Rudd JHF. Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events. Sci Rep 2021;11:3499. [PMID: 33568735 DOI: 10.1038/s41598-021-82760-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Sohn B, Won SY. Quality assessment of stroke radiomics studies: Promoting clinical application. Eur J Radiol 2023;161:110752. [PMID: 36878154 DOI: 10.1016/j.ejrad.2023.110752] [Reference Citation Analysis]
2 Xia H, Yuan L, Zhao W, Zhang C, Zhao L, Hou J, Luan Y, Bi Y, Feng Y. Predicting transient ischemic attack risk in patients with mild carotid stenosis using machine learning and CT radiomics. Front Neurol 2023;14:1105616. [PMID: 36846119 DOI: 10.3389/fneur.2023.1105616] [Reference Citation Analysis]
3 Kampaktsis PN, Emfietzoglou M, Al Shehhi A, Fasoula NA, Bakogiannis C, Mouselimis D, Tsarouchas A, Vassilikos VP, Kallmayer M, Eckstein HH, Hadjileontiadis L, Karlas A. Artificial intelligence in atherosclerotic disease: Applications and trends. Front Cardiovasc Med 2022;9:949454. [PMID: 36741834 DOI: 10.3389/fcvm.2022.949454] [Reference Citation Analysis]
4 Hsu JJ, Tintut Y, Demer LL. Regulation of cardiovascular calcification by lipids and lipoproteins. Curr Opin Lipidol 2022. [PMID: 35979985 DOI: 10.1097/MOL.0000000000000844] [Reference Citation Analysis]
5 Li H, Liu J, Dong Z, Chen X, Zhou C, Huang C, Li Y, Liu Q, Su X, Cheng X, Lu G. Identification of high-risk intracranial plaques with 3D high-resolution magnetic resonance imaging-based radiomics and machine learning. J Neurol 2022. [PMID: 35951103 DOI: 10.1007/s00415-022-11315-4] [Reference Citation Analysis]
6 Cilla S, Macchia G, Lenkowicz J, Tran EH, Pierro A, Petrella L, Fanelli M, Sardu C, Re A, Boldrini L, Indovina L, De Filippo CM, Caradonna E, Deodato F, Massetti M, Valentini V, Modugno P. CT angiography-based radiomics as a tool for carotid plaque characterization: a pilot study. Radiol med 2022;127:743-753. [DOI: 10.1007/s11547-022-01505-5] [Reference Citation Analysis]
7 Cheng X, Dong Z, Liu J, Li H, Zhou C, Zhang F, Wang C, Zhang Z, Lu G. Prediction of Carotid In-Stent Restenosis by Computed Tomography Angiography Carotid Plaque-Based Radiomics. JCM 2022;11:3234. [DOI: 10.3390/jcm11113234] [Reference Citation Analysis]
8 Dunning CA, Rajendran K, Fletcher JG, Mccollough CH, Leng S. Impact of improved spatial resolution on radiomic features using photon-counting-detector CT. Medical Imaging 2022: Image Processing 2022. [DOI: 10.1117/12.2612229] [Reference Citation Analysis]
9 Chen S, Liu C, Chen X, Liu WV, Ma L, Zha Y. A Radiomics Approach to Assess High Risk Carotid Plaques: A Non-invasive Imaging Biomarker, Retrospective Study. Front Neurol 2022;13:788652. [PMID: 35350403 DOI: 10.3389/fneur.2022.788652] [Reference Citation Analysis]
10 Colombi D, Bodini FC, Rossi B, Bossalini M, Risoli C, Morelli N, Petrini M, Sverzellati N, Michieletti E. Computed Tomography Texture Analysis of Carotid Plaque as Predictor of Unfavorable Outcome after Carotid Artery Stenting: A Preliminary Study. Diagnostics (Basel) 2021;11:2214. [PMID: 34943451 DOI: 10.3390/diagnostics11122214] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 de Farias EC, di Noia C, Han C, Sala E, Castelli M, Rundo L. Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features. Sci Rep 2021;11:21361. [PMID: 34725417 DOI: 10.1038/s41598-021-00898-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
12 Tokuyama K, Kiyosue H, Baba H, Asayama Y. Anomalous Origin of the Right Vertebral Artery. Applied Sciences 2021;11:8171. [DOI: 10.3390/app11178171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Pachl E, Zamanian A, Stieler M, Bahr C, Ahmidi N. Early-, Late-, and Very Late-Term Prediction of Target Lesion Failure in Coronary Artery Stent Patients: An International Multi-Site Study. Applied Sciences 2021;11:6986. [DOI: 10.3390/app11156986] [Reference Citation Analysis]
14 Sushentsev N, Rundo L, Blyuss O, Gnanapragasam VJ, Sala E, Barrett T. MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance. Sci Rep 2021;11:12917. [PMID: 34155265 DOI: 10.1038/s41598-021-92341-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
15 Cau R, Flanders A, Mannelli L, Politi C, Faa G, Suri JS, Saba L. Artificial intelligence in computed tomography plaque characterization: A review. Eur J Radiol 2021;140:109767. [PMID: 34000598 DOI: 10.1016/j.ejrad.2021.109767] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]