BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nguyen HN, Tanaka M, Li B, Ueno T, Matsuda H, Matsui T. Novel in situ visualisation of rat intestinal absorption of polyphenols via matrix-assisted laser desorption/ionisation mass spectrometry imaging. Sci Rep 2019;9:3166. [PMID: 30816166 DOI: 10.1038/s41598-019-39405-w] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Song X, Li C, Meng Y. Mass spectrometry imaging advances and application in pharmaceutical research. Acta Materia Medica 2022;1. [DOI: 10.15212/amm-2022-0046] [Reference Citation Analysis]
2 Sivanesan I, Muthu M, Kannan A, Pushparaj SSC, Oh J, Gopal J. Identification of Epigallocatechin-3-Gallate (EGCG) from Green Tea Using Mass Spectrometry. Separations 2022;9:209. [DOI: 10.3390/separations9080209] [Reference Citation Analysis]
3 Hahm TH, Tanaka M, Matsui T. Current Knowledge on Intestinal Absorption of Anthocyanins. J Agric Food Chem 2022. [PMID: 35179384 DOI: 10.1021/acs.jafc.1c08207] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Hahm TH, Matsui T, Tanaka M. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Tissues via the Formation of Reproducible Matrix Crystals by the Fluorescence-Assisted Spraying Method: A Quantification Approach. Anal Chem 2022. [PMID: 35040638 DOI: 10.1021/acs.analchem.1c03369] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Matsushita S, Hasegawa T, Hiraoka M, Hayashi A, Suzuki Y. TLC-based MS Imaging Analysis of Glycosphingolipids and Glycerin Fatty Acid Esters after 1,2-Dichloroethane Washing. Anal Sci 2021;37:1491-5. [PMID: 34690230 DOI: 10.2116/analsci.21C009] [Reference Citation Analysis]
6 Wexler AG, Guiberson ER, Beavers WN, Shupe JA, Washington MK, Lacy DB, Caprioli RM, Spraggins JM, Skaar EP. Clostridioides difficile infection induces a rapid influx of bile acids into the gut during colonization of the host. Cell Rep 2021;36:109683. [PMID: 34496241 DOI: 10.1016/j.celrep.2021.109683] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
7 Takashima Y, Ishikawa K, Miyawaki R, Ogawa M, Ishii T, Misaka T, Kobayashi S. Modulatory Effect of Theaflavins on Apical Sodium-Dependent Bile Acid Transporter (ASBT) Activity. J Agric Food Chem 2021;69:9585-96. [PMID: 34346218 DOI: 10.1021/acs.jafc.1c03483] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Abe C, Zhang Y, Takao K, Sasaki K, Ochiai K, Matsui T. Visualization Analysis of Glyceollin Production in Germinating Soybeans by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging Technique. J Agric Food Chem 2021;69:7057-63. [PMID: 34152141 DOI: 10.1021/acs.jafc.1c02261] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Ma Y, Liu G, Tang M, Fang J, Jiang H. Epigallocatechin Gallate Can Protect Mice From Acute Stress Induced by LPS While Stabilizing Gut Microbes and Serum Metabolites Levels. Front Immunol 2021;12:640305. [PMID: 33868268 DOI: 10.3389/fimmu.2021.640305] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
10 Li B, Fu L, Abe C, Nectoux AM, Yamamoto A, Matsui T. Theaflavins inhibit glucose transport across Caco-2 cells through the downregulation of the Ca2+/AMP-activated protein kinase-mediated glucose transporter SGLT1. Journal of Functional Foods 2020;75:104273. [DOI: 10.1016/j.jff.2020.104273] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
11 Hahm TH, Tanaka M, Nguyen HN, Tsutsumi A, Aizawa K, Matsui T. Matrix-assisted laser desorption/ionization mass spectrometry-guided visualization analysis of intestinal absorption of acylated anthocyanins in Sprague-Dawley rats. Food Chem 2021;334:127586. [PMID: 32707364 DOI: 10.1016/j.foodchem.2020.127586] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
12 Zhang Y, Takao K, Abe C, Sasaki K, Ochiai K, Matsui T. Intestinal Absorption of Prenylated Isoflavones, Glyceollins, in Sprague–Dawley Rats. J Agric Food Chem 2020;68:8205-11. [DOI: 10.1021/acs.jafc.0c02475] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
13 Yukihiro Y, Zaima N. Application of Mass Spectrometry Imaging for Visualizing Food Components. Foods 2020;9:E575. [PMID: 32375379 DOI: 10.3390/foods9050575] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
14 Nectoux AM, Abe C, Huang S, Ohno N, Tabata J, Miyata Y, Tanaka K, Tanaka T, Yamamura H, Matsui T. Absorption and Metabolic Behavior of Hesperidin (Rutinosylated Hesperetin) after Single Oral Administration to Sprague-Dawley Rats. J Agric Food Chem 2019;67:9812-9. [DOI: 10.1021/acs.jafc.9b03594] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 8.5] [Reference Citation Analysis]
15 Piccolella S, Crescente G, Candela L, Pacifico S. Nutraceutical polyphenols: New analytical challenges and opportunities. J Pharm Biomed Anal 2019;175:112774. [PMID: 31336288 DOI: 10.1016/j.jpba.2019.07.022] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 14.0] [Reference Citation Analysis]