BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Patgiri A, Skinner OS, Miyazaki Y, Schleifer G, Marutani E, Shah H, Sharma R, Goodman RP, To TL, Robert Bao X, Ichinose F, Zapol WM, Mootha VK. An engineered enzyme that targets circulating lactate to alleviate intracellular NADH:NAD+ imbalance. Nat Biotechnol 2020;38:309-13. [PMID: 31932725 DOI: 10.1038/s41587-019-0377-7] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 14.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhu X, Chen Z, Shen W, Huang G, Sedivy JM, Wang H, Ju Z. Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 2021;6:245. [PMID: 34176928 DOI: 10.1038/s41392-021-00646-9] [Reference Citation Analysis]
2 Iwata R, Vanderhaeghen P. Regulatory roles of mitochondria and metabolism in neurogenesis. Curr Opin Neurobiol 2021;69:231-40. [PMID: 34171617 DOI: 10.1016/j.conb.2021.05.003] [Reference Citation Analysis]
3 Li E, Sun Y, Lv G, Qin F, Sheng T, Zhang Z, Zhang R, Hu Z, Cao W. Involvement of hydrogen peroxide in sonodynamical effect with sinoporphyrin sodium in hypoxic situation. Free Radic Res 2021;:1-14. [PMID: 34670466 DOI: 10.1080/10715762.2021.1996571] [Reference Citation Analysis]
4 Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nat Metab 2020;2:566-71. [PMID: 32694798 DOI: 10.1038/s42255-020-0243-4] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 23.0] [Reference Citation Analysis]
5 Xiong W, Liu B, Shen Y, Jing K, Savage TR. Protein engineering design from directed evolution to de novo synthesis. Biochemical Engineering Journal 2021;174:108096. [DOI: 10.1016/j.bej.2021.108096] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
6 Bartman CR, TeSlaa T, Rabinowitz JD. Quantitative flux analysis in mammals. Nat Metab 2021;3:896-908. [PMID: 34211182 DOI: 10.1038/s42255-021-00419-2] [Reference Citation Analysis]
7 Wang Y, Uchida M, Waghwani HK, Douglas T. Synthetic Virus-like Particles for Glutathione Biosynthesis. ACS Synth Biol 2020;9:3298-310. [PMID: 33232156 DOI: 10.1021/acssynbio.0c00368] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
8 Ghergurovich JM, Lang JD, Levin MK, Briones N, Facista SJ, Mueller C, Cowan AJ, McBride MJ, Rodriguez ESR, Killian A, Dao T, Lamont J, Barron A, Su X, Hendricks WPD, Espina V, Von Hoff DD, O'Shaughnessy J, Rabinowitz JD. Local production of lactate, ribose phosphate, and amino acids within human triple-negative breast cancer. Med (N Y) 2021;2:736-54. [PMID: 34223403 DOI: 10.1016/j.medj.2021.03.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Pitceathly RDS, Keshavan N, Rahman J, Rahman S. Moving towards clinical trials for mitochondrial diseases. J Inherit Metab Dis 2021;44:22-41. [PMID: 32618366 DOI: 10.1002/jimd.12281] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
10 Zago G, Saavedra PHV, Keshari KR, Perry JSA. Immunometabolism of Tissue-Resident Macrophages - An Appraisal of the Current Knowledge and Cutting-Edge Methods and Technologies. Front Immunol 2021;12:665782. [PMID: 34025667 DOI: 10.3389/fimmu.2021.665782] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Young MP, Schug ZT, Booth DM, Yule DI, Mikoshiba K, Hajnόczky G, Joseph SK. Metabolic adaptation to the chronic loss of Ca2+ signaling induced by KO of IP3 receptors or the mitochondrial Ca2+ uniporter. J Biol Chem 2021;298:101436. [PMID: 34801549 DOI: 10.1016/j.jbc.2021.101436] [Reference Citation Analysis]
12 Broeks MH, van Karnebeek CDM, Wanders RJA, Jans JJM, Verhoeven-Duif NM. Inborn disorders of the malate aspartate shuttle. J Inherit Metab Dis 2021;44:792-808. [PMID: 33990986 DOI: 10.1002/jimd.12402] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Yang L, Teslaa T, Ng S, Nofal M, Wang L, Lan T, Zeng X, Cowan A, Mcbride M, Lu W, Davidson S, Liang G, Oh TG, Downes M, Evans R, Von Hoff D, Guo JY, Han H, Rabinowitz JD. Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med 2022;3:119-136.e8. [DOI: 10.1016/j.medj.2021.12.008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Choe M, Titov DV. Genetically encoded tools for measuring and manipulating metabolism. Nat Chem Biol 2022;18:451-60. [PMID: 35484256 DOI: 10.1038/s41589-022-01012-8] [Reference Citation Analysis]
15 Gucek M, Sack MN. Proteomic and metabolomic advances uncover biomarkers of mitochondrial disease pathophysiology and severity. J Clin Invest 2021;131:145158. [PMID: 33463543 DOI: 10.1172/JCI145158] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Rossiter NJ, Huggler KS, Adelmann CH, Keys HR, Soens RW, Sabatini DM, Cantor JR. CRISPR screens in physiologic medium reveal conditionally essential genes in human cells. Cell Metab 2021;33:1248-1263.e9. [PMID: 33651980 DOI: 10.1016/j.cmet.2021.02.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
17 Sanità G, Carrese B, Lamberti A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front Mol Biosci 2020;7:587012. [PMID: 33324678 DOI: 10.3389/fmolb.2020.587012] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
18 Chinopoulos C. Acute sources of mitochondrial NAD+ during respiratory chain dysfunction. Exp Neurol 2020;327:113218. [PMID: 32035071 DOI: 10.1016/j.expneurol.2020.113218] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
19 Sharma R, Reinstadler B, Engelstad K, Skinner OS, Stackowitz E, Haller RG, Clish CB, Pierce K, Walker MA, Fryer R, Oglesbee D, Mao X, Shungu DC, Khatri A, Hirano M, De Vivo DC, Mootha VK. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J Clin Invest 2021;131:136055. [PMID: 33463549 DOI: 10.1172/JCI136055] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
20 Varanasi SK, Kumar SV, Rouse BT. Determinants of Tissue-Specific Metabolic Adaptation of T Cells. Cell Metab 2020;32:908-19. [PMID: 33181092 DOI: 10.1016/j.cmet.2020.10.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
21 Flores-Cotera LB, Chávez-Cabrera C, Martínez-Cárdenas A, Sánchez S, García-Flores OU. Deciphering the mechanism by which the yeast Phaffia rhodozyma responds adaptively to environmental, nutritional and genetic cues. J Ind Microbiol Biotechnol 2021:kuab048. [PMID: 34302341 DOI: 10.1093/jimb/kuab048] [Reference Citation Analysis]
22 Russell OM, Gorman GS, Lightowlers RN, Turnbull DM. Mitochondrial Diseases: Hope for the Future. Cell 2020;181:168-88. [PMID: 32220313 DOI: 10.1016/j.cell.2020.02.051] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 28.5] [Reference Citation Analysis]
23 Qin X, Wu C, Niu D, Qin L, Wang X, Wang Q, Li Y. Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy. Nat Commun 2021;12:5243. [PMID: 34475406 DOI: 10.1038/s41467-021-25561-z] [Reference Citation Analysis]
24 Grange RMH, Sharma R, Shah H, Reinstadler B, Goldberger O, Cooper MK, Nakagawa A, Miyazaki Y, Hindle AG, Batten AJ, Wojtkiewicz GR, Schleifer G, Bagchi A, Marutani E, Malhotra R, Bloch DB, Ichinose F, Mootha VK, Zapol WM. Hypoxia ameliorates brain hyperoxia and NAD+ deficiency in a murine model of Leigh syndrome. Mol Genet Metab 2021;133:83-93. [PMID: 33752971 DOI: 10.1016/j.ymgme.2021.03.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Bester R, Stander Z, Mason S, Keane KM, Howatson G, Clifford T, Stevenson EJ, Loots DT. Characterizing Marathon-Induced Metabolic Changes Using 1H-NMR Metabolomics. Metabolites 2021;11:656. [PMID: 34677371 DOI: 10.3390/metabo11100656] [Reference Citation Analysis]
26 Koňaříková E, Marković A, Korandová Z, Houštěk J, Mráček T. Current progress in the therapeutic options for mitochondrial disorders. Physiol Res 2020;69:967-94. [PMID: 33129249 DOI: 10.33549/physiolres.934529] [Reference Citation Analysis]
27 Schirris TJJ, Rossell S, de Haas R, Frambach SJCM, Hoogstraten CA, Renkema GH, Beyrath JD, Willems PHGM, Huynen MA, Smeitink JAM, Russel FGM, Notebaart RA. Stimulation of cholesterol biosynthesis in mitochondrial complex I-deficiency lowers reductive stress and improves motor function and survival in mice. Biochim Biophys Acta Mol Basis Dis 2021;1867:166062. [PMID: 33385517 DOI: 10.1016/j.bbadis.2020.166062] [Reference Citation Analysis]
28 Borst P. The malate-aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway. IUBMB Life 2020;72:2241-59. [PMID: 32916028 DOI: 10.1002/iub.2367] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
29 TeSlaa T, Bartman CR, Jankowski CSR, Zhang Z, Xu X, Xing X, Wang L, Lu W, Hui S, Rabinowitz JD. The Source of Glycolytic Intermediates in Mammalian Tissues. Cell Metab 2021;33:367-378.e5. [PMID: 33472024 DOI: 10.1016/j.cmet.2020.12.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]