BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. [DOI: 10.1038/s41580-022-00456-z] [Cited by in Crossref: 47] [Cited by in F6Publishing: 59] [Article Influence: 47.0] [Reference Citation Analysis]
Number Citing Articles
1 Halliwell B. Reactive oxygen species (ROS), oxygen radicals and antioxidants: Where are we now, where is the field going and where should we go? Biochemical and Biophysical Research Communications 2022;633:17-19. [DOI: 10.1016/j.bbrc.2022.08.098] [Reference Citation Analysis]
2 Li D, Zhuang P, Mei X. Flexible regulation of reactive oxygen species by sustainable cluster drugs. Materials Today Chemistry 2022;26:101093. [DOI: 10.1016/j.mtchem.2022.101093] [Reference Citation Analysis]
3 Tuli HS, Kaur J, Vashishth K, Sak K, Sharma U, Choudhary R, Behl T, Singh T, Sharma S, Saini AK, Dhama K, Varol M, Sethi G. Molecular mechanisms behind ROS regulation in cancer: A balancing act between augmented tumorigenesis and cell apoptosis. Arch Toxicol 2022. [DOI: 10.1007/s00204-022-03421-z] [Reference Citation Analysis]
4 Maksimova MY. Combined effect of succinic acid, riboxin, nicotinamide, riboflavin for the treatment of chronic brain ischaemia. Medicinskij sovet 2022. [DOI: 10.21518/2079-701x-2022-16-21-20-26] [Reference Citation Analysis]
5 Wu B, Yang J, Zu Y, Chi J, Shi K. Aligned electrospun fiber film loaded with multi-enzyme mimetic iridium nanozymes for wound healing. J Nanobiotechnol 2022;20:478. [DOI: 10.1186/s12951-022-01685-2] [Reference Citation Analysis]
6 Xu C, Jiang Y, Wang H, Zhang Y, Ye Y, Qin H, Gao J, Dan Q, Du L, Liu L, Peng F, Li Y, Tu Y. Arthritic Microenvironment Actuated Nanomotors for Active Rheumatoid Arthritis Therapy. Advanced Science 2022. [DOI: 10.1002/advs.202204881] [Reference Citation Analysis]
7 Weigert H, Stuckenschneider T, Pickert L, Rossi A, Meyer AM, Nelles G, Schulz R, Stahl W, Schneider S, Polidori CM, on behalf of the NeuroExercise Study Group. Influence of a 12-Month Structured Exercise Program on the Micronutrient-Cognitive Fitness-Physical Association Profiles in Mild Cognitive Impairment. ADR 2022. [DOI: 10.3233/adr-220039] [Reference Citation Analysis]
8 Song Z, Gu Y, Zhang N, Fan C, Wen H, Guo C. Surface- and interface-regulated graphdiyne-based composites and their applications in the detection of small biological signaling molecules. Chin Sci Bull 2022;67:3667-3678. [DOI: 10.1360/tb-2022-0488] [Reference Citation Analysis]
9 Soragni C, Rabussier G, Lanz HL, Bircsak KM, de Windt LJ, Trietsch SJ, Murdoch CE, Ng CP. A versatile multiplexed assay to quantify intracellular ROS and cell viability in 3D on-a-chip models. Redox Biology 2022;57:102488. [DOI: 10.1016/j.redox.2022.102488] [Reference Citation Analysis]
10 Sies H. Oxidativer Stress, Eustress und Distress: H2O2 als Signalmolekül. Biospektrum 2022;28:685-690. [DOI: 10.1007/s12268-022-1862-y] [Reference Citation Analysis]
11 Haag M, Kehrer J, Sanchez CP, Deponte M, Lanzer M. Physiological jump in erythrocyte redox potential during Plasmodium falciparum development occurs independent of the sickle cell trait. Redox Biology 2022. [DOI: 10.1016/j.redox.2022.102536] [Reference Citation Analysis]
12 Waldeck-weiermair M, Yadav S, Kaynert J, Thulabandu VR, Pandey AK, Spyropoulos F, Covington T, Das AA, Krüger C, Michel T. Differential endothelial hydrogen peroxide signaling via Nox isoforms: Critical roles for Rac1 and modulation by statins. Redox Biology 2022. [DOI: 10.1016/j.redox.2022.102539] [Reference Citation Analysis]
13 Zhang J, Hai Y, Shi M, Bing W, Bao N, Liang J. Selective assembly of microbe on patterned porous interfaces as potential membrane reactors for enhanced biodegradation of phenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;652:129904. [DOI: 10.1016/j.colsurfa.2022.129904] [Reference Citation Analysis]
14 Pak O, Nolte A, Knoepp F, Giordano L, Pecina P, Hüttemann M, Grossman LI, Weissmann N, Sommer N. Mitochondrial oxygen sensing of acute hypoxia in specialized cells - Is there a unifying mechanism? Biochimica et Biophysica Acta (BBA) - Bioenergetics 2022;1863:148911. [DOI: 10.1016/j.bbabio.2022.148911] [Reference Citation Analysis]
15 Sahayasheela VJ, Yu Z, Hidaka T, Pandian GN, Sugiyama H. Mitochondria and G-quadruplex evolution: an intertwined relationship. Trends in Genetics 2022. [DOI: 10.1016/j.tig.2022.10.006] [Reference Citation Analysis]
16 Steinert JR, Amal H. The contribution of an imbalanced redox signalling to neurological and neurodegenerative conditions. Free Radical Biology and Medicine 2022. [DOI: 10.1016/j.freeradbiomed.2022.11.035] [Reference Citation Analysis]
17 Gao Y, Dong J, Chen M, Wang T, Yang Z, He K, Li Y, Wang K, Jiang J, Zhang S. Protective effect of low-dose radiation on doxorubicin-induced brain injury in mice. Arch Biochem Biophys 2022;729:109390. [PMID: 36067878 DOI: 10.1016/j.abb.2022.109390] [Reference Citation Analysis]
18 Sun B, Li Q, Dong X, Hou J, Wang W, Ying W, Hui X, Zhou Q, Yao H, Sun J, Wang X. Severe G6PD deficiency leads to recurrent infections and defects in ROS production: Case report and literature review. Front Genet 2022;13. [DOI: 10.3389/fgene.2022.1035673] [Reference Citation Analysis]
19 Taylor MF, Black MA, Hampton MB, Ledgerwood EC. Insights into H2O2-induced signaling in Jurkat cells from analysis of gene expression.. [DOI: 10.1101/2022.10.20.513094] [Reference Citation Analysis]
20 de Almeida AJPO, de Oliveira JCPL, da Silva Pontes LV, de Souza Júnior JF, Gonçalves TAF, Dantas SH, de Almeida Feitosa MS, Silva AO, de Medeiros IA, Giustarini D. ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. Oxidative Medicine and Cellular Longevity 2022;2022:1-23. [DOI: 10.1155/2022/1225578] [Reference Citation Analysis]
21 Shen T, Jia N, Wei S, Xu W, Lv T, Bai J, Li B. Mitochondrial HSC70-1 Regulates Polar Auxin Transport through ROS Homeostasis in Arabidopsis Roots. Antioxidants (Basel) 2022;11:2035. [PMID: 36290758 DOI: 10.3390/antiox11102035] [Reference Citation Analysis]
22 Messina MS, Quargnali G, Chang CJ. Activity-Based Sensing for Chemistry-Enabled Biology: Illuminating Principles, Probes, and Prospects for Boronate Reagents for Studying Hydrogen Peroxide. ACS Bio Med Chem Au 2022. [DOI: 10.1021/acsbiomedchemau.2c00052] [Reference Citation Analysis]
23 Rappe A, Mcwilliams TG. Mitophagy in the aging nervous system. Front Cell Dev Biol 2022;10:978142. [DOI: 10.3389/fcell.2022.978142] [Reference Citation Analysis]
24 Huang K, Poganik JR, Parvez S, Raja S, Miller B, Long MJC, Fetcho JR, Aye Y. Z-REX: Shepherding Reactive Electrophiles to Specific Proteins Expressed either Tissue-Specifically or Ubiquitously, and Recording the Resultant Functional Electrophile-Induced Redox Responses in Larval Fish.. [DOI: 10.1101/2022.10.06.511074] [Reference Citation Analysis]
25 Petricevich VL, Cedillo-Cortezano M, Abarca-Vargas R. Chemical Composition, Antioxidant Activity, Cytoprotective and In Silico Study of Ethanolic Extracts of Bougainvillea × buttiana (Var. Orange and Rose). Molecules 2022;27:6555. [PMID: 36235092 DOI: 10.3390/molecules27196555] [Reference Citation Analysis]
26 Wang Z, Chen X, Fan S, Zhu C, Deng H, Tang J, Sun X, Jia S, Liao Q, Xiao W, Liu X. Methyltransferase SMYD3 impairs hypoxia tolerance by augmenting hypoxia signaling independent of its enzymatic activity. Journal of Biological Chemistry 2022. [DOI: 10.1016/j.jbc.2022.102633] [Reference Citation Analysis]
27 Sauerland MB, Davies MJ. Electrophile versus oxidant modification of cysteine residues: Kinetics as a key driver of protein modification. Arch Biochem Biophys 2022;727:109344. [PMID: 35777524 DOI: 10.1016/j.abb.2022.109344] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Rao SM, Naresh Kumar C, Kokatnur V, Rao A, Singh V. Flavonoids and periodontal tissue: Exploring the link. JCB 2022;8:67-74. [DOI: 10.3233/jcb-210062] [Reference Citation Analysis]
29 Vecheck AM, Mcnamee C, Reijo Pera R, Usselman RJ. Quantum Biology in Cellular Migration.. [DOI: 10.1101/2022.09.09.507322] [Reference Citation Analysis]
30 Linzner N, Loi VV, Antelmann H. The Catalase KatA Contributes to Microaerophilic H2O2 Priming to Acquire an Improved Oxidative Stress Resistance in Staphylococcus aureus. Antioxidants 2022;11:1793. [DOI: 10.3390/antiox11091793] [Reference Citation Analysis]
31 Oršolić N, Jazvinšćak Jembrek M. Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022;23:10479. [PMID: 36142391 DOI: 10.3390/ijms231810479] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
32 Morrow JR, Raymond JJ, Chowdhury MSI, Sahoo PR. Redox-Responsive MRI Probes Based on First-Row Transition-Metal Complexes. Inorg Chem 2022. [PMID: 36067522 DOI: 10.1021/acs.inorgchem.2c02197] [Reference Citation Analysis]
33 Ishii T, Warabi E, Mann GE. Mechanisms underlying Nrf2 nuclear translocation by non-lethal levels of hydrogen peroxide: p38 MAPK-dependent neutral sphingomyelinase2 membrane trafficking and ceramide/PKCζ/CK2 signaling. Free Radic Biol Med 2022:S0891-5849(22)00564-0. [PMID: 36064071 DOI: 10.1016/j.freeradbiomed.2022.08.036] [Reference Citation Analysis]
34 Zhao S, Hong Y, Liang Y, Li X, Shen J, Sun C, Chu L, Hu J, Wang H, Xu D, Zhang S, Xu D, Xu T, Zhao L. Compartmentalized regulation of NAD+ by Di (2-ethyl-hexyl) phthalate induces DNA damage in placental trophoblast. Redox Biology 2022;55:102414. [DOI: 10.1016/j.redox.2022.102414] [Reference Citation Analysis]
35 Weiss-sadan T, Ge M, de Groot A, Carlin A, Gohar M, Fischer H, Shi L, Wei T, Adelmann CH, Vornbäumen T, Dürr BR, Takahashi M, Richter M, Zhang J, Yang T, Vijay V, Hayashi M, Fischer DE, Hata AN, Papaginanakopoulos T, Mostoslavsky R, Bardeesy N, Bar-peled L. NRF2 activation induces NADH-reductive stress providing a metabolic vulnerability in lung cancer.. [DOI: 10.1101/2022.08.31.506025] [Reference Citation Analysis]
36 Zhang W, Liu R, Chen Y, Wang M, Du J, Moreno S. Crosstalk between Oxidative Stress and Exosomes. Oxidative Medicine and Cellular Longevity 2022;2022:1-11. [DOI: 10.1155/2022/3553617] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Ning P, Jiang X, Yang J, Zhang J, Yang F, Cao H. Mitophagy: A potential therapeutic target for insulin resistance. Front Physiol 2022;13:957968. [DOI: 10.3389/fphys.2022.957968] [Reference Citation Analysis]
38 Shabir S, Yousuf S, Singh SK, Vamanu E, Singh MP. Ethnopharmacological Effects of Urtica dioica, Matricaria chamomilla, and Murraya koenigii on Rotenone-Exposed D. melanogaster: An Attenuation of Cellular, Biochemical, and Organismal Markers. Antioxidants (Basel) 2022;11:1623. [PMID: 36009342 DOI: 10.3390/antiox11081623] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Chartoumpekis DV, Ziros PG, Habeos IG, Sykiotis GP. Emerging roles of Keap1/Nrf2 signaling in the thyroid gland and perspectives for bench-to-bedside translation. Free Radic Biol Med 2022;190:276-83. [PMID: 35988853 DOI: 10.1016/j.freeradbiomed.2022.08.021] [Reference Citation Analysis]
40 Gencheva R, Cheng Q, Arnér ESJ. Thioredoxin reductase selenoproteins from different organisms as potential drug targets for treatment of human diseases. Free Radic Biol Med 2022;190:320-38. [PMID: 35987423 DOI: 10.1016/j.freeradbiomed.2022.07.020] [Reference Citation Analysis]
41 Galván I, Hassasfar A, Adams B, Petruccione F. Isotope effects on radical pair performance in cryptochrome: a new hypothesis for the evolution of animal migration.. [DOI: 10.1101/2022.08.08.503164] [Reference Citation Analysis]
42 Radi R. Interplay of carbon dioxide and peroxide metabolism in mammalian cells. J Biol Chem 2022;:102358. [PMID: 35961463 DOI: 10.1016/j.jbc.2022.102358] [Reference Citation Analysis]
43 Hong X, Hu Y, Yuan Z, Fang Z, Zhang X, Yuan Y, Guo C. Oxidatively damaged nucleic acid: Linking diabetes and cancer. Antioxid Redox Signal 2022. [PMID: 35946074 DOI: 10.1089/ars.2022.0096] [Reference Citation Analysis]
44 Panieri E, Pinho SA, Afonso GJM, Oliveira PJ, Cunha-oliveira T, Saso L. NRF2 and Mitochondrial Function in Cancer and Cancer Stem Cells. Cells 2022;11:2401. [DOI: 10.3390/cells11152401] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Liu S, Zhao Y, Feng X, Xu H. SARS-CoV-2 infection threatening intestinal health: A review of potential mechanisms and treatment strategies. Crit Rev Food Sci Nutr 2022;:1-19. [PMID: 35894645 DOI: 10.1080/10408398.2022.2103090] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Piccirillo S, Magi S, Preziuso A, Serfilippi T, Cerqueni G, Orciani M, Amoroso S, Lariccia V. The Hidden Notes of Redox Balance in Neurodegenerative Diseases. Antioxidants (Basel) 2022;11:1456. [PMID: 35892658 DOI: 10.3390/antiox11081456] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Heinke L. Mitochondrial ROS drive cell cycle progression. Nat Rev Mol Cell Biol 2022. [PMID: 35859207 DOI: 10.1038/s41580-022-00523-5] [Reference Citation Analysis]
48 Bekeschus S. Immunostimulation in experimental gas plasma therapy for breast cancer. Trends Biotechnol 2022:S0167-7799(22)00147-0. [PMID: 35831219 DOI: 10.1016/j.tibtech.2022.06.007] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Tang Y, Zhang Z, Chen Y, Qin S, Zhou L, Gao W, Shen Z. Metabolic Adaptation-Mediated Cancer Survival and Progression in Oxidative Stress. Antioxidants 2022;11:1324. [DOI: 10.3390/antiox11071324] [Reference Citation Analysis]
50 Casey AM, Murphy MP. Uncovering the source of mitochondrial superoxide in pro-inflammatory macrophages: Insights from immunometabolism. Biochim Biophys Acta Mol Basis Dis 2022;:166481. [PMID: 35792320 DOI: 10.1016/j.bbadis.2022.166481] [Reference Citation Analysis]
51 Eaton L, Pamenter ME. What to do with low O2: Redox adaptations in vertebrates native to hypoxic environments. Comp Biochem Physiol A Mol Integr Physiol 2022;271:111259. [PMID: 35724954 DOI: 10.1016/j.cbpa.2022.111259] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Ursini F, Bosello Travain V, Cozza G, Miotto G, Roveri A, Toppo S, Maiorino M. A white paper on Phospholipid Hydroperoxide Glutathione Peroxidase (GPx4) forty years later. Free Radic Biol Med 2022;188:117-33. [PMID: 35718302 DOI: 10.1016/j.freeradbiomed.2022.06.227] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
53 Furfaro AL, Loi G, Ivaldo C, Passalacqua M, Pietra G, Mann GE, Nitti M. HO-1 Limits the Efficacy of Vemurafenib/PLX4032 in BRAFV600E Mutated Melanoma Cells Adapted to Physiological Normoxia or Hypoxia. Antioxidants (Basel) 2022;11:1171. [PMID: 35740068 DOI: 10.3390/antiox11061171] [Reference Citation Analysis]
54 López-Armada MJ, Fernández-Rodríguez JA, Blanco FJ. Mitochondrial Dysfunction and Oxidative Stress in Rheumatoid Arthritis. Antioxidants (Basel) 2022;11:1151. [PMID: 35740048 DOI: 10.3390/antiox11061151] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Nascè A, Gariani K, Jornayvaz FR, Szanto I. NADPH Oxidases Connecting Fatty Liver Disease, Insulin Resistance and Type 2 Diabetes: Current Knowledge and Therapeutic Outlook. Antioxidants (Basel) 2022;11:1131. [PMID: 35740032 DOI: 10.3390/antiox11061131] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Luo M, Zhou L, Huang Z, Li B, Nice EC, Xu J, Huang C. Antioxidant Therapy in Cancer: Rationale and Progress. Antioxidants (Basel) 2022;11:1128. [PMID: 35740025 DOI: 10.3390/antiox11061128] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Rishabh R, Zadeh-Haghighi H, Salahub D, Simon C. Radical pairs may explain reactive oxygen species-mediated effects of hypomagnetic field on neurogenesis. PLoS Comput Biol 2022;18:e1010198. [PMID: 35653379 DOI: 10.1371/journal.pcbi.1010198] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
58 Harijith A, Basa P, Ha A, Thomas J, Jafri A, Fu P, Macfarlane PM, Raffay TM, Natarajan V, Sudhadevi T. NOX4 Mediates Epithelial Cell Death in Hyperoxic Acute Lung Injury Through Mitochondrial Reactive Oxygen Species. Front Pharmacol 2022;13:880878. [DOI: 10.3389/fphar.2022.880878] [Reference Citation Analysis]
59 Scholtes C, Giguère V. Transcriptional control of energy metabolism by nuclear receptors. Nat Rev Mol Cell Biol. [DOI: 10.1038/s41580-022-00486-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
60 Rawat M, Lakshminrusimha S, Vento M. Pulmonary hypertension and oxidative stress: Where is the link? Seminars in Fetal and Neonatal Medicine 2022. [DOI: 10.1016/j.siny.2022.101347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Pamies D, Wiersma D, Katt ME, Zhong L, Burtscher J, Harris G, Smirnova L, Searson PC, Hartung T, Hogberg HT. Human organotypic brain model as a tool to study chemical-induced dopaminergic neuronal toxicity. Neurobiology of Disease 2022. [DOI: 10.1016/j.nbd.2022.105719] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Sevimli G, Smith MJ, Caglar TA, Bilir Ş, Secilmis M, Altun HY, Yigit EN, Yang F, Keeley TP, Malli R, Öztürk G, Mann GE, Eroglu E. Nitric oxide biosensor uncovers diminished ferrous iron-dependency of cultured cells adapted to physiological oxygen levels. Redox Biology 2022. [DOI: 10.1016/j.redox.2022.102319] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
63 Roth M, Jaquet V, Lemeille S, Bonetti EJ, Cambet Y, François P, Krause KH. Transcriptomic Analysis of E. coli after Exposure to a Sublethal Concentration of Hydrogen Peroxide Revealed a Coordinated Up-Regulation of the Cysteine Biosynthesis Pathway. Antioxidants (Basel) 2022;11:655. [PMID: 35453340 DOI: 10.3390/antiox11040655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]