BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov 2021;20:817-38. [PMID: 34433919 DOI: 10.1038/s41573-021-00283-5] [Cited by in Crossref: 258] [Cited by in F6Publishing: 250] [Article Influence: 129.0] [Reference Citation Analysis]
Number Citing Articles
1 Cheng R, Wang S, Santos HA. Acid-labile chemical bonds-based nanoparticles for endosome escape and intracellular delivery. Biomedical Technology 2023;3:52-58. [DOI: 10.1016/j.bmt.2023.01.001] [Reference Citation Analysis]
2 Yang W, Cao J, Cheng H, Chen L, Yu M, Chen Y, Cui X. Nanoformulations targeting immune cells for cancer therapy: mRNA therapeutics. Bioactive Materials 2023;23:438-470. [DOI: 10.1016/j.bioactmat.2022.11.014] [Reference Citation Analysis]
3 You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023;36:e0024121. [PMID: 36625671 DOI: 10.1128/cmr.00241-21] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Huan-Huan Wei, Liangliang Zheng, Zefeng Wang. mRNA therapeutics: new vaccination and beyond. Fundamental Research 2023. [ DOI: 10.1016/j.fmre.2023.02.022] [Reference Citation Analysis]
5 Gao B, Wang X, Wang M, Liu W, Li Y, Xia S, Zhang W, Feng Y. "Intercellular Mass Transport" Mimic Enables ASO Entry Completely into the Cell Nucleus for Enhanced Ischemia Therapy. ACS Appl Mater Interfaces 2023;15:12777-86. [PMID: 36854063 DOI: 10.1021/acsami.2c21691] [Reference Citation Analysis]
6 Sun B, Xia N, Zhang X. Progress in immunotherapy. Sci China Life Sci 2023;:1-5. [PMID: 36932314 DOI: 10.1007/s11427-023-2322-3] [Reference Citation Analysis]
7 Tarim EA, Anil Inevi M, Ozkan I, Kecili S, Bilgi E, Baslar MS, Ozcivici E, Oksel Karakus C, Tekin HC. Microfluidic-based technologies for diagnosis, prevention, and treatment of COVID-19: recent advances and future directions. Biomed Microdevices 2023;25:10. [PMID: 36913137 DOI: 10.1007/s10544-023-00649-z] [Reference Citation Analysis]
8 Li X, Guo X, Hu M, Cai R, Chen C. Optimal delivery strategies for nanoparticle-mediated mRNA delivery. J Mater Chem B 2023;11:2063-77. [PMID: 36794598 DOI: 10.1039/d2tb02455a] [Reference Citation Analysis]
9 Gershfeld NL, Nossal R. Critical point for membrane bilayer formation. Biochim Biophys Acta Biomembr 2023;1865:184116. [PMID: 36640998 DOI: 10.1016/j.bbamem.2022.184116] [Reference Citation Analysis]
10 Mendonça MCP, Kont A, Kowalski PS, O'Driscoll CM. Design of lipid-based nanoparticles for delivery of therapeutic nucleic acids. Drug Discov Today 2023;28:103505. [PMID: 36708760 DOI: 10.1016/j.drudis.2023.103505] [Reference Citation Analysis]
11 Mantovani A, Rescigno M, Forni G, Tognon F, Putoto G, Ictho J, Lochoro P. COVID-19 vaccines and a perspective on Africa. Trends Immunol 2023;44:172-87. [PMID: 36709083 DOI: 10.1016/j.it.2023.01.005] [Reference Citation Analysis]
12 Fang RH, Zhang L. Inhalable mRNA nanoparticles. Nat Mater 2023;22:278-9. [PMID: 36864158 DOI: 10.1038/s41563-023-01491-7] [Reference Citation Analysis]
13 Yang T, Wang SC, Ye L, Maimaitiyiming Y, Naranmandura H. Targeting viral proteins for restraining SARS-CoV-2: focusing lens on viral proteins beyond spike for discovering new drug targets. Expert Opin Drug Discov 2023;18:247-68. [PMID: 36723288 DOI: 10.1080/17460441.2023.2175812] [Reference Citation Analysis]
14 Meyer MO, Yamagami R, Choi S, Keating CD, Bevilacqua PC. RNA folding studies inside peptide-rich droplets reveal roles of modified nucleosides at the origin of life. bioRxiv 2023:2023. [PMID: 36909509 DOI: 10.1101/2023.02.27.530264] [Reference Citation Analysis]
15 Johnson AMF, Hager K, Alameh MG, Van P, Potchen N, Mayer-Blackwell K, Fiore-Gartland A, Minot S, Lin PJC, Tam YK, Weissman D, Kublin JG. The Regulation of Nucleic Acid Vaccine Responses by the Microbiome. bioRxiv 2023:2023. [PMID: 36824851 DOI: 10.1101/2023.02.18.529093] [Reference Citation Analysis]
16 Mei Y, Wang X. RNA modification in mRNA cancer vaccines. Clin Exp Med 2023;:1-15. [PMID: 36788153 DOI: 10.1007/s10238-023-01020-5] [Reference Citation Analysis]
17 Tanaka H, Hagiwara S, Shirane D, Yamakawa T, Sato Y, Matsumoto C, Ishizaki K, Hishinuma M, Chida K, Sasaki K, Yonemochi E, Ueda K, Higashi K, Moribe K, Tadokoro T, Maenaka K, Taneichi S, Nakai Y, Tange K, Sakurai Y, Akita H. Ready-to-Use-Type Lyophilized Lipid Nanoparticle Formulation for the Postencapsulation of Messenger RNA. ACS Nano 2023;17:2588-601. [PMID: 36719091 DOI: 10.1021/acsnano.2c10501] [Reference Citation Analysis]
18 Yang W, Mixich L, Boonstra E, Cabral H. Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv Healthc Mater 2023;:e2202688. [PMID: 36785927 DOI: 10.1002/adhm.202202688] [Reference Citation Analysis]
19 Xian H, Zhang Y, Yu C, Wang Y. Nanobiotechnology-Enabled mRNA Stabilization. Pharmaceutics 2023;15. [PMID: 36839942 DOI: 10.3390/pharmaceutics15020620] [Reference Citation Analysis]
20 Rohde CM, Lindemann C, Giovanelli M, Sellers RS, Diekmann J, Choudhary S, Ramaiah L, Vogel AB, Chervona Y, Muik A, Sahin U. Toxicological Assessments of a Pandemic COVID-19 Vaccine-Demonstrating the Suitability of a Platform Approach for mRNA Vaccines. Vaccines (Basel) 2023;11. [PMID: 36851293 DOI: 10.3390/vaccines11020417] [Reference Citation Analysis]
21 Priyanka, Chopra H, Choudhary OP. mRNA vaccines as an armor to combat the infectious diseases. Travel Med Infect Dis 2023;52:102550. [PMID: 36754340 DOI: 10.1016/j.tmaid.2023.102550] [Reference Citation Analysis]
22 Lu Y, Huang W, Li M, Zheng A. Exosome-Based Carrier for RNA Delivery: Progress and Challenges. Pharmaceutics 2023;15. [PMID: 36839920 DOI: 10.3390/pharmaceutics15020598] [Reference Citation Analysis]
23 Lu M, Xing H, Zheng A, Huang Y, Liang XJ. Overcoming Pharmaceutical Bottlenecks for Nucleic Acid Drug Development. Acc Chem Res 2023;56:224-36. [PMID: 36624086 DOI: 10.1021/acs.accounts.2c00464] [Reference Citation Analysis]
24 Su DD, Gervais V, Ulrich S, Barboiu M. Complexation Preferences of Dynamic Constitutional Frameworks as Adaptive Gene Vectors. Chemistry 2023;29:e202203062. [PMID: 36345945 DOI: 10.1002/chem.202203062] [Reference Citation Analysis]
25 Li M, Huang Y, Wu J, Li S, Mei M, Chen H, Wang N, Wu W, Zhou B, Tan X, Li B. A PEG-lipid-free COVID-19 mRNA vaccine triggers robust immune responses in mice. Mater Horiz 2023;10:466-72. [PMID: 36468425 DOI: 10.1039/d2mh01260j] [Reference Citation Analysis]
26 Husseini RA, Abe N, Hara T, Abe H, Kogure K. Use of Iontophoresis Technology for Transdermal Delivery of a Minimal mRNA Vaccine as a Potential Melanoma Therapeutic. Biol Pharm Bull 2023;46:301-8. [PMID: 36724958 DOI: 10.1248/bpb.b22-00746] [Reference Citation Analysis]
27 Chen S, Pounraj S, Sivakumaran N, Kakkanat A, Sam G, Kabir MT, Rehm BHA. Precision-engineering of subunit vaccine particles for prevention of infectious diseases. Front Immunol 2023;14:1131057. [PMID: 36817419 DOI: 10.3389/fimmu.2023.1131057] [Reference Citation Analysis]
28 Yang Z, Gao D, Zhao J, Yang G, Guo M, Wang Y, Ren X, Kim JS, Jin L, Tian Z, Zhang X. Thermal immuno-nanomedicine in cancer. Nat Rev Clin Oncol 2023;20:116-34. [PMID: 36604531 DOI: 10.1038/s41571-022-00717-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Tilstra G, Couture-Senécal J, Lau YMA, Manning AM, Wong DSM, Janaeska WW, Wuraola TA, Pang J, Khan OF. Iterative Design of Ionizable Lipids for Intramuscular mRNA Delivery. J Am Chem Soc 2023;145:2294-304. [PMID: 36652629 DOI: 10.1021/jacs.2c10670] [Reference Citation Analysis]
30 Chen MJ, Gatignol A, Scarborough RJ. The discovery and development of RNA-based therapies for treatment of HIV-1 infection. Expert Opin Drug Discov 2023;18:163-79. [PMID: 36004505 DOI: 10.1080/17460441.2022.2117296] [Reference Citation Analysis]
31 Lairson LL. Editorial overview: Modality, discovery, and class. Curr Opin Chem Biol 2023;72:102251. [PMID: 36571959 DOI: 10.1016/j.cbpa.2022.102251] [Reference Citation Analysis]
32 Huo H, Zou J, Yang SG, Zhang J, Liu J, Liu Y, Hao Y, Chen H, Li H, Huang C, Ungar G, Liu F, Zhang Z, Zhang Q. Multicompartment Nanoparticles by Crystallization-Driven Self-Assembly of Star Polymers: Combining High Stability and Loading Capacity. Macromol Rapid Commun 2023;44:e2200706. [PMID: 36353903 DOI: 10.1002/marc.202200706] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Liu Y, Liu X, Huang J, Shi Y, Luo Z, Zhang J, Guo X, Jiang M, Li X, Yin H, Qin B, Guan G, Luo L, Zhou Y, You J. Nonlysosomal Route of mRNA Delivery and Combining with Epigenetic Regulation Optimized Antitumor Immunoprophylactic Efficacy. Adv Healthc Mater 2023;12:e2202460. [PMID: 36366890 DOI: 10.1002/adhm.202202460] [Reference Citation Analysis]
34 Gote V, Bolla PK, Kommineni N, Butreddy A, Nukala PK, Palakurthi SS, Khan W. A Comprehensive Review of mRNA Vaccines. Int J Mol Sci 2023;24. [PMID: 36769023 DOI: 10.3390/ijms24032700] [Reference Citation Analysis]
35 Gouma S, Furey C, Santos JJS, Parkhouse K, Weirick M, Muramatsu H, Pardi N, Fan SHY, Weissman D, Hensley SE. Nucleoside-Modified mRNA-Based Influenza Vaccines Circumvent Problems Associated with H3N2 Vaccine Strain Egg Adaptation. J Virol 2023;97:e0172322. [PMID: 36533954 DOI: 10.1128/jvi.01723-22] [Reference Citation Analysis]
36 Usero L, Leal L, Gómez CE, Miralles L, Aurrecoechea E, Esteban I, Torres B, Inciarte A, Perdiguero B, Esteban M, García F, Plana M. The Combination of an mRNA Immunogen, a TLR7 Agonist and a PD1 Blocking Agent Enhances In-Vitro HIV T-Cell Immune Responses. Vaccines (Basel) 2023;11. [PMID: 36851164 DOI: 10.3390/vaccines11020286] [Reference Citation Analysis]
37 Evers P, Pezacki JP. Unraveling Complex MicroRNA Signaling Pathways with Activity‐Based Protein Profiling to Guide Therapeutic Discovery**. Israel Journal of Chemistry 2023. [DOI: 10.1002/ijch.202200088] [Reference Citation Analysis]
38 Solopov PA. COVID-19 Vaccination and Alcohol Consumption: Justification of Risks. Pathogens 2023;12. [PMID: 36839435 DOI: 10.3390/pathogens12020163] [Reference Citation Analysis]
39 Lee KM, Lin SJ, Wu CJ, Kuo RL. Race with virus evolution: The development and application of mRNA vaccines against SARS-CoV-2. Biomed J 2023:S2319-4170(23)00001-X. [PMID: 36642222 DOI: 10.1016/j.bj.2023.01.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 You Y, Tian Y, Yang Z, Shi J, Kwak KJ, Tong Y, Estania AP, Cao J, Hsu WH, Liu Y, Chiang CL, Schrank BR, Huntoon K, Lee D, Li Z, Zhao Y, Zhang H, Gallup TD, Ha J, Dong S, Li X, Wang Y, Lu WJ, Bahrani E, Lee LJ, Teng L, Jiang W, Lan F, Kim BYS, Lee AS. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat Biomed Eng 2023. [PMID: 36635419 DOI: 10.1038/s41551-022-00989-w] [Reference Citation Analysis]
41 Qin S, Huang H, Xiao W, Chen K, He X, Tang X, Huang Z, Zhang Y, Duan X, Fan N, Zheng Q, Wu M, Lu G, Wei Y, Wei X, Song X. A novel heterologous receptor-binding domain dodecamer universal mRNA vaccine against SARS-CoV-2 variants. Acta Pharm Sin B 2023. [PMID: 36647424 DOI: 10.1016/j.apsb.2023.01.010] [Reference Citation Analysis]
42 Xie N, Shen G, Gao W, Huang Z, Huang C, Fu L. Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023;8:9. [PMID: 36604431 DOI: 10.1038/s41392-022-01270-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Xu K, Lei W, Kang B, Yang H, Wang Y, Lu Y, Lv L, Sun Y, Zhang J, Wang X, Yang M, Dan M, Wu G. A novel mRNA vaccine, SYS6006, against SARS-CoV-2. Front Immunol 2022;13:1051576. [PMID: 36685587 DOI: 10.3389/fimmu.2022.1051576] [Reference Citation Analysis]
44 Deal CE, Richards AF, Yeung T, Maron MJ, Wang Z, Lai Y, Fritz BR, Himansu S, Narayanan E, Liu D, Koleva R, Licht S, Hsiao CJ, Rajlic IL, Koch H, Kleyman M, Pulse ME, Weiss WJ, Doering JE, Lindberg SK, Mantis NJ, Carfi A, Plante OJ. mRNA delivery of dimeric human IgA protects mucosal tissues from bacterial infection.. [DOI: 10.1101/2023.01.03.521487] [Reference Citation Analysis]
45 Koch KC, Tew GN. Functional antibody delivery: Advances in cellular manipulation. Adv Drug Deliv Rev 2023;192:114586. [PMID: 36280179 DOI: 10.1016/j.addr.2022.114586] [Reference Citation Analysis]
46 Sehrawat S, Osterrieder N, Schmid DS, Rouse BT. Can the triumph of mRNA vaccines against COVID-19 be extended to other viral infections of humans and domesticated animals? Microbes Infect 2023;25:105078. [PMID: 36435367 DOI: 10.1016/j.micinf.2022.105078] [Reference Citation Analysis]
47 Sahu KK, Pradhan M, Singh D, Singh MR, Yadav K. Non-viral nucleic acid delivery approach: A boon for state-of-the-art gene delivery. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104152] [Reference Citation Analysis]
48 Verma SK, Mahajan P, Singh NK, Gupta A, Aggarwal R, Rappuoli R, Johri AK. New-age vaccine adjuvants, their development, and future perspective. Front Immunol 2023;14:1043109. [PMID: 36911719 DOI: 10.3389/fimmu.2023.1043109] [Reference Citation Analysis]
49 Huang P, Jiang L, Pan H, Ding L, Zhou B, Zhao M, Zou J, Li B, Qi M, Deng H, Zhou Y, Chen X. An Integrated Polymeric mRNA Vaccine without Inflammation Side Effects for Cellular Immunity Mediated Cancer Therapy. Adv Mater 2023;35:e2207471. [PMID: 36326183 DOI: 10.1002/adma.202207471] [Reference Citation Analysis]
50 Donahue DA, Ballesteros C, Maruggi G, Glover C, Ringenberg MA, Marquis M, Ben Abdeljelil N, Ashraf A, Rodriguez LA, Stokes AH. Nonclinical Safety Assessment of Lipid Nanoparticle-and Emulsion-Based Self-Amplifying mRNA Vaccines in Rats. Int J Toxicol 2023;42:37-49. [PMID: 36472205 DOI: 10.1177/10915818221138781] [Reference Citation Analysis]
51 Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. J Nanopart Res 2023;25:43. [PMID: 36875184 DOI: 10.1007/s11051-023-05690-w] [Reference Citation Analysis]
52 Zhang C, Zhang B. RNA therapeutics: updates and future potential. Sci China Life Sci 2023;66:12-30. [PMID: 36100838 DOI: 10.1007/s11427-022-2171-2] [Reference Citation Analysis]
53 Choi S, Yang Z, Wang Q, Qiao Z, Sun M, Wiggins J, Xiang SH, Lu Q. Displaying and delivering viral membrane antigens via WW domain-activated extracellular vesicles. Sci Adv 2023;9:eade2708. [PMID: 36706192 DOI: 10.1126/sciadv.ade2708] [Reference Citation Analysis]
54 Herrera-Barrera M, Ryals RC, Gautam M, Jozic A, Landry M, Korzun T, Gupta M, Acosta C, Stoddard J, Reynaga R, Tschetter W, Jacomino N, Taratula O, Sun C, Lauer AK, Neuringer M, Sahay G. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Sci Adv 2023;9:eadd4623. [PMID: 36630502 DOI: 10.1126/sciadv.add4623] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Zhang M, Hussain A, Yang H, Zhang J, Liang XJ, Huang Y. mRNA-based modalities for infectious disease management. Nano Res 2023;16:672-91. [PMID: 35818566 DOI: 10.1007/s12274-022-4627-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Melamed JR, Yerneni SS, Arral ML, LoPresti ST, Chaudhary N, Sehrawat A, Muramatsu H, Alameh MG, Pardi N, Weissman D, Gittes GK, Whitehead KA. Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer. Sci Adv 2023;9:eade1444. [PMID: 36706177 DOI: 10.1126/sciadv.ade1444] [Reference Citation Analysis]
57 Chen P, Shi X, He W, Zhong G, Tang Y, Wang H, Zhang P. mRNA vaccine-a desirable therapeutic strategy for surmounting COVID-19 pandemic. Hum Vaccin Immunother 2022;18:2040330. [PMID: 35321627 DOI: 10.1080/21645515.2022.2040330] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Janse M, Soekhradj SD, de Jong R, van de Burgwal LHM. Identifying Cross-Utilization of RSV Vaccine Inventions across the Human and Veterinary Field. Pathogens 2022;12. [PMID: 36678394 DOI: 10.3390/pathogens12010046] [Reference Citation Analysis]
59 Lin L, Pei Y, Li Z, Luo D. Progress and challenges of mRNA vaccines. Interdisciplinary Medicine 2022. [DOI: 10.1002/inmd.20220008] [Reference Citation Analysis]
60 Freyn AW, Atyeo C, Earl PL, Americo JL, Chuang G, Natarajan H, Frey T, Gall J, Moliva JI, Hunegnaw R, Arunkumar GA, Ogega C, Nasir A, Bennett H, Johnson J, Durney MA, Stewart-jones G, Hooper JW, Colpitts T, Alter G, Sullivan NJ, Carfi A, Moss B. A monkeypox mRNA-lipid nanoparticle vaccine targeting virus binding, entry, and transmission drives protection against lethal orthopoxviral challenge.. [DOI: 10.1101/2022.12.17.520886] [Reference Citation Analysis]
61 Doppen M, Mirjalili A, Harwood M, Eathorne A, Braithwaite I, Bong J, Kirton L, Semprini R, Weatherall M, Semprini A, Kearns C, Black M, Kung S, Walton M, Beasley R, Hills T. COVID-19 vaccination and the skin to deltoid MUSCLE distance in adults with diabetes. Vaccine X 2023;13:100248. [PMID: 36536872 DOI: 10.1016/j.jvacx.2022.100248] [Reference Citation Analysis]
62 Zhang L, Liang Y, Liang G, Tian Z, Zhang Y, Liu Z, Ji X. The therapeutic prospects of N-acetylgalactosamine-siRNA conjugates. Front Pharmacol 2022;13:1090237. [PMID: 36588695 DOI: 10.3389/fphar.2022.1090237] [Reference Citation Analysis]
63 Wang Y, Hu L, Liu N, Han M, Zhou T, Xing L, Jiang H. Suppression of mitochondrial heterogeneity via engineered mitochondria for reversion of mitochondrial disease-related phenotypes.. [DOI: 10.21203/rs.3.rs-2327478/v1] [Reference Citation Analysis]
64 Bellato F, Feola S, Dalla Verde G, Bellio G, Pirazzini M, Salmaso S, Caliceti P, Cerullo V, Mastrotto F. Mannosylated Polycations Target CD206(+) Antigen-Presenting Cells and Mediate T-Cell-Specific Activation in Cancer Vaccination. Biomacromolecules 2022;23:5148-63. [PMID: 36394394 DOI: 10.1021/acs.biomac.2c00993] [Reference Citation Analysis]
65 Künzli M, O'Flanagan SD, LaRue M, Talukder P, Dileepan T, Stolley JM, Soerens AG, Quarnstrom CF, Wijeyesinghe S, Ye Y, McPartlan JS, Mitchell JS, Mandl CW, Vile R, Jenkins MK, Ahmed R, Vezys V, Chahal JS, Masopust D. Route of self-amplifying mRNA vaccination modulates the establishment of pulmonary resident memory CD8 and CD4 T cells. Sci Immunol 2022;7:eadd3075. [PMID: 36459542 DOI: 10.1126/sciimmunol.add3075] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Okuyama R. Nurturing Deep Tech to Solve Social Problems: Learning from COVID-19 mRNA Vaccine Development. Pathogens 2022;11. [PMID: 36558803 DOI: 10.3390/pathogens11121469] [Reference Citation Analysis]
67 Park Y, Moses AS, Demessie AA, Singh P, Lee H, Korzun T, Taratula OR, Alani AWG, Taratula O. Poly(aspartic acid)-Based Polymeric Nanoparticle for Local and Systemic mRNA Delivery. Mol Pharm 2022;19:4696-704. [PMID: 36409995 DOI: 10.1021/acs.molpharmaceut.2c00738] [Reference Citation Analysis]
68 Bessen C, Plaza-Sirvent C, Simsek A, Bhat J, Marheinecke C, Urlaub D, Bonowitz P, Busse S, Schumann S, Blanco EV, Skaletz-Rorowski A, Brockmeyer NH, Overheu O, Reinacher-Schick A, Faissner S, Watzl C, Pfaender S, Potthoff A, Schmitz I. Impact of SARS-CoV-2 vaccination on systemic immune responses in people living with HIV. Front Immunol 2022;13:1049070. [PMID: 36532034 DOI: 10.3389/fimmu.2022.1049070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Gatechompol S, Kittanamongkolchai W, Ketloy C, Prompetchara E, Thitithanyanont A, Jongkaewwattana A, Buranapraditkun S, Alameh MG, Ubolyam S, Sophonphan J, Apornpong T, Kerr S, Kamarulzaman A, Siwamogsatham S, Kroon E, Puthanakit T, Patarakul K, Palaga T, Wijagkanalan W, Carpenter A, Hong L, Weissman D, Ruxrungtham K; ChulaVAC-001 study team. Safety and immunogenicity of a prefusion non-stabilized spike protein mRNA COVID-19 vaccine: a phase I trial. Nat Microbiol 2022;7:1987-95. [PMID: 36376393 DOI: 10.1038/s41564-022-01271-0] [Reference Citation Analysis]
70 Wan W, Zhao Q, Jing B, Peng C, Wang M, Huang Y, Jin W, Zhong B, Zhang Z, Dong X, Gao Z, Zhang L, Liu Y. Interrogating the impact of aggregation‐induced emission nanoparticles on in vitro protein stability, ex vivo protein homeostasis, and in vivo biocompatibility. Aggregate 2022;3. [DOI: 10.1002/agt2.274] [Reference Citation Analysis]
71 Huang Y, Yang M, Wang N, Li S, Liu Z, Li Z, Ji Z, Li B. Intracellular delivery of messenger RNA to macrophages with surfactant-derived lipid nanoparticles. Materials Today Advances 2022;16:100295. [DOI: 10.1016/j.mtadv.2022.100295] [Reference Citation Analysis]
72 Hielscher F, Schmidt T, Klemis V, Wilhelm A, Marx S, Abu-Omar A, Ziegler L, Guckelmus C, Urschel R, Sester U, Widera M, Sester M. NVX-CoV2373-induced cellular and humoral immunity towards parental SARS-CoV-2 and VOCs compared to BNT162b2 and mRNA-1273-regimens. J Clin Virol 2022;157:105321. [PMID: 36279695 DOI: 10.1016/j.jcv.2022.105321] [Reference Citation Analysis]
73 Stoitzner P, Romani N, Rademacher C, Probst HC, Mahnke K. Antigen targeting to dendritic cells: Still a place in future immunotherapy? Eur J Immunol 2022;52:1909-24. [PMID: 35598160 DOI: 10.1002/eji.202149515] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
74 Qiu X, Xu S, Lu Y, Luo Z, Yan Y, Wang C, Ji J. Development of mRNA vaccines against respiratory syncytial virus (RSV). Cytokine Growth Factor Rev 2022;68:37-53. [PMID: 36280532 DOI: 10.1016/j.cytogfr.2022.10.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Tangy F, Tournier JN. [Viruses to rescue health: Vaccination]. Med Sci (Paris) 2022;38:1052-60. [PMID: 36692265 DOI: 10.1051/medsci/2022168] [Reference Citation Analysis]
76 Shi H, Xie Z, Cao Y, Zhao Y, Zhang C, Chen Z, Reis NM, Liu Z. A microfluidic serial dilutor (MSD): Design optimization and application to tuning of liposome nanoparticle preparation. Chemical Engineering Science 2022;263:118080. [DOI: 10.1016/j.ces.2022.118080] [Reference Citation Analysis]
77 Ahmed A, Safdar M, Sardar S, Yousaf S, Farooq F, Raza A, Shahid M, Malik K, Afzal S. Modern vaccine strategies for emerging zoonotic viruses. Expert Rev Vaccines 2022;21:1711-25. [PMID: 36384000 DOI: 10.1080/14760584.2022.2148660] [Reference Citation Analysis]
78 Fan N, Chen K, Zhu R, Zhang Z, Huang H, Qin S, Zheng Q, He Z, He X, Xiao W, Zhang Y, Gu Y, Zhao C, Liu Y, Jiang X, Li S, Wei Y, Song X. Manganese-coordinated mRNA vaccines with enhanced mRNA expression and immunogenicity induce robust immune responses against SARS-CoV-2 variants. Sci Adv 2022;8:eabq3500. [PMID: 36563159 DOI: 10.1126/sciadv.abq3500] [Reference Citation Analysis]
79 Ali F, Neha K, Parveen S. Current regulatory landscape of nanomaterials and nanomedicines: A global perspective. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.104118] [Reference Citation Analysis]
80 Musa HH, Musa TH. A systematic and thematic analysis of the top 100 cited articles on mRNA vaccine indexed in Scopus database. Hum Vaccin Immunother 2022;18:2135927. [PMID: 36328513 DOI: 10.1080/21645515.2022.2135927] [Reference Citation Analysis]
81 Li M, Ren J, Si X, Sun Z, Wang P, Zhang X, Liu K, Wei B. The global mRNA vaccine patent landscape. Hum Vaccin Immunother 2022;18:2095837. [PMID: 35797353 DOI: 10.1080/21645515.2022.2095837] [Reference Citation Analysis]
82 Hayman B, Kumar Suri R, Downham M. Sustainable vaccine manufacturing in low- and middle-Income countries. Vaccine 2022;40:7288-304. [PMID: 36334966 DOI: 10.1016/j.vaccine.2022.10.044] [Reference Citation Analysis]
83 Lee H, Byun JC, Kim WJ, Chang MC, Kim S. Multiple cranial nerve palsies with small angle exotropia following COVID-19 mRNA vaccination in an adolescent: A case report. World J Clin Cases 2022; 10(33): 12289-12294 [DOI: 10.12998/wjcc.v10.i33.12289] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Hou C, Jin Y, Wu H, Li P, Liu L, Zheng K, Wang C. Alternative strategies for Chlamydia treatment: Promising non-antibiotic approaches. Front Microbiol 2022;13:987662. [PMID: 36504792 DOI: 10.3389/fmicb.2022.987662] [Reference Citation Analysis]
85 Li Z, Zhang XQ, Ho W, Li F, Gao M, Bai X, Xu X. Enzyme-Catalyzed One-Step Synthesis of Ionizable Cationic Lipids for Lipid Nanoparticle-Based mRNA COVID-19 Vaccines. ACS Nano 2022;16:18936-50. [PMID: 36269150 DOI: 10.1021/acsnano.2c07822] [Reference Citation Analysis]
86 Liu W, Alameh MG, Yang JF, Xu JR, Lin PJC, Tam YK, Weissman D, You J. Lipid Nanoparticles Delivering Constitutively Active STING mRNA to Stimulate Antitumor Immunity. Int J Mol Sci 2022;23. [PMID: 36498833 DOI: 10.3390/ijms232314504] [Reference Citation Analysis]
87 Puigmal N, Ramos V, Artzi N, Borrós S. Poly(β-amino ester)s-based delivery systems for targeted transdermal vaccination.. [DOI: 10.21203/rs.3.rs-2298667/v1] [Reference Citation Analysis]
88 Lin Y, Sun B, Jin Z, Zhao K. Enhanced Immune Responses to Mucosa by Functionalized Chitosan-Based Composite Nanoparticles as a Vaccine Adjuvant for Intranasal Delivery. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c17627] [Reference Citation Analysis]
89 Johnson LT, Zhang D, Zhou K, Lee SM, Liu S, Dilliard SA, Farbiak L, Chatterjee S, Lin YH, Siegwart DJ. Lipid Nanoparticle (LNP) Chemistry Can Endow Unique In Vivo RNA Delivery Fates within the Liver That Alter Therapeutic Outcomes in a Cancer Model. Mol Pharm 2022;19:3973-86. [PMID: 36154076 DOI: 10.1021/acs.molpharmaceut.2c00442] [Reference Citation Analysis]
90 Li Y, He Z, Lyu J, Wang X, Qiu B, Lara-sáez I, Zhang J, Zeng M, Xu Q, A S, Curtin JF, Wang W. Hyperbranched Poly(β-amino ester)s (HPAEs) Structure Optimisation for Enhanced Gene Delivery: Non-Ideal Termination Elimination. Nanomaterials 2022;12:3892. [DOI: 10.3390/nano12213892] [Reference Citation Analysis]
91 Li Y, Jiang X, Luo T, Xia J, Lee MJ, Weichselbaum RR, Lin W. TLR3 agonist nanoscale coordination polymer synergizes with immune checkpoint blockade for immunotherapy of cancer. Biomaterials 2022;290:121831. [DOI: 10.1016/j.biomaterials.2022.121831] [Reference Citation Analysis]
92 Huang X, Kong N, Zhang X, Cao Y, Langer R, Tao W. The landscape of mRNA nanomedicine. Nat Med 2022;28:2273-87. [PMID: 36357682 DOI: 10.1038/s41591-022-02061-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
93 Wang Y, Ling L, Zhang Z, Marin-lopez A. Current Advances in Zika Vaccine Development. Vaccines 2022;10:1816. [DOI: 10.3390/vaccines10111816] [Reference Citation Analysis]
94 Kimura Y, Kashima D, Kawahara M. A growth-based platform for detecting domain-peptide interactions in the cytoplasm of mammalian cells. Sci Rep 2022;12:18028. [PMID: 36302843 DOI: 10.1038/s41598-022-22770-4] [Reference Citation Analysis]
95 Sekar D, Tusubira D, Ross K. TDP-43 and NEAT long non-coding RNA: Roles in neurodegenerative disease. Front Cell Neurosci 2022;16:954912. [PMID: 36385948 DOI: 10.3389/fncel.2022.954912] [Reference Citation Analysis]
96 Narayanan E, Falcone S, Elbashir SM, Attarwala H, Hassett K, Seaman MS, Carfi A, Himansu S. Rational Design and In Vivo Characterization of mRNA-Encoded Broadly Neutralizing Antibody Combinations against HIV-1. Antibodies (Basel) 2022;11. [PMID: 36412833 DOI: 10.3390/antib11040067] [Reference Citation Analysis]
97 Li D, Martinez DR, Schäfer A, Chen H, Barr M, Sutherland LL, Lee E, Parks R, Mielke D, Edwards W, Newman A, Bock KW, Minai M, Nagata BM, Gagne M, Douek DC, DeMarco CT, Denny TN, Oguin TH 3rd, Brown A, Rountree W, Wang Y, Mansouri K, Edwards RJ, Ferrari G, Sempowski GD, Eaton A, Tang J, Cain DW, Santra S, Pardi N, Weissman D, Tomai MA, Fox CB, Moore IN, Andersen H, Lewis MG, Golding H, Seder R, Khurana S, Baric RS, Montefiori DC, Saunders KO, Haynes BF. Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine. Nat Commun 2022;13:6309. [PMID: 36274085 DOI: 10.1038/s41467-022-33985-4] [Reference Citation Analysis]
98 Miyasaka M. The lymphatic system and COVID-19 vaccines. Front Immunol 2022;13:1041025. [DOI: 10.3389/fimmu.2022.1041025] [Reference Citation Analysis]
99 Xu Z, Ismanto HS, Zhou H, Saputri DS, Sugihara F, Standley DM. Advances in antibody discovery from human BCR repertoires. Front Bioinform 2022;2. [DOI: 10.3389/fbinf.2022.1044975] [Reference Citation Analysis]
100 Rcheulishvili N, Papukashvili D, Liu C, Ji Y, He Y, Wang PG. Promising strategy for developing mRNA-based universal influenza virus vaccine for human population, poultry, and pigs– focus on the bigger picture. Front Immunol 2022;13:1025884. [DOI: 10.3389/fimmu.2022.1025884] [Reference Citation Analysis]
101 Luo Y, Liu L, He Z, Zhang S, Huo P, Wang Z, Jiaxin Q, Zhao L, Wu Y, Zhang D, Bu D, Chen R, Zhao Y. TREAT: Therapeutic RNAs exploration inspired by artificial intelligence technology. Comput Struct Biotechnol J 2022;20:5680-9. [PMID: 36320935 DOI: 10.1016/j.csbj.2022.10.011] [Reference Citation Analysis]
102 Nacasch N, Cohen-Hagai K, Tayar N, Levian A, Rashid G, Benchetrit S, Neumark E, Wand O, Hod T, Rosman Y, Shashar M, Grupper A, Shitrit P. Humoral Response to Hepatitis B and COVID-19 Vaccine among Maintenance Hemodialysis Patients. Vaccines (Basel) 2022;10:1670. [PMID: 36298535 DOI: 10.3390/vaccines10101670] [Reference Citation Analysis]
103 Liu T, Tian Y, Zheng A, Cui C. Design Strategies for and Stability of mRNA-Lipid Nanoparticle COVID-19 Vaccines. Polymers (Basel) 2022;14. [PMID: 36236141 DOI: 10.3390/polym14194195] [Reference Citation Analysis]
104 Becette OB, Marino JP, Brinson RG. Structural Fingerprinting of Antisense Oligonucleotide Therapeutics by Solution NMR Spectroscopy. Pharm Res 2022. [PMID: 36195820 DOI: 10.1007/s11095-022-03403-x] [Reference Citation Analysis]
105 Lee M, Rice-Boucher PJ, Collins LT, Wagner E, Aulisa L, Hughes J, Curiel DT. A Novel Piggyback Strategy for mRNA Delivery Exploiting Adenovirus Entry Biology. Viruses 2022;14. [PMID: 36298724 DOI: 10.3390/v14102169] [Reference Citation Analysis]
106 Case NT, Berman J, Blehert DS, Cramer RA, Cuomo C, Currie CR, Ene IV, Fisher MC, Fritz-Laylin LK, Gerstein AC, Glass NL, Gow NAR, Gurr SJ, Hittinger CT, Hohl TM, Iliev ID, James TY, Jin H, Klein BS, Kronstad JW, Lorch JM, McGovern V, Mitchell AP, Segre JA, Shapiro RS, Sheppard DC, Sil A, Stajich JE, Stukenbrock EE, Taylor JW, Thompson D, Wright GD, Heitman J, Cowen LE. The future of fungi: threats and opportunities. G3 (Bethesda) 2022;12. [PMID: 36179219 DOI: 10.1093/g3journal/jkac224] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Matsubara T. Peptide mimotopes to emulate carbohydrates. Chem Soc Rev 2022. [PMID: 36128765 DOI: 10.1039/d2cs00470d] [Reference Citation Analysis]
108 Kubiatowicz LJ, Mohapatra A, Krishnan N, Fang RH, Zhang L. mRNA nanomedicine: Design and recent applications. Exploration 2022. [DOI: 10.1002/exp.20210217] [Reference Citation Analysis]
109 Mura M, Simon F, Pommier de Santi V, Tangy F, Tournier JN. Role and Limits of COVID-19 Vaccines in the Delicate Transition from Pandemic Mitigation to Endemic Control. Vaccines (Basel) 2022;10:1555. [PMID: 36146633 DOI: 10.3390/vaccines10091555] [Reference Citation Analysis]
110 Liu Z, Li Z, Li B. Nonviral Delivery of CRISPR/Cas Systems in mRNA Format. Advanced NanoBiomed Research 2022. [DOI: 10.1002/anbr.202200082] [Reference Citation Analysis]
111 Kumari M, Lu RM, Li MC, Huang JL, Hsu FF, Ko SH, Ke FY, Su SC, Liang KH, Yuan JP, Chiang HL, Sun CP, Lee IJ, Li WS, Hsieh HP, Tao MH, Wu HC. A critical overview of current progress for COVID-19: development of vaccines, antiviral drugs, and therapeutic antibodies. J Biomed Sci 2022;29:68. [PMID: 36096815 DOI: 10.1186/s12929-022-00852-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
112 Kanoi BN, Maina M, Likhovole C, Kobia FM, Gitaka J. Malaria vaccine approaches leveraging technologies optimized in the COVID-19 era. Front Trop Dis 2022;3. [DOI: 10.3389/fitd.2022.988665] [Reference Citation Analysis]
113 Takano T, Sato T, Kotaki R, Moriyama S, Shinoda M, Kabasawa K, Shimada N, Kousaka M, Adachi Y, Onodera T, Terahara K, Isogawa M, Matsumura T, Shinkai M, Takahashi Y. Heterologous booster immunization with SARS-CoV-2 spike protein after mRNA vaccine elicits durable and broad antibody responses.. [DOI: 10.21203/rs.3.rs-2014078/v1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
114 Alimohammadi R, Porgoo M, Eftekhary M, Kiaie SH, Ansari Dezfouli E, Dehghani M, Nasrollahi K, Malekshahabi T, Heidari M, Pouya S, Alimohammadi M, Sattari Khavas D, Modaresi MS, Ghasemi MH, Ramyar H, Mohammadipour F, Hamzelouei F, Mofayezi A, Mottaghi SS, Rahmati A, Razzaznian M, Tirandazi V, Tat M, Borzouee F, Sadeghi H, Haji Mohammadi M, Rastegar L, Safar Sajadi SM, Ehsanbakhsh H, Bazmbar H, Baghernejadan Z, Shams Nouraei M, Pazooki P, Pahlavanneshan M, Alishah K, Nasiri F, Mokhberian N, Mohammadi SS, Akar S, Niknam H, Azizi M, Ajoudanian M, Moteallehi-Ardakani MH, Mousavi Shaegh SA, Ramezani R, Salimi V, Moazzami R, Hashemi SM, Dehghanizadeh S, Khoddami V. SARS-CoV-2 mRNA-vaccine candidate; COReNAPCIN®, induces robust humoral and cellular immunity in mice and non-human primates. NPJ Vaccines 2022;7:105. [PMID: 36056015 DOI: 10.1038/s41541-022-00528-3] [Reference Citation Analysis]
115 Bo Y, Wang H. Materials‐based vaccines for infectious diseases. WIREs Nanomed Nanobiotechnol 2022;14. [DOI: 10.1002/wnan.1824] [Reference Citation Analysis]
116 Gu Y, Duan J, Yang N, Yang Y, Zhao X. mRNA vaccines in the prevention and treatment of diseases. MedComm 2022;3. [DOI: 10.1002/mco2.167] [Reference Citation Analysis]
117 Zabaleta N, Torella L, Weber ND, Gonzalez-Aseguinolaza G. mRNA and gene editing: Late breaking therapies in liver diseases. Hepatology 2022;76:869-87. [PMID: 35243655 DOI: 10.1002/hep.32441] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
118 Khoshnood S, Ghanavati R, Shirani M, Ghahramanpour H, Sholeh M, Shariati A, Sadeghifard N, Heidary M. Viral vector and nucleic acid vaccines against COVID-19: A narrative review. Front Microbiol 2022;13:984536. [DOI: 10.3389/fmicb.2022.984536] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
119 Wang H, Wang Z, Liu S. Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy. Molecules 2022;27:5607. [DOI: 10.3390/molecules27175607] [Reference Citation Analysis]
120 Nitika, Wei J, Hui AM. The Delivery of mRNA Vaccines for Therapeutics. Life (Basel) 2022;12:1254. [PMID: 36013433 DOI: 10.3390/life12081254] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
121 Berry C, Wong KW, Wang G, Rai S, Shiratuddin MF. How a mRNA COVID-19 Vaccine works inside a Cell: A Virtual Reality Serious Game. 2022 IEEE 10th International Conference on Serious Games and Applications for Health(SeGAH) 2022. [DOI: 10.1109/segah54908.2022.9978562] [Reference Citation Analysis]
122 Wang JY(, Khmelinskaia A, Sheffler W, Miranda MC, Antanasijevic A, Borst AJ, Torres SV, Shu C, Hsia Y, Nattermann U, Ellis D, Walkey C, Ahlrichs M, Chan S, Kang A, Nguyen H, Sydeman C, Sankaran B, Wu M, Bera AK, Carter L, Fiala B, Murphy M, Baker D, Ward AB, King NP. Improving the secretion of designed protein assemblies through negative design of cryptic transmembrane domains.. [DOI: 10.1101/2022.08.04.502842] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
123 Hielscher F, Schmidt T, Klemis V, Wilhelm A, Marx S, Abu-omar A, Ziegler L, Guckelmus C, Urschel R, Sester U, Widera M, Sester M. Cellular and humoral immunity towards parental SARS-CoV-2 and variants of concern after two doses of the NVX-CoV2373-vaccine in comparison to homologous BNT162b and mRNA1273 regimens.. [DOI: 10.1101/2022.08.02.22278342] [Reference Citation Analysis]
124 Khalid Z, Huan M, Sohail Raza M, Abbas M, Naz Z, Kombe Kombe AJ, Zeng W, He H, Jin T. Identification of Novel Therapeutic Candidates Against SARS-CoV-2 Infections: An Application of RNA Sequencing Toward mRNA Based Nanotherapeutics. Front Microbiol 2022;13:901848. [DOI: 10.3389/fmicb.2022.901848] [Reference Citation Analysis]
125 Edwards DK, Carfi A. Messenger ribonucleic acid vaccines against infectious diseases: current concepts and future prospects. Current Opinion in Immunology 2022;77:102214. [DOI: 10.1016/j.coi.2022.102214] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
126 Rohman M, Fajar JK, Soegiarto G, Wulandari L, Anshory M, Ilmawan M, Marlysawati D, Purnamasari Y, Kusuma AP, Asmiragani A, Adhiatma D, Permana A, Pasaribu EA, Maliga HA, Pamungkas Y, Puteri PWM, Sinaga VA, Setiawan D, Putri EN, Fattima ET, Prawoto OL, Safitri R, Yuliana R, Hikmah K, Putri YS, Nurzaidah L, Lianto L, Cahya MD, Ikhsan M, Ibrahim I, Samudra AD, Tamara F, Kartini DA, Mahendra AI, Dhama K, Harapan H. The global prevalence and association between the risk of myocarditis and mRNA-based COVID-19 vaccination: A network meta-analysis. F1000Res 2022;11:862. [DOI: 10.12688/f1000research.122139.1] [Reference Citation Analysis]
127 Chen TH, Potapov V, Dai N, Ong JL, Roy B. N1-methyl-pseudouridine is incorporated with higher fidelity than pseudouridine in synthetic RNAs. Sci Rep 2022;12:13017. [PMID: 35906281 DOI: 10.1038/s41598-022-17249-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
128 Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis 2022;13:644. [PMID: 35871216 DOI: 10.1038/s41419-022-05075-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
129 Bege M, Borbás A. The Medicinal Chemistry of Artificial Nucleic Acids and Therapeutic Oligonucleotides. Pharmaceuticals 2022;15:909. [DOI: 10.3390/ph15080909] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
130 Chen K, Fan N, Huang H, Jiang X, Qin S, Xiao W, Zheng Q, Zhang Y, Duan X, Qin Z, Liu Y, Zeng J, Wei Y, Song X. mRNA Vaccines Against SARS‐CoV‐2 Variants Delivered by Lipid Nanoparticles Based on Novel Ionizable Lipids. Adv Funct Materials. [DOI: 10.1002/adfm.202204692] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
131 Chen C. Editorial for the Specific Issue: “Lipid-Based Nanocarriers”. Biomedicines 2022;10:1734. [DOI: 10.3390/biomedicines10071734] [Reference Citation Analysis]
132 Overmars I, Au‐yeung G, Nolan TM, Steer AC. mRNA vaccines: a transformative technology with applications beyond COVID ‐19. Medical Journal of Australia 2022;217:71-75. [DOI: 10.5694/mja2.51620] [Reference Citation Analysis]
133 Witten M, Clancey O. Vaccination Rates and the Emergence of Viral Variants: An Evolutionary Strategies-Inspired Model. 2022 IEEE Congress on Evolutionary Computation (CEC) 2022. [DOI: 10.1109/cec55065.2022.9870419] [Reference Citation Analysis]
134 Cao Y, Hayashi CTH, Zavala F, Tripathi AK, Simonyan H, Young CN, Clark LC, Usuda Y, Van Parys JM, Kumar N. Effective Functional Immunogenicity of a DNA Vaccine Combination Delivered via In Vivo Electroporation Targeting Malaria Infection and Transmission. Vaccines (Basel) 2022;10. [PMID: 35891298 DOI: 10.3390/vaccines10071134] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
135 Kardava L, Rachmaninoff N, Lau WW, Buckner CM, Trihemasava K, Blazkova J, Lopes de Assis F, Wang W, Zhang X, Wang Y, Chiang CI, Narpala S, McCormack GE, Liu C, Seamon CA, Sneller MC, O'Connell S, Li Y, McDermott AB, Chun TW, Fauci AS, Tsang JS, Moir S. Early human B cell signatures of the primary antibody response to mRNA vaccination. Proc Natl Acad Sci U S A 2022;119:e2204607119. [PMID: 35759653 DOI: 10.1073/pnas.2204607119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
136 Gil-manso S, Carbonell D, Pérez-fernández VA, López-esteban R, Alonso R, Muñoz P, Ochando J, Sánchez-arcilla I, Bellón JM, Correa-rocha R, Pion M. Cellular and Humoral Responses Follow-up for 8 Months after Vaccination with mRNA-Based Anti-SARS-CoV-2 Vaccines. Biomedicines 2022;10:1676. [DOI: 10.3390/biomedicines10071676] [Reference Citation Analysis]
137 Foged C. Grand Challenges in Vaccine Delivery: Lessons Learned From the COVID-19 Vaccine Rollout. Front Drug Deliv 2022;2. [DOI: 10.3389/fddev.2022.964298] [Reference Citation Analysis]
138 Yuan X, Luo SZ, Chen L. Novel branched amphiphilic peptides for nucleic acids delivery. Int J Pharm 2022;624:121983. [PMID: 35803534 DOI: 10.1016/j.ijpharm.2022.121983] [Reference Citation Analysis]
139 Saldanha L, Vale N. The First Approved COVID-19 Vaccines: The Road to Cancer Vaccines. IJTM 2022;2:309-331. [DOI: 10.3390/ijtm2030025] [Reference Citation Analysis]
140 Nakamura T, Sato Y, Yamada Y, Abd Elwakil MM, Kimura S, Younis MA, Harashima H. Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv Drug Deliv Rev 2022;:114417. [PMID: 35787389 DOI: 10.1016/j.addr.2022.114417] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
141 Lee J, Kim D, Byun J, Wu Y, Park J, Oh YK. In vivo fate and intracellular trafficking of vaccine delivery systems. Adv Drug Deliv Rev 2022;186:114325. [PMID: 35550392 DOI: 10.1016/j.addr.2022.114325] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
142 Hills T, Paterson A, Woodward R, Middleton F, Carlton LH, McGregor R, Barfoot S, Ramiah C, Whitcombe AL, Zimbron VM, Mahuika D, Brown J, Palmer-Neels K, Manning B, Jani D, Reeves B, Whitta GT, Morpeth S, Beasley R, Weatherall M, Jordan A, McIntyre P, Moreland NJ, Mirjalili SA. The effect of needle length and skin to deltoid muscle distance in adults receiving an mRNA COVID-19 vaccine. Vaccine 2022:S0264-410X(22)00839-8. [PMID: 35792021 DOI: 10.1016/j.vaccine.2022.06.070] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
143 Pohl MO, Martin-Sancho L, Ratnayake R, White KM, Riva L, Chen QY, Lieber G, Busnadiego I, Yin X, Lin S, Pu Y, Pache L, Rosales R, Déjosez M, Qin Y, De Jesus PD, Beall A, Yoh S, Hale BG, Zwaka TP, Matsunaga N, García-Sastre A, Stertz S, Chanda SK, Luesch H. Sec61 Inhibitor Apratoxin S4 Potently Inhibits SARS-CoV-2 and Exhibits Broad-Spectrum Antiviral Activity. ACS Infect Dis 2022. [PMID: 35766385 DOI: 10.1021/acsinfecdis.2c00008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Fertig TE, Chitoiu L, Marta DS, Ionescu V, Cismasiu VB, Radu E, Angheluta G, Dobre M, Serbanescu A, Hinescu ME, Gherghiceanu M. Vaccine mRNA Can Be Detected in Blood at 15 Days Post-Vaccination. Biomedicines 2022;10:1538. [DOI: 10.3390/biomedicines10071538] [Reference Citation Analysis]
145 Fan Y, Shi Z, Ma S, Razvi SZA, Fu Y, Chen T, Gruenhagen J, Zhang K. Spectroscopy-Based Local Modeling Method for High-Throughput Quantification of Nucleic Acid Loading in Lipid Nanoparticles. Anal Chem 2022. [PMID: 35700415 DOI: 10.1021/acs.analchem.2c01346] [Reference Citation Analysis]
146 Barnes E, Cooke GS, Lauer GM, Chung RT. Implementation of a controlled human infection model for evaluation of HCV vaccine candidates. Hepatology 2022. [PMID: 35736236 DOI: 10.1002/hep.32632] [Reference Citation Analysis]
147 Schmidt C, Haefner E, Gerbeth J, Beissert T, Sahin U, Perkovic M, Schnierle BS. A taRNA vaccine candidate induces a specific immune response that protects mice against Chikungunya virus infections. Mol Ther Nucleic Acids 2022;28:743-54. [PMID: 35664702 DOI: 10.1016/j.omtn.2022.04.036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
148 Mckay PF, Zhou J, Frise R, Blakney AK, Bouton CR, Wang Z, Hu K, Samnuan K, Brown JC, Kugathasan R, Yeow J, Stevens MM, Barclay WS, Tregoning JS, Shattock RJ. Polymer formulated self-amplifying RNA vaccine is partially protective against influenza virus infection in ferrets. Oxford Open Immunology 2022;3. [DOI: 10.1093/oxfimm/iqac004] [Reference Citation Analysis]
149 Leav B, Straus W, White P, Leav A, Gaines T, Maggiacomo G, Kim D, Smith ER, Gurwith M, Chen RT; Benefit-Risk Assessment of VAccines by TechnolOgy Working Group BRAVATO ex-V3SWG. A Brighton Collaboration standardized template with key considerations for a benefit/risk assessment for the Moderna COVID-19 Vaccine (mRNA-1273). Vaccine 2022:S0264-410X(22)00752-6. [PMID: 35753841 DOI: 10.1016/j.vaccine.2022.06.005] [Reference Citation Analysis]
150 Carascal MB, Pavon RDN, Rivera WL. Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response. Front Immunol 2022;13:878943. [PMID: 35663997 DOI: 10.3389/fimmu.2022.878943] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
151 Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022;11:1868. [PMID: 35740997 DOI: 10.3390/cells11121868] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
152 Memariani M, Memariani H. Multinational monkeypox outbreak: what do we know and what should we do? Ir J Med Sci 2022. [PMID: 35668338 DOI: 10.1007/s11845-022-03052-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
153 Künzli M, O’flanagan SD, Larue M, Talukder P, Dileepan T, Soerens AG, Quarnstrom CF, Wijeyesinghe S, Ye Y, Mcpartlan J, Mitchell JS, Mandl CW, Vile R, Jenkins MK, Ahmed R, Vezys V, Chahal J, Masopust D. Route of self-amplifying mRNA vaccination modulates the establishment of pulmonary resident memory CD8 and CD4 T cells.. [DOI: 10.1101/2022.06.02.494574] [Reference Citation Analysis]
154 Schaller MD. Research Productivity and Training Support for Doctoral Students in the Biological and Biomedical Sciences.. [DOI: 10.1101/2022.06.02.494498] [Reference Citation Analysis]
155 Nie W, Chen J, Wang B, Gao X. Nonviral vector system for cancer immunogene therapy. MedComm – Biomaterials and Applications 2022;1:mba2.10. [DOI: 10.1002/mba2.10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
156 Zhao Y, Li L, Zhou E, Wang J, Wang Y, Guo L, Zhang X. Lipid-Based Nanocarrier Systems for Drug Delivery: Advances and Applications. Pharmaceutical Fronts 2022;04:e43-e60. [DOI: 10.1055/s-0042-1751036] [Reference Citation Analysis]
157 Morreel K, t’Kindt R, Debyser G, Jonckheere S, Sandra P. Diving into the Structural Details of In Vitro Transcribed mRNA Using Liquid Chromatography–Mass Spectrometry-Based Oligonucleotide Profiling. LCGC Eur 2022. [DOI: 10.56530/lcgc.eu.jk3969w4] [Reference Citation Analysis]
158 Wong JM, Adams LE, Durbin AP, Muñoz-Jordán JL, Poehling KA, Sánchez-González LM, Volkman HR, Paz-Bailey G. Dengue: A Growing Problem With New Interventions. Pediatrics 2022;149:e2021055522. [PMID: 35543085 DOI: 10.1542/peds.2021-055522] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
159 Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022;7:166. [PMID: 35597779 DOI: 10.1038/s41392-022-01007-w] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 32.0] [Reference Citation Analysis]
160 Cheng MHY, Brimacombe CA, Verbeke R, Cullis PR. Exciting Times for Lipid Nanoparticles: How Canadian Discoveries Are Enabling Gene Therapies. Mol Pharm 2022. [PMID: 35583489 DOI: 10.1021/acs.molpharmaceut.2c00365] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
161 Gatechompol S, Kittanamongkolchai W, Ketloy C, Prompetchara E, Thitithanyanont A, Jongkaewwattana A, Buranapraditkun S, Alameh M, Ubolyam S, Sophonphan J, Apornpong T, Kerr S, Kamarulzaman A, Siwamogsatham S, Kroon E, Puthanakit T, Patarakul K, Palaga T, Wijagkanalan W, Weissman D, Ruxrungtham K, ChulaVAC-001 study team. A Phase1 Results of a Non-Stabilized Spike-Encoding mRNA Vaccine in Adults.. [DOI: 10.1101/2022.05.12.22274989] [Reference Citation Analysis]
162 Wang X, Rcheulishvili N, Cai J, Liu C, Xie F, Hu X, Yang N, Hou M, Papukashvili D, He Y, Wang PG. Development of DNA Vaccine Candidate against SARS-CoV-2. Viruses 2022;14:1049. [DOI: 10.3390/v14051049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
163 Kumar Suri R, Hayman B, Prasad SD, Makhoana M, Tippoo P. Vaccines: New challenges, new paradigms, new opportunities: Report of the 22nd DCVMN Annual General Meeting. Vaccine 2022:S0264-410X(22)00576-X. [PMID: 35577632 DOI: 10.1016/j.vaccine.2022.05.006] [Reference Citation Analysis]
164 Sepand MR, Bigdelou B, Ho JQ, Sharaf M, Lannigan AJ, Sullivan IM, da Silva AP, Barrett LO, Mcgoldrick S, Lnu Y, Lynch SE, Boisclair JM, Barnard-pratt DD, Zanganeh S. Long-Term Immunity and Antibody Response: Challenges for Developing Efficient COVID-19 Vaccines. Antibodies 2022;11:35. [DOI: 10.3390/antib11020035] [Reference Citation Analysis]
165 Huang K, Li N, Li Y, Zhu J, Fan Q, Yang J, Gao Y, Liu Y, Hou Q, Gao S, Wei K, Deng C, Zuo C, Sun Z. Delivery of Circular mRNA via Degradable Lipid Nanoparticles against SARS-CoV-2 Delta Variant.. [DOI: 10.1101/2022.05.12.491597] [Reference Citation Analysis]
166 Pilipenko I, Korovkina O, Gubina N, Ekimova V, Ishutinova A, Korzhikova-Vlakh E, Tennikova T, Korzhikov-Vlakh V. Random Copolymers of Lysine and Isoleucine for Efficient mRNA Delivery. Int J Mol Sci 2022;23:5363. [PMID: 35628177 DOI: 10.3390/ijms23105363] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
167 McCarthy Riley BF, Mai HT, Linz TH. Microfluidic Digital Quantitative PCR to Measure Internal Cargo of Individual Liposomes. Anal Chem 2022. [PMID: 35536164 DOI: 10.1021/acs.analchem.2c01232] [Reference Citation Analysis]
168 Osterloh A. Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria. Vaccines 2022;10:751. [DOI: 10.3390/vaccines10050751] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
169 Shinn J, Kwon N, Lee SA, Lee Y. Smart pH-responsive nanomedicines for disease therapy. J Pharm Investig 2022;:1-15. [PMID: 35573320 DOI: 10.1007/s40005-022-00573-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
170 Lam K, Kasavajhala K, Gunasekera S, Simmerling C. Accelerating the Ensemble Convergence of RNA Hairpin Simulations with a Replica Exchange Structure Reservoir. J Chem Theory Comput 2022. [PMID: 35502992 DOI: 10.1021/acs.jctc.2c00065] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
171 Li M, Wang H, Tian L, Pang Z, Yang Q, Huang T, Fan J, Song L, Tong Y, Fan H. COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Target Ther 2022;7:146. [PMID: 35504917 DOI: 10.1038/s41392-022-00996-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
172 Ezra Manicum A, Sargazi S, Razzaq S, Kumar GV, Rahdar A, Er S, Ain QU, Bilal M, Aboudzadeh MA. Nano-immunotherapeutic strategies for targeted RNA delivery: Emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. Journal of Drug Delivery Science and Technology 2022;71:103288. [DOI: 10.1016/j.jddst.2022.103288] [Reference Citation Analysis]
173 Sancho J. Protein Engineering: The Present and the Future. Biophysica 2022;2:111-112. [DOI: 10.3390/biophysica2020011] [Reference Citation Analysis]
174 Zubda-tul H, Muhammad Q. mRNA based vaccines as an alternative to conventional vaccine approaches. Open J Environ Biol 2022;7:001-005. [DOI: 10.17352/ojeb.000026] [Reference Citation Analysis]
175 Zhang Q, Tiwari SK, Wang S, Wang L, Li W, Zhang L, Rawlings SA, Cheng Y, Jokerst JV, Rana TM. Induction of neutralizing antibodies against SARS-CoV-2 variants by a multivalent mRNA-lipid nanoparticle vaccine encoding SARS-CoV-2/SARS-CoV Spike protein receptor-binding domains.. [DOI: 10.1101/2022.04.28.489834] [Reference Citation Analysis]
176 Quintanilla-bordás C, Gascón-gimenez F, Alcalá C, Payá M, Mallada J, Silla R, Carratalà-boscà S, Gasque-rubio R, Castillo J, Casanova B. Case Report: Exacerbation of Relapses Following mRNA COVID-19 Vaccination in Multiple Sclerosis: A Case Series. Front Neurol 2022;13:897275. [DOI: 10.3389/fneur.2022.897275] [Reference Citation Analysis]
177 Kwon S, Kwon M, Im S, Lee K, Lee H. mRNA vaccines: the most recent clinical applications of synthetic mRNA. Arch Pharm Res . [DOI: 10.1007/s12272-022-01381-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
178 Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem Toxicol 2022;164:113008. [PMID: 35436552 DOI: 10.1016/j.fct.2022.113008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
179 Shanmugasundaram M, Senthilvelan A, Kore AR. Recent Advances in Modified Cap Analogs: Synthesis, Biochemical Properties, and mRNA Based Vaccines. Chem Rec 2022;:e202200005. [PMID: 35420257 DOI: 10.1002/tcr.202200005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
180 Escalante GM, Mutsvunguma LZ, Muniraju M, Rodriguez E, Ogembo JG. Four Decades of Prophylactic EBV Vaccine Research: A Systematic Review and Historical Perspective. Front Immunol 2022;13:867918. [DOI: 10.3389/fimmu.2022.867918] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
181 Chen T, Potapov V, Dai N, Ong JL, Roy B. Improving the fidelity of uridine analog incorporation during in vitro transcription.. [DOI: 10.1101/2022.04.12.488100] [Reference Citation Analysis]
182 Maldonado E, Morales-pison S, Urbina F, Solari A. Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids. Vaccines 2022;10:587. [DOI: 10.3390/vaccines10040587] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
183 Bessen C, Plaza-sirvent C, Bhat J, Marheinecke C, Urlaub D, Bonowitz P, Busse S, Schumann S, Vidal Blanco E, Skaletz-rorowski A, Brockmeyer NH, Overheu O, Reinacher-schick A, Faissner S, Watzl C, Pfaender S, Potthoff A, Schmitz I. Impact of SARS-CoV-2 vaccination on systemic immune responses in people living with HIV.. [DOI: 10.1101/2022.04.08.22273605] [Reference Citation Analysis]
184 Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic Nanoparticles for Drug Delivery. Small 2022;:e2106580. [PMID: 35396770 DOI: 10.1002/smll.202106580] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
185 Winkelmann A, Loebermann M, Barnett M, Hartung HP, Zettl UK. Vaccination and immunotherapies in neuroimmunological diseases. Nat Rev Neurol 2022. [PMID: 35388213 DOI: 10.1038/s41582-022-00646-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
186 Rouf NZ, Biswas S, Tarannum N, Oishee LM, Muna MM. Demystifying mRNA vaccines: an emerging platform at the forefront of cryptic diseases. RNA Biol 2022;19:386-410. [PMID: 35354425 DOI: 10.1080/15476286.2022.2055923] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
187 Dhanasekaran V, Sullivan S, Edwards KM, Xie R, Khvorov A, Valkenburg SA, Cowling BJ, Barr IG. Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination. Nat Commun 2022;13:1721. [PMID: 35361789 DOI: 10.1038/s41467-022-29402-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
188 Karmacharya P, Patil BR, Kim JO. Recent advancements in lipid–mRNA nanoparticles as a treatment option for cancer immunotherapy. J Pharm Investig . [DOI: 10.1007/s40005-022-00569-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
189 Mabrouk MT, Huang WC, Martinez-Sobrido L, Lovell JF. Advanced Materials for SARS-CoV-2 Vaccines. Adv Mater 2022;34:e2107781. [PMID: 34894000 DOI: 10.1002/adma.202107781] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
190 Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022;7:94. [PMID: 35322018 DOI: 10.1038/s41392-022-00950-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 18.0] [Reference Citation Analysis]
191 Ho D. Digital Nanomedicine: A New Frontier for Drug Development. ACS Nano 2022;16:3435-7. [DOI: 10.1021/acsnano.2c01835] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
192 Shi J, Huang MW, Lu ZD, Du XJ, Shen S, Xu CF, Wang J. Delivery of mRNA for regulating functions of immune cells. J Control Release 2022:S0168-3659(22)00159-6. [PMID: 35337940 DOI: 10.1016/j.jconrel.2022.03.033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
193 Wu Y, Chang Y, Shao Y, Guo G, Liu Z, Wang X. Controllable Fabrication of Small-Size Holding Pipets for the Nondestructive Manipulation of Suspended Living Single Cells. Anal Chem 2022. [PMID: 35298884 DOI: 10.1021/acs.analchem.2c00418] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
194 Dirisala A, Uchida S, Li J, Van Guyse JFR, Hayashi K, Vummaleti SVC, Kaur S, Mochida Y, Fukushima S, Kataoka K. Effective mRNA Protection by Poly(l-ornithine) Synergizes with Endosomal Escape Functionality of a Charge-Conversion Polymer toward Maximizing mRNA Introduction Efficiency. Macromol Rapid Commun 2022;:e2100754. [PMID: 35286740 DOI: 10.1002/marc.202100754] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
195 Chen W, Ma Y, Liu X, Zhu D. Polyester materials for mRNA delivery. Exploration of Targeted Anti-tumor Therapy. [DOI: 10.37349/etat.2022.00075] [Reference Citation Analysis]
196 Zhang D, Atochina-Vasserman EN, Lu J, Maurya DS, Xiao Q, Liu M, Adamson J, Ona N, Reagan EK, Ni H, Weissman D, Percec V. The Unexpected Importance of the Primary Structure of the Hydrophobic Part of One-Component Ionizable Amphiphilic Janus Dendrimers in Targeted mRNA Delivery Activity. J Am Chem Soc 2022. [PMID: 35263098 DOI: 10.1021/jacs.2c00273] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
197 Alimohammadi R, Porgoo M, Eftekhary M, Kiaie SH, Dezfouli EA, Dehghani M, Nasrollahi K, Malekshahabi T, Heidari M, Pouya S, Alimohammadi M, Khavas DS, Modaresi MS, Ghasemi MH, Ramyar H, Mohammadipour F, Hamzelouei F, Mofayezi A, Mottaghi SS, Rahmati A, Razzaznian M, Tirandazi V, Borzouee F, Sadeghi H, Mohammadi MH, Rastegar L, Safar Sajadi SM, Ehsanbakhsh H, Bazmbar H, Nouraee MS, Pazooki P, Pahlevanneshan M, Alishah K, Nasiri F, Mokhberian N, Mohammadi SS, Akar S, Niknam H, Azizi M, Ajoudanian M, Moteallehi-ardakani MH, Mousavi Shaegh SA, Ramezani R, Salimi V, Moazzami R, Hashemi SM, Dehghanizadeh S, Khoddami V. mRNA-based vaccine candidate COReNAPCIN® induces robust humoral and cellular immunity in mice and non-human primates.. [DOI: 10.1101/2022.03.05.483092] [Reference Citation Analysis]
198 Kaku CI, Champney ER, Normark J, Garcia M, Johnson CE, Ahlm C, Christ W, Sakharkar M, Ackerman ME, Klingström J, Forsell MNE, Walker LM. Broad anti-SARS-CoV-2 antibody immunity induced by heterologous ChAdOx1/mRNA-1273 vaccination. Science 2022;375:1041-7. [PMID: 35143256 DOI: 10.1126/science.abn2688] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
199 Kis Z, Tak K, Ibrahim D, Papathanasiou MM, Chachuat B, Shah N, Kontoravdi C. Pandemic-response adenoviral vector and RNA vaccine manufacturing. NPJ Vaccines 2022;7:29. [PMID: 35236838 DOI: 10.1038/s41541-022-00447-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
200 Erol A. Importance of Efferocytosis in COVID-19 Mortality. IDR 2022;Volume 15:995-1007. [DOI: 10.2147/idr.s348639] [Reference Citation Analysis]
201 Hyer RN. Insights for Oncology Trials Garnered From the Rapid Development of an mRNA COVID-19 Vaccine. Cancer J 2022;28:146-50. [PMID: 35333501 DOI: 10.1097/PPO.0000000000000587] [Reference Citation Analysis]
202 Metzloff AE, Billingsley MM, Mitchell MJ. Lighting the way to personalized mRNA immune cell therapies. Sci Adv 2022;8:eabo2423. [PMID: 35196095 DOI: 10.1126/sciadv.abo2423] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
203 Kim BH, Yoo MC. Intracranial Hemorrhage Due to Potential Rupture of an Arteriovenous Malformation after BNT162b2 COVID-19 mRNA Vaccination in a Young Korean Woman: Case Report. Vaccines 2022;10:362. [DOI: 10.3390/vaccines10030362] [Reference Citation Analysis]
204 Deng YQ, Zhang NN, Zhang YF, Zhong X, Xu S, Qiu HY, Wang TC, Zhao H, Zhou C, Zu SL, Chen Q, Cao TS, Ye Q, Chi H, Duan XH, Lin DD, Zhang XJ, Xie LZ, Gao YW, Ying B, Qin CF. Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters. Cell Res 2022. [PMID: 35210606 DOI: 10.1038/s41422-022-00630-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
205 Rathinasabapathy T, Sakthivel LP, Komarnytsky S. Plant-Based Support of Respiratory Health during Viral Outbreaks. J Agric Food Chem 2022;70:2064-76. [PMID: 35147032 DOI: 10.1021/acs.jafc.1c06227] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
206 Taina-González L, de la Fuente M. The Potential of Nanomedicine to Unlock the Limitless Applications of mRNA. Pharmaceutics 2022;14:460. [PMID: 35214191 DOI: 10.3390/pharmaceutics14020460] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
207 Dilliard SA, Siegwart DJ. Disrupting off-target Cas9 activity in the liver. Nat Biomed Eng. [DOI: 10.1038/s41551-022-00848-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
208 Le T, Sun C, Chang J, Zhang G, Yin X. mRNA Vaccine Development for Emerging Animal and Zoonotic Diseases. Viruses 2022;14:401. [DOI: 10.3390/v14020401] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
209 Li D, Martinez DR, Schäfer A, Chen H, Barr M, Sutherland LL, Lee E, Parks R, Mielke D, Edwards W, Newman A, Bock KW, Minai M, Nagata BM, Gagne M, Douek DC, DeMarco CT, Denny TN, Oguin TH 3rd, Brown A, Rountree W, Wang Y, Mansouri K, Edwards RJ, Ferrari G, Sempowski GD, Eaton A, Tang J, Cain DW, Santra S, Pardi N, Weissman D, Tomai MA, Fox CB, Moore IN, Andersen H, Lewis MG, Golding H, Seder R, Khurana S, Baric RS, Montefiori DC, Saunders KO, Haynes BF. Breadth of SARS-CoV-2 Neutralization and Protection Induced by a Nanoparticle Vaccine. bioRxiv 2022:2022. [PMID: 35118474 DOI: 10.1101/2022.01.26.477915] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
210 Kumar A, Palmer N, Miyasaki K, Finburgh E, Xiang Y, Portell A, Dailamy A, Suhardjo A, Chew WL, Kwon EJ, Mali P. Extensive in vitro and in vivo protein translation via in situ circularized RNAs.. [DOI: 10.1101/2022.02.11.480072] [Reference Citation Analysis]
211 Shin S, Kwon S, Yeo Y. Meta-Analysis of Drug Delivery Approaches for Treating Intracellular Infections. Pharm Res 2022. [PMID: 35146592 DOI: 10.1007/s11095-022-03188-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
212 Paris JL, Gaspar R, Coelho F, De Beule PAA, Silva BFB. Stability Criterion for the Assembly of Hybrid Lipid-Polymer-Nucleic Acid Nanoparticles.. [DOI: 10.1101/2022.02.06.479316] [Reference Citation Analysis]
213 Pecetta S, Kratochvil S, Kato Y, Vadivelu K, Rappuoli R. Immunology and Technology of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccines. Pharmacol Rev 2022;74:313-39. [PMID: 35101964 DOI: 10.1124/pharmrev.120.000285] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
214 Zhang Y, Hu Y, Tian H, Chen X. Opportunities and Challenges for mRNA Delivery Nanoplatforms. J Phys Chem Lett 2022;:1314-22. [PMID: 35107010 DOI: 10.1021/acs.jpclett.1c03898] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
215 Dhasmana A, Dhasmana S, Alsulimani A, Kotnala S, Kashyap VK, Haque S, Jaggi M, Yallapu MM, Chauhan SC. In silico CD4 + T-cell multiepitope prediction and HLA distribution analysis for Marburg Virus—A strategy for vaccine designing. Journal of King Saud University - Science 2022;34:101751. [DOI: 10.1016/j.jksus.2021.101751] [Reference Citation Analysis]
216 Chen M, Hu X, Liu S. Next‐Generation Nonviral Vectors for mRNA Vaccine Delivery. Macro Chemistry & Physics. [DOI: 10.1002/macp.202100443] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
217 Jin Y, Hou C, Li Y, Zheng K, Wang C. mRNA Vaccine: How to Meet the Challenge of SARS-CoV-2. Front Immunol 2022;12:821538. [DOI: 10.3389/fimmu.2021.821538] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
218 Sharma S. Role of nanomedicine in COVID-19 therapeutics. Nanomedicine (Lond) 2022. [PMID: 35012366 DOI: 10.2217/nnm-2021-0358] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
219 Tang J, Cai L, Xu C, Sun S, Liu Y, Rosenecker J, Guan S. Nanotechnologies in Delivery of DNA and mRNA Vaccines to the Nasal and Pulmonary Mucosa. Nanomaterials (Basel) 2022;12:226. [PMID: 35055244 DOI: 10.3390/nano12020226] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
220 Trimarco JD, Heaton NS. From high-throughput to therapeutic: host-directed interventions against influenza viruses. Curr Opin Virol 2022;53:101198. [PMID: 35030353 DOI: 10.1016/j.coviro.2021.12.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
221 Liu W, Alameh M, Yang JF, Xu JR, Lin PJ, Tam YK, Weissman D, You J. Lipid nanoparticles delivering constitutively active STING mRNA as a novel anti-cancer therapeutic approach.. [DOI: 10.1101/2022.01.08.475499] [Reference Citation Analysis]
222 Castillo-Hair SM, Seelig G. Machine Learning for Designing Next-Generation mRNA Therapeutics. Acc Chem Res 2022;55:24-34. [PMID: 34905691 DOI: 10.1021/acs.accounts.1c00621] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
223 Labouta HI, Langer R, Cullis PR, Merkel OM, Prausnitz MR, Gomaa Y, Nogueira SS, Kumeria T. Role of drug delivery technologies in the success of COVID-19 vaccines: a perspective. Drug Deliv Transl Res 2022;12:2581-8. [PMID: 35290656 DOI: 10.1007/s13346-022-01146-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
224 Kekeh M, Lucero L, Akpinar-elci M. COVID-19 Vaccine Hesitancy the United States. Coronavirus (COVID-19) Outbreaks, Vaccination, Politics and Society 2022. [DOI: 10.1007/978-3-031-09432-3_22] [Reference Citation Analysis]
225 Meyer RA, Trabulo S, Douthwaite JA, Santos JL. Roadmap to the Development of mRNA Therapeutics: From Molecule Design and Delivery Strategies to Manufacturing, Quality Control, and Regulatory Considerations. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_1] [Reference Citation Analysis]
226 Li M, Wang Z, Xie C, Xia X. Advances in mRNA vaccines. mRNA-Based Therapeutics 2022. [DOI: 10.1016/bs.ircmb.2022.04.011] [Reference Citation Analysis]
227 Tsou H, Chang C, Maeda T, Lin C. Preparation of Messenger RNA-Loaded Nanomedicine Applied on Tissue Engineering and Regenerative Medicine. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_18] [Reference Citation Analysis]
228 Han X, Alu A, Liu H, Shi Y, Wei X, Cai L, Wei Y. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.01.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
229 Ongun M, Lokras AG, Foged C, Thakur A. Lipid Nanoparticle-Mediated Delivery of Therapeutic and Prophylactic mRNA: Immune Activation by Ionizable Cationic Lipids. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_11] [Reference Citation Analysis]
230 Wang D, Tian Y, Zhang Y, Sun X, Wu Y, Liu R, Zeng F, Du J, Hu K. An assembly-inducing PDC enabling the efficient nuclear delivery of nucleic acid for cancer stem-like cell suppression. Nanoscale 2022;14:15384-15392. [DOI: 10.1039/d2nr02118h] [Reference Citation Analysis]
231 Miliotou AN, Pappas IS, Vizirianakis IS, Papadopoulou LC. In Vitro-Transcribed mRNAs as a New Generation of Therapeutics in the Dawn of Twenty-First Century: Exploitation of Peptides as Carriers for Their Intracellular Delivery. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_10] [Reference Citation Analysis]
232 Diaz-trelles R, Perez-garcia CG. Present and future of lipid nanoparticle-mRNA technology in phenylketonuria disease treatment. mRNA-Based Therapeutics 2022. [DOI: 10.1016/bs.ircmb.2022.04.008] [Reference Citation Analysis]
233 Guevara ML, Persano F, Persano S. Lipid Nanoparticles to Harness the Therapeutic Potential of mRNA for Cancer Treatment. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_14] [Reference Citation Analysis]
234 Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, Sharf-Pauker N, Xiao Y, Adir O, Liang H, Shi J, Schroeder A, Conde J. Nanodelivery of nucleic acids. Nat Rev Methods Primers 2022;2:24. [PMID: 35480987 DOI: 10.1038/s43586-022-00104-y] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 29.0] [Reference Citation Analysis]
235 Alameh M, Weissman D. Nucleoside modifications of in vitro transcribed mRNA to reduce immunogenicity and improve translation of prophylactic and therapeutic antigens. RNA Therapeutics 2022. [DOI: 10.1016/b978-0-12-821595-1.00014-2] [Reference Citation Analysis]
236 Gómez-aguado I, Rodríguez-castejón J, Beraza-millor M, Rodríguez-gascón A, del Pozo-rodríguez A, Solinís MÁ. mRNA delivery technologies: Toward clinical translation. mRNA-Based Therapeutics 2022. [DOI: 10.1016/bs.ircmb.2022.04.010] [Reference Citation Analysis]
237 Wei J, Hui A. Review of Ribosome Interactions with SARS-CoV-2 and COVID-19 mRNA Vaccine. Life (Basel) 2022;12:57. [PMID: 35054450 DOI: 10.3390/life12010057] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
238 Yokoo H, Oba M, Uchida S. Cell-Penetrating Peptides: Emerging Tools for mRNA Delivery. Pharmaceutics 2021;14:78. [PMID: 35056974 DOI: 10.3390/pharmaceutics14010078] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
239 Akabane-Nakata M, Chickering T, Harp JM, Schlegel MK, Matsuda S, Egli M, Manoharan M. RNAs Containing Carbocyclic Ribonucleotides. Org Lett 2021. [PMID: 34958225 DOI: 10.1021/acs.orglett.1c03936] [Reference Citation Analysis]
240 Ouranidis A, Vavilis T, Mandala E, Davidopoulou C, Stamoula E, Markopoulou CK, Karagianni A, Kachrimanis K. mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines 2022;10:50. [DOI: 10.3390/biomedicines10010050] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
241 Tsilingiris D, Vallianou NG, Karampela I, Liu J, Dalamaga M. Potential implications of lipid nanoparticles in the pathogenesis of myocarditis associated with the use of mRNA vaccines against SARS-CoV-2. Metabol Open 2022;13:100159. [PMID: 34938983 DOI: 10.1016/j.metop.2021.100159] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
242 Kapnick SM. The Nanoparticle-Enabled Success of COVID-19 mRNA Vaccines and the Promise of Microneedle Platforms for Pandemic Vaccine Response. DNA Cell Biol 2021. [PMID: 34958232 DOI: 10.1089/dna.2021.0538] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
243 Gokce C, Gurcan C, Besbinar O, Unal MA, Yilmazer A. Emerging 2D materials for antimicrobial applications in the pre- and post-pandemic era. Nanoscale 2021. [PMID: 34935015 DOI: 10.1039/d1nr06476b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
244 Ghattas M, Dwivedi G, Lavertu M, Alameh MG. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines (Basel) 2021;9. [PMID: 34960236 DOI: 10.3390/vaccines9121490] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
245 Morris L. mRNA vaccines offer hope for HIV. Nat Med 2021;27:2082-4. [PMID: 34887576 DOI: 10.1038/s41591-021-01602-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
246 Zheng Z, Wang Y, Wu X, Zhang H, Chen H, Lin H, Shen Y, Xia Q. Engineering RNA viruses with unnatural amino acid to evoke adjustable immune response in mice.. [DOI: 10.1101/2021.12.04.471206] [Reference Citation Analysis]
247 Niculescu AG, Bîrcă AC, Grumezescu AM. New Applications of Lipid and Polymer-Based Nanoparticles for Nucleic Acids Delivery. Pharmaceutics 2021;13:2053. [PMID: 34959335 DOI: 10.3390/pharmaceutics13122053] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
248 Stein RA, Ometa O, Broker TR. COVID-19: The Pseudo-Environment and the Need for a Paradigm Change. Germs 2021;11:468-77. [PMID: 35096665 DOI: 10.18683/germs.2021.1283] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
249 Wang W, Feng S, Ye Z, Gao H, Lin J, Ouyang D. Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm. Acta Pharmaceutica Sinica B 2022;12:2950-62. [DOI: 10.1016/j.apsb.2021.11.021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
250 Hein S, Herrlein ML, Mhedhbi I, Bender D, Haberger V, Benz N, Eisert J, Stingl J, Dreher M, Oberle D, Schulze J, Mache C, Budt M, Hildt C, Wolff T, Hildt E. Analysis of BNT162b2- and CVnCoV-elicited sera and of convalescent sera toward SARS-CoV-2 viruses. Allergy 2021. [PMID: 34820854 DOI: 10.1111/all.15189] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
251 Häfner S. Polymeric Promotion. Microbes Infect 2021;:104910. [PMID: 34838737 DOI: 10.1016/j.micinf.2021.104910] [Reference Citation Analysis]
252 Greber UF. Two years into COVID-19 - Lessons in SARS-CoV-2 and a perspective from papers in FEBS Letters. FEBS Lett 2021. [PMID: 34787897 DOI: 10.1002/1873-3468.14226] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
253 Zhang D, Atochina-Vasserman EN, Maurya DS, Liu M, Xiao Q, Lu J, Lauri G, Ona N, Reagan EK, Ni H, Weissman D, Percec V. Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers. J Am Chem Soc 2021;143:17975-82. [PMID: 34672554 DOI: 10.1021/jacs.1c09585] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
254 Bansal A, Trieu MC, Mohn KGI, Cox RJ. Safety, Immunogenicity, Efficacy and Effectiveness of Inactivated Influenza Vaccines in Healthy Pregnant Women and Children Under 5 Years: An Evidence-Based Clinical Review. Front Immunol 2021;12:744774. [PMID: 34691051 DOI: 10.3389/fimmu.2021.744774] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
255 da Silva NR, Jorge P, Martins JA, Teixeira JA, Marcos JC. Initial Screening of Poly(ethylene glycol) Amino Ligands for Affinity Purification of Plasmid DNA in Aqueous Two-Phase Systems. Life (Basel) 2021;11:1138. [PMID: 34833014 DOI: 10.3390/life11111138] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
256 Dube A, Egieyeh S, Balogun M. A Perspective on Nanotechnology and COVID-19 Vaccine Research and Production in South Africa. Viruses 2021;13:2095. [PMID: 34696526 DOI: 10.3390/v13102095] [Cited by in F6Publishing: 1] [Reference Citation Analysis]