BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vanpouille-Box C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2019;18:845-67. [PMID: 31554927 DOI: 10.1038/s41573-019-0043-2] [Cited by in Crossref: 58] [Cited by in F6Publishing: 54] [Article Influence: 19.3] [Reference Citation Analysis]
Number Citing Articles
1 Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov 2022. [PMID: 35974096 DOI: 10.1038/s41573-022-00520-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Lee J, Le Q, Ko S, Kang S, Macgregor RB, Shim G, Oh Y. Blood-declustering excretable metal clusters assembled in DNA matrix. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121754] [Reference Citation Analysis]
3 Jain A, Mittal S, Tripathi LP, Nussinov R, Ahmad S. Host-pathogen protein-nucleic acid interactions: a comprehensive review. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.08.001] [Reference Citation Analysis]
4 Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L. Mitochondrial control of inflammation. Nat Rev Immunol 2022. [PMID: 35879417 DOI: 10.1038/s41577-022-00760-x] [Reference Citation Analysis]
5 Li N, Yu K, Dong M, Wang J, Yang F, Zhu H, Yu J, Yang J, Xie W, Mitra B, Mao R, Wu F, Guo H, Zhang J. Intrahepatic transcriptomics reveals gene signatures in chronic hepatitis B patients responded to interferon therapy. Emerg Microbes Infect 2022;:1-47. [PMID: 35815389 DOI: 10.1080/22221751.2022.2100831] [Reference Citation Analysis]
6 Zhang Q, Chen Q, Yan C, Niu C, Zhou J, Liu J, Song Y, Zhou F, Fan Y, Ren J, Xu H, Zhang B. The Absence of STING Ameliorates Non-Alcoholic Fatty Liver Disease and Reforms Gut Bacterial Community. Front Immunol 2022;13:931176. [DOI: 10.3389/fimmu.2022.931176] [Reference Citation Analysis]
7 Luo S, Yang G, Ye P, Cao N, Chi X, Yang WH, Yan X. Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules 2022;12:850. [PMID: 35740975 DOI: 10.3390/biom12060850] [Reference Citation Analysis]
8 Mardi A, Shirokova AV, Mohammed RN, Keshavarz A, Zekiy AO, Thangavelu L, Mohamad TAM, Marofi F, Shomali N, Zamani A, Akbari M. Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; Combination of Oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell Int 2022;22:168. [PMID: 35488303 DOI: 10.1186/s12935-022-02585-z] [Reference Citation Analysis]
9 Carson CS, Becker KW, Garland KM, Pagendarm HM, Stone PT, Arora K, Wang-Bishop L, Baljon JJ, Cruz LD, Joyce S, Wilson JT. A nanovaccine for enhancing cellular immunity via cytosolic Co-delivery of antigen and PolyIC RNA. J Control Release 2022:S0168-3659(22)00146-8. [PMID: 35301055 DOI: 10.1016/j.jconrel.2022.03.020] [Reference Citation Analysis]
10 Comberlato A, Koga MM, Nüssing S, Parish IA, Bastings MMC. Spatially Controlled Activation of Toll-like Receptor 9 with DNA-Based Nanomaterials. Nano Lett 2022. [PMID: 35266392 DOI: 10.1021/acs.nanolett.2c00275] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
11 Yang Y, Huang Y, Zeng Z. Advances in cGAS-STING Signaling Pathway and Diseases. Front Cell Dev Biol 2022;10:800393. [DOI: 10.3389/fcell.2022.800393] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Garland KM, Sheehy TL, Wilson JT. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Chem Rev 2022. [PMID: 35107989 DOI: 10.1021/acs.chemrev.1c00750] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
13 Mao T, Israelow B, Lucas C, Vogels CBF, Gomez-Calvo ML, Fedorova O, Breban MI, Menasche BL, Dong H, Linehan M, Wilen CB, Landry ML, Grubaugh ND, Pyle AM, Iwasaki A; Yale SARS-CoV-2 Genome Surveillance Initiative. A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice. J Exp Med 2022;219:e20211818. [PMID: 34757384 DOI: 10.1084/jem.20211818] [Reference Citation Analysis]
14 Garland KM, Rosch JC, Carson CS, Wang-Bishop L, Hanna A, Sevimli S, Van Kaer C, Balko JM, Ascano M, Wilson JT. Pharmacological Activation of cGAS for Cancer Immunotherapy. Front Immunol 2021;12:753472. [PMID: 34899704 DOI: 10.3389/fimmu.2021.753472] [Reference Citation Analysis]
15 Klapp V, Galluzzi L. Multimodal immunostimulation to control BRCA1-defective ovarian carcinoma. Trends Cancer 2022;8:1-3. [PMID: 34840109 DOI: 10.1016/j.trecan.2021.11.006] [Reference Citation Analysis]
16 Alvarez M, Molina C, De Andrea CE, Fernandez-Sendin M, Villalba M, Gonzalez-Gomariz J, Ochoa MC, Teijeira A, Glez-Vaz J, Aranda F, Sanmamed MF, Rodriguez-Ruiz ME, Fan X, Shen WH, Berraondo P, Quintero M, Melero I. Intratumoral co-injection of the poly I:C-derivative BO-112 and a STING agonist synergize to achieve local and distant anti-tumor efficacy. J Immunother Cancer 2021;9:e002953. [PMID: 34824158 DOI: 10.1136/jitc-2021-002953] [Reference Citation Analysis]
17 Torres ETR, Emens LA. Emerging combination immunotherapy strategies for breast cancer: dual immune checkpoint modulation, antibody-drug conjugates and bispecific antibodies. Breast Cancer Res Treat 2021. [PMID: 34716871 DOI: 10.1007/s10549-021-06423-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Allavena P, Digifico E, Belgiovine C. Macrophages and cancer stem cells: a malevolent alliance. Mol Med 2021;27:121. [PMID: 34583655 DOI: 10.1186/s10020-021-00383-3] [Reference Citation Analysis]
19 Baris AM, Fraile-Bethencourt E, Anand S. Nucleic Acid Sensing in the Tumor Vasculature. Cancers (Basel) 2021;13:4452. [PMID: 34503262 DOI: 10.3390/cancers13174452] [Reference Citation Analysis]
20 Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, Chan TA, Coukos G, Demaria S, Deutsch E, Draganov D, Edelson RL, Formenti SC, Fucikova J, Gabriele L, Gaipl US, Gameiro SR, Garg AD, Golden E, Han J, Harrington KJ, Hemminki A, Hodge JW, Hossain DMS, Illidge T, Karin M, Kaufman HL, Kepp O, Kroemer G, Lasarte JJ, Loi S, Lotze MT, Manic G, Merghoub T, Melcher AA, Mossman KL, Prosper F, Rekdal Ø, Rescigno M, Riganti C, Sistigu A, Smyth MJ, Spisek R, Stagg J, Strauss BE, Tang D, Tatsuno K, van Gool SW, Vandenabeele P, Yamazaki T, Zamarin D, Zitvogel L, Cesano A, Marincola FM. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer 2020;8:e000337. [PMID: 32209603 DOI: 10.1136/jitc-2019-000337] [Cited by in Crossref: 131] [Cited by in F6Publishing: 143] [Article Influence: 131.0] [Reference Citation Analysis]
21 Rech L, Rainer PP. The Innate Immune cGAS-STING-Pathway in Cardiovascular Diseases - A Mini Review. Front Cardiovasc Med 2021;8:715903. [PMID: 34381828 DOI: 10.3389/fcvm.2021.715903] [Reference Citation Analysis]
22 Gozgit JM, Vasbinder MM, Abo RP, Kunii K, Kuplast-Barr KG, Gui B, Lu AZ, Molina JR, Minissale E, Swinger KK, Wigle TJ, Blackwell DJ, Majer CR, Ren Y, Niepel M, Varsamis ZA, Nayak SP, Bamberg E, Mo JR, Church WD, Mady ASA, Song J, Utley L, Rao PE, Mitchison TJ, Kuntz KW, Richon VM, Keilhack H. PARP7 negatively regulates the type I interferon response in cancer cells and its inhibition triggers antitumor immunity. Cancer Cell 2021:S1535-6108(21)00340-8. [PMID: 34375612 DOI: 10.1016/j.ccell.2021.06.018] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Saeed M, Chen F, Ye J, Shi Y, Lammers T, De Geest BG, Xu ZP, Yu H. From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. Adv Mater 2021;33:e2008094. [PMID: 34048101 DOI: 10.1002/adma.202008094] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 18.0] [Reference Citation Analysis]
24 Brooks T, Wayne J, Massey AJ. Checkpoint Kinase 1 (Chk1) inhibition fails to activate the Stimulator of Interferon Genes (STING) innate immune signalling in a human coculture cancer system. Mol Biomed 2021;2:19. [PMID: 35006469 DOI: 10.1186/s43556-021-00044-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Mao T, Israelow B, Lucas C, Vogels CBF, Fedorova O, Breban MI, Menasche BL, Dong H, Linehan M, Wilen CB, Landry ML, Grubaugh ND, Pyle AM, Iwasaki A; Yale SARS-CoV-2 Genome Surveillance Initiative. A stem-loop RNA RIG-I agonist confers prophylactic and therapeutic protection against acute and chronic SARS-CoV-2 infection in mice. bioRxiv 2021:2021. [PMID: 34159330 DOI: 10.1101/2021.06.16.448754] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
26 Talukdar A, Ganguly D, Roy S, Das N, Sarkar D. Structural Evolution and Translational Potential for Agonists and Antagonists of Endosomal Toll-like Receptors. J Med Chem 2021;64:8010-41. [PMID: 34107682 DOI: 10.1021/acs.jmedchem.1c00300] [Reference Citation Analysis]
27 Melero I, Gato M, Shekarian T, Aznar A, Valsesia-Wittmann S, Caux C, Etxeberrria I, Teijeira A, Marabelle A. Repurposing infectious disease vaccines for intratumoral immunotherapy. J Immunother Cancer 2020;8:e000443. [PMID: 32102830 DOI: 10.1136/jitc-2019-000443] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
28 Tan P, He L, Zhou Y. Engineering Supramolecular Organizing Centers for Optogenetic Control of Innate Immune Responses. Adv Biol (Weinh) 2021;5:e2000147. [PMID: 34028210 DOI: 10.1002/adbi.202000147] [Reference Citation Analysis]
29 Sato A, Buque A, Yamazaki T, Bloy N, Petroni G, Galluzzi L. Immunofluorescence microscopy-based assessment of cytosolic DNA accumulation in mammalian cells. STAR Protoc 2021;2:100488. [PMID: 34041502 DOI: 10.1016/j.xpro.2021.100488] [Reference Citation Analysis]
30 Filderman JN, Appleman M, Chelvanambi M, Taylor JL, Storkus WJ. STINGing the Tumor Microenvironment to Promote Therapeutic Tertiary Lymphoid Structure Development. Front Immunol 2021;12:690105. [PMID: 34054879 DOI: 10.3389/fimmu.2021.690105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021;18:525-43. [PMID: 33850328 DOI: 10.1038/s41575-021-00438-0] [Cited by in Crossref: 127] [Cited by in F6Publishing: 103] [Article Influence: 127.0] [Reference Citation Analysis]
32 Oakes RS, Tostanoski LH, Kapnick SM, Froimchuk E, Black SK, Zeng X, Jewell CM. Exploiting Rational Assembly to Map Distinct Roles of Regulatory Cues during Autoimmune Therapy. ACS Nano 2021;15:4305-20. [PMID: 33645967 DOI: 10.1021/acsnano.0c07440] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Rohatgi A, Kirkwood JM. Beyond PD-1: The Next Frontier for Immunotherapy in Melanoma. Front Oncol 2021;11:640314. [PMID: 33732652 DOI: 10.3389/fonc.2021.640314] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
34 Verrier ER, Langevin C. Cyclic Guanosine Monophosphate-Adenosine Monophosphate Synthase (cGAS), a Multifaceted Platform of Intracellular DNA Sensing. Front Immunol 2021;12:637399. [PMID: 33708225 DOI: 10.3389/fimmu.2021.637399] [Reference Citation Analysis]
35 Wayne J, Brooks T, Landras A, Massey AJ. Targeting DNA damage response pathways to activate the STING innate immune signaling pathway in human cancer cells. FEBS J 2021;288:4507-40. [DOI: 10.1111/febs.15747] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
36 Caronni N, Montaldo E, Mezzanzanica L, Cilenti F, Genua M, Ostuni R. Determinants, mechanisms, and functional outcomes of myeloid cell diversity in cancer. Immunol Rev 2021;300:220-36. [PMID: 33565148 DOI: 10.1111/imr.12944] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Yamazaki T, Bravo-San Pedro JM, Galluzzi L, Kroemer G, Pietrocola F. Autophagy in the cancer-immunity dialogue. Adv Drug Deliv Rev 2021;169:40-50. [PMID: 33301821 DOI: 10.1016/j.addr.2020.12.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
38 Vitale I, Yamazaki T, Wennerberg E, Sveinbjørnsson B, Rekdal Ø, Demaria S, Galluzzi L. Targeting Cancer Heterogeneity with Immune Responses Driven by Oncolytic Peptides. Trends Cancer 2021;7:557-72. [PMID: 33446447 DOI: 10.1016/j.trecan.2020.12.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
39 Nguyen DC, Shae D, Pagendarm HM, Becker KW, Wehbe M, Kilchrist KV, Pastora LE, Palmer CR, Seber P, Christov PP, Duvall CL, Wilson JT. Amphiphilic Polyelectrolyte Graft Copolymers Enhance the Activity of Cyclic Dinucleotide STING Agonists. Adv Healthc Mater 2021;10:e2001056. [PMID: 33225632 DOI: 10.1002/adhm.202001056] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
40 Petroni G, Buqué A, Zitvogel L, Kroemer G, Galluzzi L. Immunomodulation by targeted anticancer agents. Cancer Cell 2021;39:310-45. [PMID: 33338426 DOI: 10.1016/j.ccell.2020.11.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
41 Liao W, Du C, Wang J. The cGAS-STING Pathway in Hematopoiesis and Its Physiopathological Significance. Front Immunol 2020;11:573915. [PMID: 33329537 DOI: 10.3389/fimmu.2020.573915] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
42 Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G, Galluzzi L. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis 2020;11:1013. [PMID: 33243969 DOI: 10.1038/s41419-020-03221-2] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
43 Lokhande AS, Devarajan PV. A review on possible mechanistic insights of Nitazoxanide for repurposing in COVID-19. Eur J Pharmacol 2021;891:173748. [PMID: 33227285 DOI: 10.1016/j.ejphar.2020.173748] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
44 Wolf D, Pircher A. Vaccination influenz(a)ing cancer-specific survival. Int J Cancer 2021;148:1806-7. [PMID: 33058181 DOI: 10.1002/ijc.33341] [Reference Citation Analysis]
45 Gadiyar V, Lahey KC, Calianese D, Devoe C, Mehta D, Bono K, Desind S, Davra V, Birge RB. Cell Death in the Tumor Microenvironment: Implications for Cancer Immunotherapy. Cells 2020;9:E2207. [PMID: 33003477 DOI: 10.3390/cells9102207] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
46 Agrawal S. RNA Therapeutics Are Stepping Out of the Maze. Trends Mol Med 2020;26:1061-4. [PMID: 32988738 DOI: 10.1016/j.molmed.2020.08.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Grasso CS, Tsoi J, Onyshchenko M, Abril-Rodriguez G, Ross-Macdonald P, Wind-Rotolo M, Champhekar A, Medina E, Torrejon DY, Shin DS, Tran P, Kim YJ, Puig-Saus C, Campbell K, Vega-Crespo A, Quist M, Martignier C, Luke JJ, Wolchok JD, Johnson DB, Chmielowski B, Hodi FS, Bhatia S, Sharfman W, Urba WJ, Slingluff CL Jr, Diab A, Haanen JBAG, Algarra SM, Pardoll DM, Anagnostou V, Topalian SL, Velculescu VE, Speiser DE, Kalbasi A, Ribas A. Conserved Interferon-γ Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma. Cancer Cell 2020;38:500-515.e3. [PMID: 32916126 DOI: 10.1016/j.ccell.2020.08.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 17.5] [Reference Citation Analysis]
48 Suarez B, Prats-Mari L, Unfried JP, Fortes P. LncRNAs in the Type I Interferon Antiviral Response. Int J Mol Sci 2020;21:E6447. [PMID: 32899429 DOI: 10.3390/ijms21176447] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
49 Du J, Zhang P, Cheng Y, Liu R, Liu H, Gao F, Shi C, Liu C. General principles of developing novel radioprotective agents for nuclear emergency. Radiation Medicine and Protection 2020;1:120-6. [DOI: 10.1016/j.radmp.2020.08.003] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Galluzzi L, Humeau J, Buqué A, Zitvogel L, Kroemer G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol 2020;17:725-41. [PMID: 32760014 DOI: 10.1038/s41571-020-0413-z] [Cited by in Crossref: 74] [Cited by in F6Publishing: 88] [Article Influence: 37.0] [Reference Citation Analysis]
51 Fucikova J, Spisek R, Kroemer G, Galluzzi L. Calreticulin and cancer. Cell Res 2021;31:5-16. [PMID: 32733014 DOI: 10.1038/s41422-020-0383-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
52 Frega G, Wu Q, Le Naour J, Vacchelli E, Galluzzi L, Kroemer G, Kepp O. Trial Watch: experimental TLR7/TLR8 agonists for oncological indications. Oncoimmunology 2020;9:1796002. [PMID: 32934889 DOI: 10.1080/2162402X.2020.1796002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
53 Gorbunova V, Seluanov A, Kennedy BK. The World Goes Bats: Living Longer and Tolerating Viruses. Cell Metab 2020;32:31-43. [PMID: 32640245 DOI: 10.1016/j.cmet.2020.06.013] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
54 Amon L, Hatscher L, Heger L, Dudziak D, Lehmann CHK. Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020;12:E663. [PMID: 32674488 DOI: 10.3390/pharmaceutics12070663] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
55 Sakaniwa K, Shimizu T. Targeting the innate immune receptor TLR8 using small-molecule agents. Acta Crystallogr D Struct Biol 2020;76:621-9. [PMID: 32627735 DOI: 10.1107/S2059798320006518] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
56 Le Naour J, Zitvogel L, Galluzzi L, Vacchelli E, Kroemer G. Trial watch: STING agonists in cancer therapy. Oncoimmunology 2020;9:1777624. [PMID: 32934881 DOI: 10.1080/2162402X.2020.1777624] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 15.5] [Reference Citation Analysis]
57 Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2020;9:1777625. [PMID: 32934882 DOI: 10.1080/2162402X.2020.1777625] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 12.5] [Reference Citation Analysis]
58 Yan-Fei H, Han Y, Yan-Ting Z, Hui Y, Yu-Qing Y, Ipsita P, Hui-Ying H, Wei-Gang F, Xin-Xia T. Dysregulation in nucleic acid-sensing pathway genes is associated with cancer patients' prognosis. Cancer Sci 2020;111:2212-22. [PMID: 32391619 DOI: 10.1111/cas.14450] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
59 Buqué A, Bloy N, Kroemer G, Galluzzi L. Possible mechanisms of cancer prevention by nicotinamide. Br J Pharmacol 2021;178:2034-40. [DOI: 10.1111/bph.15096] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
60 Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: TLR3 agonists in cancer therapy. Oncoimmunology 2020;9:1771143. [PMID: 32934877 DOI: 10.1080/2162402X.2020.1771143] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
61 Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol 2020;21:501-21. [PMID: 32424334 DOI: 10.1038/s41580-020-0244-x] [Cited by in Crossref: 104] [Cited by in F6Publishing: 102] [Article Influence: 52.0] [Reference Citation Analysis]
62 Liu D, Zhao X, Tang A, Xu X, Liu S, Zha L, Ma W, Zheng J, Shi M. CRISPR screen in mechanism and target discovery for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2020;1874:188378. [PMID: 32413572 DOI: 10.1016/j.bbcan.2020.188378] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
63 Petroni G, Galluzzi L. Cancer Immunotherapy with CDK7 Inhibitors. Trends Cancer 2020;6:361-3. [PMID: 32348731 DOI: 10.1016/j.trecan.2020.02.005] [Reference Citation Analysis]
64 Petroni G, Formenti SC, Chen-Kiang S, Galluzzi L. Immunomodulation by anticancer cell cycle inhibitors. Nat Rev Immunol 2020;20:669-79. [PMID: 32346095 DOI: 10.1038/s41577-020-0300-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
65 Lo Cigno I, Calati F, Albertini S, Gariglio M. Subversion of Host Innate Immunity by Human Papillomavirus Oncoproteins. Pathogens 2020;9:E292. [PMID: 32316236 DOI: 10.3390/pathogens9040292] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
66 Chong SJF, Marchi S, Petroni G, Kroemer G, Galluzzi L, Pervaiz S. Noncanonical Cell Fate Regulation by Bcl-2 Proteins. Trends Cell Biol 2020;30:537-55. [PMID: 32307222 DOI: 10.1016/j.tcb.2020.03.004] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 15.5] [Reference Citation Analysis]
67 Patinote C, Karroum NB, Moarbess G, Cirnat N, Kassab I, Bonnet PA, Deleuze-Masquéfa C. Agonist and antagonist ligands of toll-like receptors 7 and 8: Ingenious tools for therapeutic purposes. Eur J Med Chem 2020;193:112238. [PMID: 32203790 DOI: 10.1016/j.ejmech.2020.112238] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
68 Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology 2020;9:1703449. [PMID: 32002302 DOI: 10.1080/2162402X.2019.1703449] [Cited by in Crossref: 58] [Cited by in F6Publishing: 41] [Article Influence: 29.0] [Reference Citation Analysis]
69 Rodriguez-Ruiz ME, Vitale I, Harrington KJ, Melero I, Galluzzi L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat Immunol 2020;21:120-34. [PMID: 31873291 DOI: 10.1038/s41590-019-0561-4] [Cited by in Crossref: 64] [Cited by in F6Publishing: 68] [Article Influence: 21.3] [Reference Citation Analysis]
70 Ablasser A, Hur S. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol 2020;21:17-29. [PMID: 31819255 DOI: 10.1038/s41590-019-0556-1] [Cited by in Crossref: 72] [Cited by in F6Publishing: 66] [Article Influence: 24.0] [Reference Citation Analysis]
71 Agrawal S, Kandimalla ER. Intratumoural immunotherapy: activation of nucleic acid sensing pattern recognition receptors. Immuno-Oncology Technology 2019;3:15-23. [DOI: 10.1016/j.iotech.2019.10.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]