BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murry CE. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol 2020;17:341-59. [PMID: 32015528 DOI: 10.1038/s41569-019-0331-x] [Cited by in Crossref: 102] [Cited by in F6Publishing: 94] [Article Influence: 51.0] [Reference Citation Analysis]
Number Citing Articles
1 Lou L, Lopez KO, Nautiyal P, Agarwal A. Integrated Perspective of Scaffold Designing and Multiscale Mechanics in Cardiac Bioengineering. Adv NanoBio Res 2021;1:2100075. [DOI: 10.1002/anbr.202100075] [Reference Citation Analysis]
2 Narkar A, Willard JM, Blinova K. Chronic Cardiotoxicity Assays Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs). Int J Mol Sci 2022;23:3199. [PMID: 35328619 DOI: 10.3390/ijms23063199] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Rafatian N, Vizely K, Al Asafen H, Korolj A, Radisic M. Drawing Inspiration from Developmental Biology for Cardiac Tissue Engineers. Adv Biol (Weinh) 2021;5:e2000190. [PMID: 34008910 DOI: 10.1002/adbi.202000190] [Reference Citation Analysis]
4 Hawthorne RN, Blazeski A, Lowenthal J, Kannan S, Teuben R, DiSilvestre D, Morrissette-McAlmon J, Saffitz JE, Boheler KR, James CA, Chelko SP, Tomaselli G, Tung L. Altered Electrical, Biomolecular, and Immunologic Phenotypes in a Novel Patient-Derived Stem Cell Model of Desmoglein-2 Mutant ARVC. J Clin Med 2021;10:3061. [PMID: 34300226 DOI: 10.3390/jcm10143061] [Reference Citation Analysis]
5 Ho BX, Yu H, Pang JKS, Hor JH, Liew LC, Szyniarowski P, Lim CYY, An O, Yang HH, Stewart CL, Chan WK, Ng SY, Soh BS. Upregulation of the JAK-STAT pathway promotes maturation of human embryonic stem cell-derived cardiomyocytes. Stem Cell Reports 2021:S2213-6711(21)00544-0. [PMID: 34767749 DOI: 10.1016/j.stemcr.2021.10.009] [Reference Citation Analysis]
6 Lemcke H, Skorska A, Lang CI, Johann L, David R. Quantitative Evaluation of the Sarcomere Network of Human hiPSC-Derived Cardiomyocytes Using Single-Molecule Localization Microscopy. Int J Mol Sci 2020;21:E2819. [PMID: 32316650 DOI: 10.3390/ijms21082819] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
7 Persad KL, Lopaschuk GD. Energy Metabolism on Mitochondrial Maturation and Its Effects on Cardiomyocyte Cell Fate. Front Cell Dev Biol 2022;10:886393. [DOI: 10.3389/fcell.2022.886393] [Reference Citation Analysis]
8 Dou W, Malhi M, Zhao Q, Wang L, Huang Z, Law J, Liu N, Simmons CA, Maynes JT, Sun Y. Microengineered platforms for characterizing the contractile function of in vitro cardiac models. Microsyst Nanoeng 2022;8:26. [PMID: 35299653 DOI: 10.1038/s41378-021-00344-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Progress in Polymer Science 2021;123:101472. [DOI: 10.1016/j.progpolymsci.2021.101472] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Ernzen K, Trask AJ, Peeples ME, Garg V, Zhao MT. Human Stem Cell Models of SARS-CoV-2 Infection in the Cardiovascular System. Stem Cell Rev Rep 2021. [PMID: 34365591 DOI: 10.1007/s12015-021-10229-4] [Reference Citation Analysis]
11 Liao Y, Zhu L, Wang Y. Maturation of Stem Cell-Derived Cardiomyocytes: Foe in Translation Medicine. Int J Stem Cells 2021;14:366-85. [PMID: 34711701 DOI: 10.15283/ijsc21077] [Reference Citation Analysis]
12 [DOI: 10.1101/2020.05.26.081083] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Zhao MT, Ye S, Su J, Garg V. Cardiomyocyte Proliferation and Maturation: Two Sides of the Same Coin for Heart Regeneration. Front Cell Dev Biol 2020;8:594226. [PMID: 33178704 DOI: 10.3389/fcell.2020.594226] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
14 Llucià-Valldeperas A, Smal R, Bekedam FT, Cé M, Pan X, Manz XD, Wijnker PJM, Vonk-Noordegraaf A, Bogaard HJ, Goumans MJ, Man FS. Development of a 3-Dimensional Model to Study Right Heart Dysfunction in Pulmonary Arterial Hypertension: First Observations. Cells 2021;10:3595. [PMID: 34944102 DOI: 10.3390/cells10123595] [Reference Citation Analysis]
15 Yang J, Ding N, Zhao D, Yu Y, Shao C, Ni X, Zhao ZA, Li Z, Chen J, Ying Z, Yu M, Lei W, Hu S. Intermittent Starvation Promotes Maturation of Human Embryonic Stem Cell-Derived Cardiomyocytes. Front Cell Dev Biol 2021;9:687769. [PMID: 34395420 DOI: 10.3389/fcell.2021.687769] [Reference Citation Analysis]
16 Agarwal T, Onesto V, Lamboni L, Ansari A, Maiti TK, Makvandi P, Vosough M, Yang G. Engineering biomimetic intestinal topological features in 3D tissue models: retrospects and prospects. Bio-des Manuf 2021;4:568-95. [DOI: 10.1007/s42242-020-00120-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
17 Liu N, Ye X, Yao B, Zhao M, Wu P, Liu G, Zhuang D, Jiang H, Chen X, He Y, Huang S, Zhu P. Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioact Mater 2021;6:1388-401. [PMID: 33210031 DOI: 10.1016/j.bioactmat.2020.10.021] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
18 Rowton M, Guzzetta A, Rydeen AB, Moskowitz IP. Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Semin Cell Dev Biol 2021:S1084-9521(21)00153-1. [PMID: 34144893 DOI: 10.1016/j.semcdb.2021.06.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Marchiano S, Hsiang TY, Khanna A, Higashi T, Whitmore LS, Bargehr J, Davaapil H, Chang J, Smith E, Ong LP, Colzani M, Reinecke H, Yang X, Pabon L, Sinha S, Najafian B, Sniadecki NJ, Bertero A, Gale M Jr, Murry CE. SARS-CoV-2 Infects Human Pluripotent Stem Cell-Derived Cardiomyocytes, Impairing Electrical and Mechanical Function. Stem Cell Reports 2021;16:478-92. [PMID: 33657418 DOI: 10.1016/j.stemcr.2021.02.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
20 Tsoi C, Deng R, Kwok M, Yan B, Lee C, Li HS, Ma CHY, Luo R, Leung KT, Chan GC, Chow LM, Poon EN. Temporal Control of the WNT Signaling Pathway During Cardiac Differentiation Impacts Upon the Maturation State of Human Pluripotent Stem Cell Derived Cardiomyocytes. Front Mol Biosci 2022;9:714008. [DOI: 10.3389/fmolb.2022.714008] [Reference Citation Analysis]
21 Tang Y, Zhao L, Yu X, Zhang J, Qian L, Jin J, Lu R, Zhou Y. Inhibition of EZH2 primes the cardiac gene activation via removal of epigenetic repression during human direct cardiac reprogramming. Stem Cell Res 2021;53:102365. [PMID: 34087994 DOI: 10.1016/j.scr.2021.102365] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Paci M, Penttinen K, Pekkanen-Mattila M, Koivumäki JT. Arrhythmia Mechanisms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J Cardiovasc Pharmacol 2020;77:300-16. [PMID: 33323698 DOI: 10.1097/FJC.0000000000000972] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Karbassi E, Murry CE. Flexing Their Muscles: Maturation of Stem Cell-Derived Cardiomyocytes on Elastomeric Substrates to Enhance Cardiac Repair. Circulation 2022;145:1427-30. [PMID: 35500046 DOI: 10.1161/CIRCULATIONAHA.122.059079] [Reference Citation Analysis]
24 Yang H, Liu W, Song S, Bai L, Nie Y, Bai Y, Zhang G. Proteogenomics Integrating Reveal a Complex Network, Alternative Splicing, Hub Genes Regulating Heart Maturation. Genes 2022;13:250. [DOI: 10.3390/genes13020250] [Reference Citation Analysis]
25 Gerbin KA, Grancharova T, Donovan-Maiye RM, Hendershott MC, Anderson HG, Brown JM, Chen J, Dinh SQ, Gehring JL, Johnson GR, Lee H, Nath A, Nelson AM, Sluzewski MF, Viana MP, Yan C, Zaunbrecher RJ, Cordes Metzler KR, Gaudreault N, Knijnenburg TA, Rafelski SM, Theriot JA, Gunawardane RN. Cell states beyond transcriptomics: Integrating structural organization and gene expression in hiPSC-derived cardiomyocytes. Cell Syst 2021;12:670-687.e10. [PMID: 34043964 DOI: 10.1016/j.cels.2021.05.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
26 James EC, Tomaskovic-Crook E, Crook JM. Bioengineering Clinically Relevant Cardiomyocytes and Cardiac Tissues from Pluripotent Stem Cells. Int J Mol Sci 2021;22:3005. [PMID: 33809429 DOI: 10.3390/ijms22063005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Murganti F, Derks W, Baniol M, Simonova I, Trus P, Neumann K, Khattak S, Guan K, Bergmann O. FUCCI-Based Live Imaging Platform Reveals Cell Cycle Dynamics and Identifies Pro-proliferative Compounds in Human iPSC-Derived Cardiomyocytes. Front Cardiovasc Med 2022;9:840147. [DOI: 10.3389/fcvm.2022.840147] [Reference Citation Analysis]
28 Ravindran D, Kok C, Farraha M, Selvakumar D, Clayton ZE, Kumar S, Chong J, Kizana E. Gene and Cell Therapy for Cardiac Arrhythmias. Clin Ther 2020;42:1911-22. [PMID: 32988632 DOI: 10.1016/j.clinthera.2020.09.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
29 Andrysiak K, Stępniewski J, Dulak J. Human-induced pluripotent stem cell-derived cardiomyocytes, 3D cardiac structures, and heart-on-a-chip as tools for drug research. Pflugers Arch 2021;473:1061-85. [PMID: 33629131 DOI: 10.1007/s00424-021-02536-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 [DOI: 10.1101/2020.08.30.274464] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
31 Miao S, Zhao D, Wang X, Ni X, Fang X, Yu M, Ye L, Yang J, Wu H, Han X, Qu L, Li L, Lan F, Shen Z, Lei W, Zhao ZA, Hu S. Retinoic acid promotes metabolic maturation of human Embryonic Stem Cell-derived Cardiomyocytes. Theranostics 2020;10:9686-701. [PMID: 32863954 DOI: 10.7150/thno.44146] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
32 Liao H, Qi Y, Ye Y, Yue P, Zhang D, Li Y. Mechanotranduction Pathways in the Regulation of Mitochondrial Homeostasis in Cardiomyocytes. Front Cell Dev Biol 2020;8:625089. [PMID: 33553165 DOI: 10.3389/fcell.2020.625089] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Ghazal N, Peoples JN, Mohiuddin TA, Kwong JQ. Mitochondrial functional resilience after TFAM ablation in the adult heart. Am J Physiol Cell Physiol 2021;320:C929-42. [PMID: 33760663 DOI: 10.1152/ajpcell.00508.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Song M, Kim J, Shin H, Kim Y, Jang H, Park Y, Kim SJ. Development of Magnetic Torque Stimulation (MTS) Utilizing Rotating Uniform Magnetic Field for Mechanical Activation of Cardiac Cells. Nanomaterials (Basel) 2020;10:E1684. [PMID: 32867131 DOI: 10.3390/nano10091684] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
35 Thomas D, Shenoy S, Sayed N. Building Multi-Dimensional Induced Pluripotent Stem Cells-Based Model Platforms to Assess Cardiotoxicity in Cancer Therapies. Front Pharmacol 2021;12:607364. [PMID: 33679396 DOI: 10.3389/fphar.2021.607364] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
36 Crasto S, My I, Di Pasquale E. The Broad Spectrum of LMNA Cardiac Diseases: From Molecular Mechanisms to Clinical Phenotype. Front Physiol 2020;11:761. [PMID: 32719615 DOI: 10.3389/fphys.2020.00761] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
37 Svobodova B, Jelinkova S, Pesl M, Beckerová D, Lacampagne A, Meli AC, Rotrekl V. Cellular pathology of the human heart in Duchenne muscular dystrophy (DMD): lessons learned from in vitro modeling. Pflugers Arch - Eur J Physiol 2021;473:1099-115. [DOI: 10.1007/s00424-021-02589-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Kulvinskiene I, Aldonyte R, Miksiunas R, Mobasheri A, Bironaite D. Biomatrices for Heart Regeneration and Cardiac Tissue Modelling In Vitro. Adv Exp Med Biol 2020;1298:43-77. [PMID: 32592155 DOI: 10.1007/5584_2020_564] [Reference Citation Analysis]
39 Lin H, McBride KL, Garg V, Zhao MT. Decoding Genetics of Congenital Heart Disease Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Front Cell Dev Biol 2021;9:630069. [PMID: 33585486 DOI: 10.3389/fcell.2021.630069] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
40 Vučković S, Dinani R, Nollet EE, Kuster DWD, Buikema JW, Houtkooper RH, Nabben M, van der Velden J, Goversen B. Characterization of cardiac metabolism in iPSC-derived cardiomyocytes: lessons from maturation and disease modeling. Stem Cell Res Ther 2022;13. [DOI: 10.1186/s13287-022-03021-9] [Reference Citation Analysis]
41 Körner A, Mosqueira M, Hecker M, Ullrich ND. Substrate Stiffness Influences Structural and Functional Remodeling in Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Physiol 2021;12:710619. [PMID: 34489730 DOI: 10.3389/fphys.2021.710619] [Reference Citation Analysis]
42 Yu Y, Tan K, Shaharuddin B, Guo Z, Tan JJ. Modelling Atrial Arrhythmia In vitro Using Pluripotent Stem Cell-derived Atrial Cardiomyocytes in Three-dimensional Culture. BIO Integration 2020;1:92-4. [DOI: 10.15212/bioi-2020-0011] [Reference Citation Analysis]
43 Siddique A, Shanmugasundaram A, Kim JY, Roshanzadeh A, Kim E, Lee B, Lee D. The effect of topographical and mechanical stimulation on the structural and functional anisotropy of cardiomyocytes grown on a circular PDMS diaphragm. Biosensors and Bioelectronics 2022;204:114017. [DOI: 10.1016/j.bios.2022.114017] [Reference Citation Analysis]
44 Soma Y, Morita Y, Kishino Y, Kanazawa H, Fukuda K, Tohyama S. The Present State and Future Perspectives of Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells. Front Cardiovasc Med 2021;8:774389. [PMID: 34957258 DOI: 10.3389/fcvm.2021.774389] [Reference Citation Analysis]
45 Rampoldi A, Jha R, Fite J, Boland G, Xu C. Cryopreservation and CO2-independent culture of 3D cardiac progenitors for spaceflight experiments. Biomaterials 2021;269:120673. [PMID: 33493770 DOI: 10.1016/j.biomaterials.2021.120673] [Reference Citation Analysis]
46 Bourque K, Hawey C, Jiang A, Mazarura GR, Hébert TE. Biosensor-based profiling to track cellular signalling in patient-derived models of dilated cardiomyopathy. Cell Signal 2022;91:110239. [PMID: 34990783 DOI: 10.1016/j.cellsig.2021.110239] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Koivisto M, Tolvanen TA, Toimela T, Miinalainen I, Kiviaho A, Kesseli J, Nykter M, Eklund L, Heinonen T. Functional human cell-based vascularised cardiac tissue model for biomedical research and testing. Sci Rep 2022;12:13459. [PMID: 35931748 DOI: 10.1038/s41598-022-17498-0] [Reference Citation Analysis]
48 Selvakumar D, Clayton ZE, Chong JJH. Robust Cardiac Regeneration: Fulfilling the Promise of Cardiac Cell Therapy. Clin Ther 2020;42:1857-79. [PMID: 32943195 DOI: 10.1016/j.clinthera.2020.08.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
49 Huang H, Christidi E, Shafaattalab S, Davis MK, Tibbits GF, Brunham LR. RARG S427L attenuates the DNA repair response to doxorubicin in induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Reports 2022:S2213-6711(22)00135-7. [PMID: 35364012 DOI: 10.1016/j.stemcr.2022.03.002] [Reference Citation Analysis]
50 Guns PD, Guth BD, Braam S, Kosmidis G, Matsa E, Delaunois A, Gryshkova V, Bernasconi S, Knot HJ, Shemesh Y, Chen A, Markert M, Fernández MA, Lombardi D, Grandmont C, Cillero-Pastor B, Heeren RMA, Martinet W, Woolard J, Skinner M, Segers VFM, Franssen C, Van Craenenbroeck EM, Volders PGA, Pauwelyn T, Braeken D, Yanez P, Correll K, Yang X, Prior H, Kismihók G, De Meyer GRY, Valentin JP. INSPIRE: A European training network to foster research and training in cardiovascular safety pharmacology. J Pharmacol Toxicol Methods 2020;105:106889. [PMID: 32565326 DOI: 10.1016/j.vascn.2020.106889] [Reference Citation Analysis]
51 Kim YS, Yoon JW, Kim D, Choi S, Kim HK, Youm JB, Han J, Heo SC, Hyun SA, Seo JW, Kim DH, Kim JH. Tomatidine-stimulated maturation of human embryonic stem cell-derived cardiomyocytes for modeling mitochondrial dysfunction. Exp Mol Med 2022;54:493-502. [PMID: 35379934 DOI: 10.1038/s12276-022-00746-8] [Reference Citation Analysis]
52 Rashid SA, Blanchard AT, Combs JD, Fernandez N, Dong Y, Cho HC, Salaita K. DNA Tension Probes Show that Cardiomyocyte Maturation Is Sensitive to the Piconewton Traction Forces Transmitted by Integrins. ACS Nano 2022. [PMID: 35324164 DOI: 10.1021/acsnano.1c04303] [Reference Citation Analysis]
53 Stella Stoter AM, Hirt MN, Stenzig J, Weinberger F. Assessment of Cardiotoxicity With Stem Cell-based Strategies. Clin Ther 2020;42:1892-910. [PMID: 32938533 DOI: 10.1016/j.clinthera.2020.08.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
54 Budharaju H, Subramanian A, Sethuraman S. Recent advancements in cardiovascular bioprinting and bioprinted cardiac constructs. Biomater Sci 2021;9:1974-94. [DOI: 10.1039/d0bm01428a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
55 Block T, Creech J, da Rocha AM, Marinkovic M, Ponce-Balbuena D, Jiménez-Vázquez EN, Griffey S, Herron TJ. Human perinatal stem cell derived extracellular matrix enables rapid maturation of hiPSC-CM structural and functional phenotypes. Sci Rep 2020;10:19071. [PMID: 33149250 DOI: 10.1038/s41598-020-76052-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Tamargo MA, Nash TR, Fleischer S, Kim Y, Vila OF, Yeager K, Summers M, Zhao Y, Lock R, Chavez M, Costa T, Vunjak-Novakovic G. milliPillar: A Platform for the Generation and Real-Time Assessment of Human Engineered Cardiac Tissues. ACS Biomater Sci Eng 2021;7:5215-29. [PMID: 34668692 DOI: 10.1021/acsbiomaterials.1c01006] [Reference Citation Analysis]
57 Li W, Luo X, Poetsch MS, Oertel R, Nichani K, Schneider M, Strano A, Hasse M, Steiner R, Cyganek L, Hettwer K, Uhlig S, Simon K, Guan K, Schubert M. Synergistic Adverse Effects of Azithromycin and Hydroxychloroquine on Human Cardiomyocytes at a Clinically Relevant Treatment Duration. Pharmaceuticals 2022;15:220. [DOI: 10.3390/ph15020220] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
58 Yadid M, Oved H, Silberman E, Dvir T. Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nat Rev Cardiol 2021. [PMID: 34453134 DOI: 10.1038/s41569-021-00603-7] [Reference Citation Analysis]
59 Fenix AM, Miyaoka Y, Bertero A, Blue SM, Spindler MJ, Tan KKB, Perez-Bermejo JA, Chan AH, Mayerl SJ, Nguyen TD, Russell CR, Lizarraga PP, Truong A, So PL, Kulkarni A, Chetal K, Sathe S, Sniadecki NJ, Yeo GW, Murry CE, Conklin BR, Salomonis N. Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies. Nat Commun 2021;12:6324. [PMID: 34732726 DOI: 10.1038/s41467-021-26623-y] [Reference Citation Analysis]
60 Li Y, Ye Z, Zhang J, Zhao Y, Zhu T, Song J, Xu F, Li F. In Situ and Quantitative Monitoring of Cardiac Tissues Using Programmable Scanning Electrochemical Microscopy. Anal Chem 2022. [PMID: 35822575 DOI: 10.1021/acs.analchem.2c01919] [Reference Citation Analysis]
61 Dwyer KD, Coulombe KLK. Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction. Bioact Mater 2021;6:2198-220. [PMID: 33553810 DOI: 10.1016/j.bioactmat.2020.12.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Kasai-Brunswick TH, Carvalho AB, Campos de Carvalho AC. Stem cell therapies in cardiac diseases: Current status and future possibilities. World J Stem Cells 2021;13:1231-47. [PMID: 34630860 DOI: 10.4252/wjsc.v13.i9.1231] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
63 Gonzalez G, Holman AR, Nelson AC, Engler AJ. Engineering the niche to differentiate and deploy cardiovascular cells. Curr Opin Biotechnol 2021;74:122-8. [PMID: 34861477 DOI: 10.1016/j.copbio.2021.11.003] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Luo XL, Zhang P, Liu X, Huang S, Rao SL, Ding Q, Yang HT. Myosin light chain 2 marks differentiating ventricular cardiomyocytes derived from human embryonic stem cells. Pflugers Arch 2021;473:991-1007. [PMID: 34031754 DOI: 10.1007/s00424-021-02578-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 McKnight CL, Low YC, Elliott DA, Thorburn DR, Frazier AE. Modelling Mitochondrial Disease in Human Pluripotent Stem Cells: What Have We Learned? Int J Mol Sci 2021;22:7730. [PMID: 34299348 DOI: 10.3390/ijms22147730] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
66 Ohya T, Ohtomo H, Kikuchi T, Sasaki D, Kawamura Y, Matsuura K, Shimizu T, Fukuda K, Someya T, Umezu S. Simultaneous measurement of contractile force and field potential of dynamically beating human iPS cell-derived cardiac cell sheet-tissue with flexible electronics. Lab Chip 2021;21:3899-909. [PMID: 34636821 DOI: 10.1039/d1lc00411e] [Reference Citation Analysis]
67 Carlos-Oliveira M, Lozano-Juan F, Occhetta P, Visone R, Rasponi M. Current strategies of mechanical stimulation for maturation of cardiac microtissues. Biophys Rev 2021;13:717-27. [PMID: 34765047 DOI: 10.1007/s12551-021-00841-6] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
68 Sakamoto T, Batmanov K, Wan S, Guo Y, Lai L, Vega RB, Kelly DP. The nuclear receptor ERR cooperates with the cardiogenic factor GATA4 to orchestrate cardiomyocyte maturation. Nat Commun 2022;13:1991. [PMID: 35418170 DOI: 10.1038/s41467-022-29733-3] [Reference Citation Analysis]
69 Jiang T, Yang T, Bao Q, Sun W, Yang M, Mao C. Construction of tissue-customized hydrogels from cross-linkable materials for effective tissue regeneration. J Mater Chem B 2021. [PMID: 34812829 DOI: 10.1039/d1tb01935j] [Reference Citation Analysis]
70 Takada T, Sasaki D, Matsuura K, Miura K, Sakamoto S, Goto H, Ohya T, Iida T, Homma J, Shimizu T, Hagiwara N. Aligned human induced pluripotent stem cell-derived cardiac tissue improves contractile properties through promoting unidirectional and synchronous cardiomyocyte contraction. Biomaterials 2021;281:121351. [PMID: 34979417 DOI: 10.1016/j.biomaterials.2021.121351] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
71 Kay M, Soltani BM. LncRNAs in Cardiomyocyte Maturation: New Window for Cardiac Regenerative Medicine. Noncoding RNA 2021;7:20. [PMID: 33802186 DOI: 10.3390/ncrna7010020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
72 Paloschi V, Sabater-Lleal M, Middelkamp H, Vivas A, Johansson S, van der Meer A, Tenje M, Maegdefessel L. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc Res 2021:cvab088. [PMID: 33729461 DOI: 10.1093/cvr/cvab088] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
73 Graham N, Huang GN. Endocrine Influence on Cardiac Metabolism in Development and Regeneration. Endocrinology 2021;162:bqab081. [PMID: 33880553 DOI: 10.1210/endocr/bqab081] [Reference Citation Analysis]
74 Carotenuto F, Politi S, Ul Haq A, De Matteis F, Tamburri E, Terranova ML, Teodori L, Pasquo A, Di Nardo P. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. Micromachines 2022;13:780. [DOI: 10.3390/mi13050780] [Reference Citation Analysis]
75 Rhee JW, Yi H, Thomas D, Lam CK, Belbachir N, Tian L, Qin X, Malisa J, Lau E, Paik DT, Kim Y, Choi BS, Sayed N, Sallam K, Liao R, Wu JC. Modeling Secondary Iron Overload Cardiomyopathy with Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cell Rep 2020;32:107886. [PMID: 32668256 DOI: 10.1016/j.celrep.2020.107886] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
76 Montero P, Flandes-Iparraguirre M, Musquiz S, Pérez Araluce M, Plano D, Sanmartín C, Orive G, Gavira JJ, Prosper F, Mazo MM. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Front Bioeng Biotechnol 2020;8:955. [PMID: 32850768 DOI: 10.3389/fbioe.2020.00955] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
77 Thomas D, Choi S, Alamana C, Parker KK, Wu JC. Cellular and Engineered Organoids for Cardiovascular Models. Circ Res 2022;130:1780-802. [PMID: 35679369 DOI: 10.1161/CIRCRESAHA.122.320305] [Reference Citation Analysis]
78 Becker R, Leone M, Engel FB. Microtubule Organization in Striated Muscle Cells. Cells 2020;9:E1395. [PMID: 32503326 DOI: 10.3390/cells9061395] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
79 Funakoshi S, Yoshida Y. Recent progress of iPSC technology in cardiac diseases. Arch Toxicol 2021;95:3633-50. [PMID: 34657219 DOI: 10.1007/s00204-021-03172-3] [Reference Citation Analysis]
80 Campostrini G, Windt LM, van Meer BJ, Bellin M, Mummery CL. Cardiac Tissues From Stem Cells: New Routes to Maturation and Cardiac Regeneration. Circ Res 2021;128:775-801. [PMID: 33734815 DOI: 10.1161/CIRCRESAHA.121.318183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
81 Guo Y, Cao Y, Jardin BD, Sethi I, Ma Q, Moghadaszadeh B, Troiano EC, Mazumdar N, Trembley MA, Small EM, Yuan GC, Beggs AH, Pu WT. Sarcomeres regulate murine cardiomyocyte maturation through MRTF-SRF signaling. Proc Natl Acad Sci U S A 2021;118:e2008861118. [PMID: 33361330 DOI: 10.1073/pnas.2008861118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
82 Zhang M, Xu Y, Chen Y, Yan Q, Li X, Ding L, Wei T, Zeng D. Three-Dimensional Poly-(ε-Caprolactone) Nanofibrous Scaffolds Promote the Maturation of Human Pluripotent Stem Cells-Induced Cardiomyocytes. Front Cell Dev Biol 2022;10:875278. [DOI: 10.3389/fcell.2022.875278] [Reference Citation Analysis]
83 Bertero A. RNA Biogenesis Instructs Functional Inter-Chromosomal Genome Architecture. Front Genet 2021;12:645863. [PMID: 33732290 DOI: 10.3389/fgene.2021.645863] [Reference Citation Analysis]
84 Lamberto F, Peral-Sanchez I, Muenthaisong S, Zana M, Willaime-Morawek S, Dinnyés A. Environmental Alterations during Embryonic Development: Studying the Impact of Stressors on Pluripotent Stem Cell-Derived Cardiomyocytes. Genes (Basel) 2021;12:1564. [PMID: 34680959 DOI: 10.3390/genes12101564] [Reference Citation Analysis]
85 Selvakumar D, Reyes L, Chong JJH. Cardiac Cell Therapy with Pluripotent Stem Cell-Derived Cardiomyocytes: What Has Been Done and What Remains to Do? Curr Cardiol Rep 2022. [PMID: 35275365 DOI: 10.1007/s11886-022-01666-9] [Reference Citation Analysis]
86 Lim GB. Inhibiting fatty acid oxidation promotes cardiomyocyte proliferation. Nat Rev Cardiol 2020;17:266-7. [PMID: 32152529 DOI: 10.1038/s41569-020-0361-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
87 Murphy SA, Chen EZ, Tung L, Boheler KR, Kwon C. Maturing heart muscle cells: Mechanisms and transcriptomic insights. Semin Cell Dev Biol 2021:S1084-9521(21)00092-6. [PMID: 33952430 DOI: 10.1016/j.semcdb.2021.04.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
88 Lendahl U. 100 plus years of stem cell research-20 years of ISSCR. Stem Cell Reports 2022;17:1248-67. [PMID: 35705014 DOI: 10.1016/j.stemcr.2022.04.004] [Reference Citation Analysis]
89 Guo Y, Pu WT. Cardiomyocyte Maturation: New Phase in Development. Circ Res 2020;126:1086-106. [PMID: 32271675 DOI: 10.1161/CIRCRESAHA.119.315862] [Cited by in Crossref: 63] [Cited by in F6Publishing: 42] [Article Influence: 31.5] [Reference Citation Analysis]
90 Saffioti NA, Cavalcanti-Adam EA, Pallarola D. Biosensors for Studies on Adhesion-Mediated Cellular Responses to Their Microenvironment. Front Bioeng Biotechnol 2020;8:597950. [PMID: 33262979 DOI: 10.3389/fbioe.2020.597950] [Reference Citation Analysis]
91 Sacchetto C, Vitiello L, de Windt LJ, Rampazzo A, Calore M. Modeling Cardiovascular Diseases with hiPSC-Derived Cardiomyocytes in 2D and 3D Cultures. Int J Mol Sci 2020;21:E3404. [PMID: 32403456 DOI: 10.3390/ijms21093404] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
92 Benko A, Medina-cruz D, Duch J, Popiela T, Wilk S, Bińczak M, Nocuń M, Menaszek E, Geoffrion LD, Guisbiers G, Kotarba A, Webster TJ. Conductive all-carbon nanotube layers: Results on attractive physicochemical, anti-bacterial, anticancer and biocompatibility properties. Materials Science and Engineering: C 2021;120:111703. [DOI: 10.1016/j.msec.2020.111703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Jahng JWS, Zhang M, Wu JC. The role of metabolism in directed differentiation versus trans-differentiation of cardiomyocytes. Semin Cell Dev Biol 2021:S1084-9521(21)00127-0. [PMID: 34074592 DOI: 10.1016/j.semcdb.2021.05.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
94 Fernández-Ruiz I. Rejuvenating cardiomyocytes facilitates heart regeneration. Nat Rev Cardiol 2021;18:807. [PMID: 34667278 DOI: 10.1038/s41569-021-00637-x] [Reference Citation Analysis]
95 Song M, Jang Y, Kim SJ, Park Y. Cyclic Stretching Induces Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes through Nuclear-Mechanotransduction. Tissue Eng Regen Med 2022. [PMID: 35258794 DOI: 10.1007/s13770-021-00427-z] [Reference Citation Analysis]
96 Skorska A, Johann L, Chabanovska O, Vasudevan P, Kussauer S, Hillemanns M, Wolfien M, Jonitz-Heincke A, Wolkenhauer O, Bader R, Lang H, David R, Lemcke H. Monitoring the maturation of the sarcomere network: a super-resolution microscopy-based approach. Cell Mol Life Sci 2022;79:149. [PMID: 35199227 DOI: 10.1007/s00018-022-04196-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Carotenuto F, Manzari V, Di Nardo P. Cardiac Regeneration: the Heart of the Issue. Curr Transpl Rep 2021;8:67-75. [DOI: 10.1007/s40472-021-00319-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
98 Kumar S, Curran JE, Kumar K, DeLeon E, Leandro AC, Peralta J, Williams-Blangero S, Blangero J. Disease Modeling and Disease Gene Discovery in Cardiomyopathies: A Molecular Study of Induced Pluripotent Stem Cell Generated Cardiomyocytes. Int J Mol Sci 2021;22:3311. [PMID: 33805011 DOI: 10.3390/ijms22073311] [Reference Citation Analysis]
99 Li Y, Yang M, Tan J, Shen C, Deng S, Fu X, Gao S, Li H, Zhang X, Cai W. Targeting ACSL1 promotes cardiomyocyte proliferation and cardiac regeneration. Life Sci 2022;:120371. [PMID: 35122795 DOI: 10.1016/j.lfs.2022.120371] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Jahnel SM, Mendjan S. Taking Heart Development to the Next Level. Cell Stem Cell 2021;28:180-1. [PMID: 33545075 DOI: 10.1016/j.stem.2021.01.014] [Reference Citation Analysis]
101 Strimaityte D, Tu C, Yanez A, Itzhaki I, Wu H, Wu JC, Yang H. Contractility and Calcium Transient Maturation in the Human iPSC-Derived Cardiac Microfibers. ACS Appl Mater Interfaces 2022. [PMID: 35901275 DOI: 10.1021/acsami.2c07326] [Reference Citation Analysis]
102 Barrejón M, Marchesan S, Alegret N, Prato M. Carbon nanotubes for cardiac tissue regeneration: State of the art and perspectives. Carbon 2021;184:641-50. [DOI: 10.1016/j.carbon.2021.08.059] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
103 Yong U, Kang B, Jang J. 3D bioprinted and integrated platforms for cardiac tissue modeling and drug testing. Essays Biochem 2021:EBC20200106. [PMID: 34269790 DOI: 10.1042/EBC20200106] [Reference Citation Analysis]
104 Wu P, Deng G, Sai X, Guo H, Huang H, Zhu P. Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci Rep 2021;41:BSR20200833. [PMID: 33057659 DOI: 10.1042/BSR20200833] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
105 Boheler KR, Poon EN. Cell surface markers for immunophenotyping human pluripotent stem cell-derived cardiomyocytes. Pflugers Arch 2021;473:1023-39. [PMID: 33928456 DOI: 10.1007/s00424-021-02549-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
106 Garbern JC, Lee RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther 2021;12:177. [PMID: 33712058 DOI: 10.1186/s13287-021-02252-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
107 Li Y, Qiu X. Bioelectricity-coupling patches for repairing impaired myocardium. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022;14:e1787. [PMID: 35233963 DOI: 10.1002/wnan.1787] [Reference Citation Analysis]
108 Mostafavi S, Balafkan N, Pettersen IKN, Nido GS, Siller R, Tzoulis C, Sullivan GJ, Bindoff LA. Distinct Mitochondrial Remodeling During Mesoderm Differentiation in a Human-Based Stem Cell Model. Front Cell Dev Biol 2021;9:744777. [PMID: 34722525 DOI: 10.3389/fcell.2021.744777] [Reference Citation Analysis]
109 Tampakakis E, Gangrade H, Glavaris S, Htet M, Murphy S, Lin BL, Liu T, Saberi A, Miyamoto M, Kowalski W, Mukouyama YS, Lee G, Minichiello L, Kwon C. Heart neurons use clock genes to control myocyte proliferation. Sci Adv 2021;7:eabh4181. [PMID: 34851661 DOI: 10.1126/sciadv.abh4181] [Reference Citation Analysis]
110 Tetsuka H, Pirrami L, Wang T, Demarchi D, Shin SR. Wirelessly Powered 3D Printed Hierarchical Biohybrid Robots with Multiscale Mechanical Properties. Adv Funct Materials. [DOI: 10.1002/adfm.202202674] [Reference Citation Analysis]
111 Tampakakis E, Mahmoud AI. The role of hormones and neurons in cardiomyocyte maturation. Semin Cell Dev Biol 2021:S1084-9521(21)00073-2. [PMID: 33931308 DOI: 10.1016/j.semcdb.2021.03.026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 Batalov I, Jallerat Q, Kim S, Bliley J, Feinberg AW. Engineering aligned human cardiac muscle using developmentally inspired fibronectin micropatterns. Sci Rep 2021;11:11502. [PMID: 34075068 DOI: 10.1038/s41598-021-87550-y] [Reference Citation Analysis]
113 Rosholm KR, Badone B, Karatsiompani S, Nagy D, Seibertz F, Voigt N, Bell DC. Adventures and Advances in Time Travel With Induced Pluripotent Stem Cells and Automated Patch Clamp. Front Mol Neurosci 2022;15:898717. [DOI: 10.3389/fnmol.2022.898717] [Reference Citation Analysis]
114 Häneke T, Sahara M. Progress in Bioengineering Strategies for Heart Regenerative Medicine. Int J Mol Sci 2022;23:3482. [PMID: 35408844 DOI: 10.3390/ijms23073482] [Reference Citation Analysis]
115 Rasmussen ML, Taneja N, Neininger AC, Wang L, Robertson GL, Riffle SN, Shi L, Knollmann BC, Burnette DT, Gama V. MCL-1 Inhibition by Selective BH3 Mimetics Disrupts Mitochondrial Dynamics Causing Loss of Viability and Functionality of Human Cardiomyocytes. iScience 2020;23:101015. [PMID: 32283523 DOI: 10.1016/j.isci.2020.101015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
116 Pushp P, Nogueira DES, Rodrigues CAV, Ferreira FC, Cabral JMS, Gupta MK. A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Rev Rep 2021;17:748-76. [PMID: 33098306 DOI: 10.1007/s12015-020-10061-2] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
117 Kerr CM, Richards D, Menick DR, Deleon-Pennell KY, Mei Y. Multicellular Human Cardiac Organoids Transcriptomically Model Distinct Tissue-Level Features of Adult Myocardium. Int J Mol Sci 2021;22:8482. [PMID: 34445185 DOI: 10.3390/ijms22168482] [Reference Citation Analysis]
118 Wickramasinghe NM, Sachs D, Shewale B, Gonzalez DM, Dhanan-Krishnan P, Torre D, LaMarca E, Raimo S, Dariolli R, Serasinghe MN, Mayourian J, Sebra R, Beaumont K, Iyengar S, French DL, Hansen A, Eschenhagen T, Chipuk JE, Sobie EA, Jacobs A, Akbarian S, Ischiropoulos H, Ma'ayan A, Houten SM, Costa K, Dubois NC. PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem-cell-derived cardiomyocytes. Cell Stem Cell 2022:S1934-5909(22)00097-2. [PMID: 35325615 DOI: 10.1016/j.stem.2022.02.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
119 Kahn-krell A, Pretorius D, Guragain B, Lou X, Wei Y, Zhang J, Qiao A, Nakada Y, Kamp TJ, Ye L, Zhang J. A three-dimensional culture system for generating cardiac spheroids composed of cardiomyocytes, endothelial cells, smooth-muscle cells, and cardiac fibroblasts derived from human induced-pluripotent stem cells. Front Bioeng Biotechnol 2022;10:908848. [DOI: 10.3389/fbioe.2022.908848] [Reference Citation Analysis]
120 Gilbert G. Approaches to Optimize Stem Cell-Derived Cardiomyocyte Maturation and Function. Curr Stem Cell Rep 2021;7:140-60. [DOI: 10.1007/s40778-021-00197-3] [Reference Citation Analysis]
121 Alvarez-Dominguez JR, Melton DA. Cell maturation: Hallmarks, triggers, and manipulation. Cell 2022;185:235-49. [PMID: 34995481 DOI: 10.1016/j.cell.2021.12.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
122 Cooper BL, Posnack NG. Characteristics of Bisphenol Cardiotoxicity: Impaired Excitability, Contractility, and Relaxation. Cardiovasc Toxicol 2022. [PMID: 35143014 DOI: 10.1007/s12012-022-09719-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
123 Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021;14:dmm047522. [PMID: 33787508 DOI: 10.1242/dmm.047522] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
124 Wu BB, Leung KT, Poon EN. Mitochondrial-Targeted Therapy for Doxorubicin-Induced Cardiotoxicity. Int J Mol Sci 2022;23:1912. [PMID: 35163838 DOI: 10.3390/ijms23031912] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
125 Funakoshi S, Fernandes I, Mastikhina O, Wilkinson D, Tran T, Dhahri W, Mazine A, Yang D, Burnett B, Lee J, Protze S, Bader GD, Nunes SS, Laflamme M, Keller G. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells. Nat Commun 2021;12:3155. [PMID: 34039977 DOI: 10.1038/s41467-021-23329-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
126 Hashimoto K, Kodama A, Ohira M, Kimoto M, Nakagawa R, Usui Y, Ujihara Y, Hanashima A, Mohri S. Postnatal expression of cell cycle promoter Fam64a causes heart dysfunction by inhibiting cardiomyocyte differentiation through repression of Klf15. iScience 2022;25:104337. [PMID: 35602953 DOI: 10.1016/j.isci.2022.104337] [Reference Citation Analysis]
127 Fang Y, Sun W, Zhang T, Xiong Z. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review. Biomaterials 2021;280:121298. [PMID: 34864451 DOI: 10.1016/j.biomaterials.2021.121298] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
128 Nakano H, Fajardo VM, Nakano A. The role of glucose in physiological and pathological heart formation. Dev Biol 2021;475:222-33. [PMID: 33577830 DOI: 10.1016/j.ydbio.2021.01.020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
129 Fang J, Li JJ, Zhong X, Zhou Y, Lee RJ, Cheng K, Li S. Engineering stem cell therapeutics for cardiac repair. J Mol Cell Cardiol 2022;171:56-68. [PMID: 35863282 DOI: 10.1016/j.yjmcc.2022.06.013] [Reference Citation Analysis]
130 Khedro T, Duran JM, Adler ED. Modeling Nonischemic Genetic Cardiomyopathies Using Induced Pluripotent Stem Cells. Curr Cardiol Rep 2022. [PMID: 35657495 DOI: 10.1007/s11886-022-01683-8] [Reference Citation Analysis]
131 Nakamura K, Neidig LE, Yang X, Weber GJ, El-Nachef D, Tsuchida H, Dupras S, Kalucki FA, Jayabalu A, Futakuchi-Tsuchida A, Nakamura DS, Marchianò S, Bertero A, Robinson MR, Cain K, Whittington D, Tian R, Reinecke H, Pabon L, Knollmann BC, Kattman S, Thies RS, MacLellan WR, Murry CE. Pharmacologic therapy for engraftment arrhythmia induced by transplantation of human cardiomyocytes. Stem Cell Reports 2021;16:2473-87. [PMID: 34506727 DOI: 10.1016/j.stemcr.2021.08.005] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
132 Pires RH, Dau TH, Manu E, Shree N, Otto O. Switching in the expression pattern of actin isoforms marks the onset of contractility and distinct mechanodynamic behavior during cardiomyocyte differentiation. Physiol Rep 2022;10:e15171. [PMID: 35166060 DOI: 10.14814/phy2.15171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Anto Michel N, Ljubojevic-holzer S, Bugger H, Zirlik A. Cellular Heterogeneity of the Heart. Front Cardiovasc Med 2022;9:868466. [DOI: 10.3389/fcvm.2022.868466] [Reference Citation Analysis]
134 Derks W, Murganti F, Bergmann O. Cardiomyocyte renewal in the failing heart: lessons from the neonate? Biophys Rev 2020;12:785-7. [PMID: 32681468 DOI: 10.1007/s12551-020-00739-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
135 Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Progress in Polymer Science 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Reference Citation Analysis]
136 Wei L, Li W, Entcheva E, Li Z. Microfluidics-enabled 96-well perfusion system for high-throughput tissue engineering and long-term all-optical electrophysiology. Lab Chip 2020;20:4031-42. [PMID: 32996969 DOI: 10.1039/d0lc00615g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
137 Maroli G, Braun T. The long and winding road of cardiomyocyte maturation. Cardiovasc Res 2021;117:712-26. [PMID: 32514522 DOI: 10.1093/cvr/cvaa159] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
138 Grancharova T, Gerbin KA, Rosenberg AB, Roco CM, Arakaki JE, DeLizo CM, Dinh SQ, Donovan-Maiye RM, Hirano M, Nelson AM, Tang J, Theriot JA, Yan C, Menon V, Palecek SP, Seelig G, Gunawardane RN. A comprehensive analysis of gene expression changes in a high replicate and open-source dataset of differentiating hiPSC-derived cardiomyocytes. Sci Rep 2021;11:15845. [PMID: 34349150 DOI: 10.1038/s41598-021-94732-1] [Reference Citation Analysis]
139 Miyamoto M, Nam L, Kannan S, Kwon C. Heart organoids and tissue models for modeling development and disease. Seminars in Cell & Developmental Biology 2021;118:119-28. [DOI: 10.1016/j.semcdb.2021.03.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
140 Tani H, Tohyama S, Kishino Y, Kanazawa H, Fukuda K. Production of functional cardiomyocytes and cardiac tissue from human induced pluripotent stem cells for regenerative therapy. J Mol Cell Cardiol 2021;164:83-91. [PMID: 34822838 DOI: 10.1016/j.yjmcc.2021.11.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
141 Gilbert G, Kadur Nagaraju C, Duelen R, Amoni M, Bobin P, Eschenhagen T, Roderick HL, Sampaolesi M, Sipido KR. Incomplete Assembly of the Dystrophin-Associated Protein Complex in 2D and 3D-Cultured Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Cell Dev Biol 2021;9:737840. [PMID: 34805146 DOI: 10.3389/fcell.2021.737840] [Reference Citation Analysis]
142 Jiang L, Liang J, Huang W, Wu Z, Paul C, Wang Y. Strategies and Challenges to Improve Cellular Programming-Based Approaches for Heart Regeneration Therapy. Int J Mol Sci 2020;21:E7662. [PMID: 33081233 DOI: 10.3390/ijms21207662] [Reference Citation Analysis]
143 Zhou B, Shi X, Tang X, Zhao Q, Wang L, Yao F, Hou Y, Wang X, Feng W, Wang L, Sun X, Wang L, Hu S. Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes. Signal Transduct Target Ther 2022;7:254. [PMID: 35882831 DOI: 10.1038/s41392-022-01044-5] [Reference Citation Analysis]
144 Scherba JC, Halushka MK, Andersen ND, Maleszewski JJ, Landstrom AP, Bursac N, Glass C. BRG1 is a biomarker of hypertrophic cardiomyopathy in human heart specimens. Sci Rep 2022;12:7996. [PMID: 35581268 DOI: 10.1038/s41598-022-11829-x] [Reference Citation Analysis]
145 Lu K, Seidel T, Cao-Ehlker X, Dorn T, Batcha AMN, Schneider CM, Semmler M, Volk T, Moretti A, Dendorfer A, Tomasi R. Progressive stretch enhances growth and maturation of 3D stem-cell-derived myocardium. Theranostics 2021;11:6138-53. [PMID: 33995650 DOI: 10.7150/thno.54999] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
146 Tang X, Wang Z, Hu S, Zhou B. Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022;14:1313. [DOI: 10.3390/pharmaceutics14071313] [Reference Citation Analysis]
147 Khan A, Ramos-Gomes F, Markus A, Mietsch M, Hinkel R, Alves F. Label-free imaging of age-related cardiac structural changes in non-human primates using multiphoton nonlinear microscopy. Biomed Opt Express 2021;12:7009-23. [PMID: 34858695 DOI: 10.1364/BOE.432102] [Reference Citation Analysis]
148 Bayne EF, Simmons AD, Roberts DS, Zhu Y, Aballo TJ, Wancewicz B, Palecek SP, Ge Y. Multiomics Method Enabled by Sequential Metabolomics and Proteomics for Human Pluripotent Stem-Cell-Derived Cardiomyocytes. J Proteome Res 2021;20:4646-54. [PMID: 34499502 DOI: 10.1021/acs.jproteome.1c00611] [Reference Citation Analysis]
149 Gowran A, Brioschi M, Rovina D, Chiesa M, Piacentini L, Mallia S, Banfi C, Pompilio G, Santoro R. Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2021;22:8954. [PMID: 34445659 DOI: 10.3390/ijms22168954] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
150 Maria Cherian R, Prajapati C, Penttinen K, Häkli M, Koivisto JT, Pekkanen-mattila M, Aalto-setälä K. Fluorescent hiPSC-derived MYH6-mScarlet cardiomyocytes for real-time tracking, imaging, and cardiotoxicity assays. Cell Biol Toxicol. [DOI: 10.1007/s10565-022-09742-0] [Reference Citation Analysis]
151 Housman G, Gilad Y. Prime time for primate functional genomics. Curr Opin Genet Dev 2020;62:1-7. [PMID: 32544775 DOI: 10.1016/j.gde.2020.04.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
152 Sokolowska P, Zukowski K, Lasocka I, Szulc-Dabrowska L, Jastrzebska E. Human mesenchymal stem cell (hMSC) differentiation towards cardiac cells using a new microbioanalytical method. Analyst 2020;145:3017-28. [PMID: 32133460 DOI: 10.1039/c9an02366f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
153 Lippi M, Stadiotti I, Pompilio G, Sommariva E. Human Cell Modeling for Cardiovascular Diseases. Int J Mol Sci 2020;21:E6388. [PMID: 32887493 DOI: 10.3390/ijms21176388] [Reference Citation Analysis]
154 Pisanu A, Reid G, Fusco D, Sileo A, Robles Diaz D, Tarhini H, Putame G, Massai D, Isu G, Marsano A. Bizonal cardiac engineered tissues with differential maturation features in a mid-throughput multimodal bioreactor. iScience 2022;25:104297. [DOI: 10.1016/j.isci.2022.104297] [Reference Citation Analysis]
155 Tsan YC, DePalma SJ, Zhao YT, Capilnasiu A, Wu YW, Elder B, Panse I, Ufford K, Matera DL, Friedline S, O'Leary TS, Wubshet N, Ho KKY, Previs MJ, Nordsletten D, Isom LL, Baker BM, Liu AP, Helms AS. Physiologic biomechanics enhance reproducible contractile development in a stem cell derived cardiac muscle platform. Nat Commun 2021;12:6167. [PMID: 34697315 DOI: 10.1038/s41467-021-26496-1] [Reference Citation Analysis]
156 Pianca N, Sacchi F, Umansky KB, Chirivì M, Iommarini L, Da Pra S, Papa V, Bongiovanni C, Miano C, Pontis F, Braga L, Tassinari R, Pantano E, Patnala RS, Mazzeschi M, Cenacchi G, Porcelli AM, Lauriola M, Ventura C, Giacca M, Rizzi R, Tzahor E, D’uva G. Glucocorticoid receptor antagonization propels endogenous cardiomyocyte proliferation and cardiac regeneration. Nat Cardiovasc Res 2022;1:617-33. [DOI: 10.1038/s44161-022-00090-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
157 Rochette L, Dogon G, Zeller M, Cottin Y, Vergely C. GDF15 and Cardiac Cells: Current Concepts and New Insights. Int J Mol Sci 2021;22:8889. [PMID: 34445593 DOI: 10.3390/ijms22168889] [Reference Citation Analysis]
158 Bailey AL, Dmytrenko O, Greenberg L, Bredemeyer AL, Ma P, Liu J, Penna V, Lai L, Winkler ES, Sviben S, Brooks E, Nair AP, Heck KA, Rali AS, Simpson L, Saririan M, Hobohm D, Stump WT, Fitzpatrick JA, Xie X, Shi PY, Hinson JT, Gi WT, Schmidt C, Leuschner F, Lin CY, Diamond MS, Greenberg MJ, Lavine KJ. SARS-CoV-2 Infects Human Engineered Heart Tissues and Models COVID-19 Myocarditis. bioRxiv 2020:2020. [PMID: 33173875 DOI: 10.1101/2020.11.04.364315] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
159 Kadota S, Tanaka Y, Shiba Y. Heart regeneration using pluripotent stem cells. J Cardiol 2020;76:459-63. [PMID: 32690435 DOI: 10.1016/j.jjcc.2020.03.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
160 Agarwal T, Fortunato GM, Hann SY, Ayan B, Vajanthri KY, Presutti D, Cui H, Chan AHP, Costantini M, Onesto V, Di Natale C, Huang NF, Makvandi P, Shabani M, Maiti TK, Zhang LG, De Maria C. Recent advances in bioprinting technologies for engineering cardiac tissue. Mater Sci Eng C Mater Biol Appl 2021;124:112057. [PMID: 33947551 DOI: 10.1016/j.msec.2021.112057] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
161 Mazzola M, Di Pasquale E. Toward Cardiac Regeneration: Combination of Pluripotent Stem Cell-Based Therapies and Bioengineering Strategies. Front Bioeng Biotechnol 2020;8:455. [PMID: 32528940 DOI: 10.3389/fbioe.2020.00455] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
162 DePalma SJ, Davidson CD, Stis AE, Helms AS, Baker BM. Microenvironmental determinants of organized iPSC-cardiomyocyte tissues on synthetic fibrous matrices. Biomater Sci 2021;9:93-107. [PMID: 33325920 DOI: 10.1039/d0bm01247e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]