BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nakamura M, Gao Y, Dominguez AA, Qi LS. CRISPR technologies for precise epigenome editing. Nat Cell Biol. 2021;23:11-22. [PMID: 33420494 DOI: 10.1038/s41556-020-00620-7] [Cited by in Crossref: 81] [Cited by in F6Publishing: 89] [Article Influence: 40.5] [Reference Citation Analysis]
Number Citing Articles
1 Kang EH, Kim JW, Noh H, Park SH, Park HJ, Yoon S, Kim H. Establishment of a human embryonic stem cell line, WAe009-A-99, with constitutive expression of the dCas9-p300 fusion protein. Stem Cell Res 2023;66:102986. [PMID: 36493708 DOI: 10.1016/j.scr.2022.102986] [Reference Citation Analysis]
2 Han JL, Entcheva E. Gene Modulation with CRISPR-based Tools in Human iPSC-Cardiomyocytes. Stem Cell Rev Rep 2023;:1-20. [PMID: 36656467 DOI: 10.1007/s12015-023-10506-4] [Reference Citation Analysis]
3 Khirallah J, Eimbinder M, Li Y, Xu Q. Clinical progress in genome-editing technology and in vivo delivery techniques. Trends Genet 2023:S0168-9525(22)00310-9. [PMID: 36669950 DOI: 10.1016/j.tig.2022.12.001] [Reference Citation Analysis]
4 Fukushima HS, Takeda H, Nakamura R. Targeted Manipulation of Histone Modification in Medaka Embryos. Methods in Molecular Biology 2023. [DOI: 10.1007/978-1-0716-2724-2_20] [Reference Citation Analysis]
5 Kumar S, Fry LE, Wang JH, Martin KR, Hewitt AW, Chen FK, Liu GS. RNA-targeting strategies as a platform for ocular gene therapy. Prog Retin Eye Res 2023;92:101110. [PMID: 35840489 DOI: 10.1016/j.preteyeres.2022.101110] [Reference Citation Analysis]
6 Ibeagha-awemu EM, Khatib H. Epigenetics of Livestock Health, Production, and Breeding. Handbook of Epigenetics 2023. [DOI: 10.1016/b978-0-323-91909-8.00041-4] [Reference Citation Analysis]
7 Fujita T, Fujii H. New Directions for Epigenetics: Application of Engineered DNA-binding Molecules to Locus-specific Epigenetic Research. Handbook of Epigenetics 2023. [DOI: 10.1016/b978-0-323-91909-8.00020-7] [Reference Citation Analysis]
8 Yamazaki T, Hatano Y, Kobayashi N, Yamagata K. Targeted DNA Methylation in Mouse Early Embryos. Methods in Molecular Biology 2023. [DOI: 10.1007/978-1-0716-2724-2_17] [Reference Citation Analysis]
9 Tian S, Slager SL, Klee EW, Yan H. Genome-wide Analyses of Histone Modifications in the Mammalian Genome. Handbook of Epigenetics 2023. [DOI: 10.1016/b978-0-323-91909-8.00021-9] [Reference Citation Analysis]
10 Sarno F, Goubert D, Logie E, Rutten MGS, Koncz M, Deben C, Niemarkt AE, Altucci L, Verschure PJ, Kiss A, Berghe WV, Rots MG. Functional Validation of the Putative Oncogenic Activity of PLAU. Biomedicines 2022;11. [PMID: 36672610 DOI: 10.3390/biomedicines11010102] [Reference Citation Analysis]
11 Vogt G. Environmental Adaptation of Genetically Uniform Organisms with the Help of Epigenetic Mechanisms-An Insightful Perspective on Ecoepigenetics. Epigenomes 2022;7:1. [PMID: 36648862 DOI: 10.3390/epigenomes7010001] [Reference Citation Analysis]
12 Yang Q, Gao Y, Liu X, Xiao Y, Wu M. A General Method to Edit Histone H3 Modifications on Chromatin Via Sortase-Mediated Metathesis. Angew Chem Int Ed Engl 2022;:e202209945. [PMID: 36305862 DOI: 10.1002/anie.202209945] [Reference Citation Analysis]
13 Kurishev AO, Karpov DS, Nadolinskaia NI, Goncharenko AV, Golimbet VE. CRISPR/Cas-Based Approaches to Study Schizophrenia and Other Neurodevelopmental Disorders. Int J Mol Sci 2022;24. [PMID: 36613684 DOI: 10.3390/ijms24010241] [Reference Citation Analysis]
14 Hens K. Chance Encounters. 2022. [DOI: 10.11647/obp.0320] [Reference Citation Analysis]
15 Godfrey LC, Rodriguez-Meira A. Viewing AML through a New Lens: Technological Advances in the Study of Epigenetic Regulation. Cancers (Basel) 2022;14. [PMID: 36497471 DOI: 10.3390/cancers14235989] [Reference Citation Analysis]
16 Lan TH, He L, Huang Y, Zhou Y. Optogenetics for transcriptional programming and genetic engineering. Trends Genet 2022;38:1253-70. [PMID: 35738948 DOI: 10.1016/j.tig.2022.05.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Leal AF, Fnu N, Benincore-flórez E, Pachón AMH, Echeverri-peña OY, Alméciga-díaz CJ, Tomatsu S. The landscape of CRISPR/Cas9 for inborn errors of metabolism. Molecular Genetics and Metabolism 2022. [DOI: 10.1016/j.ymgme.2022.106968] [Reference Citation Analysis]
18 Perera BPU, Morgan RK, Polemi KM, Sala-Hamrick KE, Svoboda LK, Dolinoy DC. PIWI-Interacting RNA (piRNA) and Epigenetic Editing in Environmental Health Sciences. Curr Environ Health Rep 2022;9:650-60. [PMID: 35917009 DOI: 10.1007/s40572-022-00372-6] [Reference Citation Analysis]
19 Gentzel IN, Ohlson EW, Redinbaugh MG, Wang G. VIGE: virus-induced genome editing for improving abiotic and biotic stress traits in plants. Stress Biology 2022;2. [DOI: 10.1007/s44154-021-00026-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
20 Elkin ER, Higgins C, Aung MT, Bakulski KM. Metals Exposures and DNA Methylation: Current Evidence and Future Directions. Curr Environ Health Rep 2022;9:673-96. [PMID: 36282474 DOI: 10.1007/s40572-022-00382-4] [Reference Citation Analysis]
21 Li Q, Gao Y, Wang H. CRISPR-Based Tools for Fighting Rare Diseases. Life (Basel) 2022;12. [PMID: 36556333 DOI: 10.3390/life12121968] [Reference Citation Analysis]
22 Yang Q, Wu L, Meng J, Ma L, Zuo E, Sun Y. EpiCas-DL: Predicting sgRNA activity for CRISPR-mediated epigenome editing by deep learning. Comput Struct Biotechnol J 2023;21:202-11. [PMID: 36582444 DOI: 10.1016/j.csbj.2022.11.034] [Reference Citation Analysis]
23 Yan J, Xu Z, Zhou H, Li T, Du X, Hu R, Zhu J, Ou G, Li Y, Yang Y. Integration of CRISPR/Cas12a and Multiplexed RPA for Fast Detection of Gene Doping. Anal Chem 2022. [DOI: 10.1021/acs.analchem.2c04079] [Reference Citation Analysis]
24 Liu Z, Zhou T, Gao D. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet 2022;13:994471. [PMID: 36406125 DOI: 10.3389/fgene.2022.994471] [Reference Citation Analysis]
25 Walton RT, Singh A, Blainey PC. Pooled genetic screens with image‐based profiling. Molecular Systems Biology 2022;18. [DOI: 10.15252/msb.202110768] [Reference Citation Analysis]
26 Kuwasaki Y, Suzuki K, Yu G, Yamamoto S, Otabe T, Kakihara Y, Nishiwaki M, Miyake K, Fushimi K, Bekdash R, Shimizu Y, Narikawa R, Nakajima T, Yazawa M, Sato M. A red light-responsive photoswitch for deep tissue optogenetics. Nat Biotechnol 2022;40:1672-9. [PMID: 35697806 DOI: 10.1038/s41587-022-01351-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Chavez M, Chen X, Finn PB, Qi LS. Advances in CRISPR therapeutics. Nat Rev Nephrol 2022. [PMID: 36280707 DOI: 10.1038/s41581-022-00636-2] [Reference Citation Analysis]
28 Hanson MA, Wester JC. Advances in approaches to study cell-type specific cortical circuits throughout development. Front Cell Neurosci 2022;16:1031389. [DOI: 10.3389/fncel.2022.1031389] [Reference Citation Analysis]
29 Karagyaur M, Primak A, Efimenko A, Skryabina M, Tkachuk V. The Power of Gene Technologies: 1001 Ways to Create a Cell Model. Cells 2022;11:3235. [PMID: 36291103 DOI: 10.3390/cells11203235] [Reference Citation Analysis]
30 Hamdan MF, Karlson CKS, Teoh EY, Lau SE, Tan BC. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. Plants (Basel) 2022;11:2625. [PMID: 36235491 DOI: 10.3390/plants11192625] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Demirci S, Essawi K, Germino-Watnick P, Liu X, Hakami W, Tisdale JF. Advances in CRISPR Delivery Methods: Perspectives and Challenges. CRISPR J 2022;5:660-76. [PMID: 36260301 DOI: 10.1089/crispr.2022.0051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Huang K, Zapata D, Tang Y, Teng Y, Li Y. In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121876] [Reference Citation Analysis]
33 Van Roy Z, Kielian T. Exploring epigenetic reprogramming during central nervous system infection. Immunol Rev 2022;311:112-29. [PMID: 35481573 DOI: 10.1111/imr.13079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Sowbhagya R, Muktha H, Ramakrishnaiah TN, Surendra AS, Tanvi Y, Nivitha K, Rajashekara S. Crispr/cas-mediated Genome Editing in Mice for the Development of Drug Delivery Mechanism.. [DOI: 10.21203/rs.3.rs-2006462/v1] [Reference Citation Analysis]
35 Bai L, Hao X, Keith J, Feng Y. DNA Methylation in Regulatory T Cell Differentiation and Function: Challenges and Opportunities. Biomolecules 2022;12:1282. [DOI: 10.3390/biom12091282] [Reference Citation Analysis]
36 Policarpi C, Munafò M, Tsagkris S, Carlini V, Hackett JA. Systematic Epigenome Editing Captures the Context-dependent Instructive Function of Chromatin Modifications.. [DOI: 10.1101/2022.09.04.506519] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Dhakate P, Sehgal D, Vaishnavi S, Chandra A, Singh A, Raina SN, Rajpal VR. Comprehending the evolution of gene editing platforms for crop trait improvement. Front Genet 2022;13:876987. [DOI: 10.3389/fgene.2022.876987] [Reference Citation Analysis]
38 Jindal I, Wang X. Programmable Genome-Editing Technologies as Single-Course Therapeutics for Atherosclerotic Cardiovascular Disease. Curr Atheroscler Rep 2022. [PMID: 35994136 DOI: 10.1007/s11883-022-01063-1] [Reference Citation Analysis]
39 Zhong W, Liu W, Chen J, Sun Q, Hu M, Li Y. Understanding the function of regulatory DNA interactions in the interpretation of non-coding GWAS variants. Front Cell Dev Biol 2022;10:957292. [PMID: 36060805 DOI: 10.3389/fcell.2022.957292] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Yamamoto R, Sato G, Amai T, Ueda M, Kuroda K. Development of Artificial System to Induce Chromatin Loosening in Saccharomyces cerevisiae. Biomolecules 2022;12:1138. [DOI: 10.3390/biom12081138] [Reference Citation Analysis]
41 Becklin KL, Draper GM, Madden RA, Kluesner MG, Koga T, Huang M, Weiss WA, Spector LG, Largaespada DA, Moriarity BS, Webber BR. Developing Bottom-Up Induced Pluripotent Stem Cell Derived Solid Tumor Models Using Precision Genome Editing Technologies. CRISPR J 2022;5:517-35. [PMID: 35972367 DOI: 10.1089/crispr.2022.0032] [Reference Citation Analysis]
42 de Mendoza A, Nguyen TV, Ford E, Poppe D, Buckberry S, Pflueger J, Grimmer MR, Stolzenburg S, Bogdanovic O, Oshlack A, Farnham PJ, Blancafort P, Lister R. Large-scale manipulation of promoter DNA methylation reveals context-specific transcriptional responses and stability. Genome Biol 2022;23:163. [PMID: 35883107 DOI: 10.1186/s13059-022-02728-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
43 Nikpay M, Ravati S, Mcpherson R. Genome-wide screening identifies DNA methylation sites that regulate the blood proteome. Epigenomics. [DOI: 10.2217/epi-2022-0119] [Reference Citation Analysis]
44 Braun CJ, Adames AC, Saur D, Rad R. Tutorial: design and execution of CRISPR in vivo screens. Nat Protoc 2022. [PMID: 35840661 DOI: 10.1038/s41596-022-00700-y] [Reference Citation Analysis]
45 Kremer LP, Cerrizuela S, Al Shukairi ME, Ellinger T, Straub J, Dehler S, Korkmaz A, Weichenhan D, Plass C, Anders S, Martin-villalba A. Single-cell triple-omics uncovers DNA methylation as key feature of stemness in the healthy and ischemic adult brain.. [DOI: 10.1101/2022.07.13.499860] [Reference Citation Analysis]
46 Roohani Y, Huang K, Leskovec J. GEARS: Predicting transcriptional outcomes of novel multi-gene perturbations.. [DOI: 10.1101/2022.07.12.499735] [Reference Citation Analysis]
47 Yang SG, Wang XW, Qian C, Zhou FQ. Reprogramming neurons for regeneration: The fountain of youth. Prog Neurobiol 2022;214:102284. [PMID: 35533809 DOI: 10.1016/j.pneurobio.2022.102284] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Khalid Chaudhry U, Neslihan Öztürk Gökçe Z, Fuat Gökçe A. Salt Stress and Plant Molecular Responses. Plant Defense Mechanisms 2022. [DOI: 10.5772/intechopen.101513] [Reference Citation Analysis]
49 Zhang H, Kong X, Xue M, Wang Z, Wei Y, Wang H, Zhou J, Zhang W, Xu M, Shen X, Li J, Hu J, Zhong N, Zhou Y, Yang H. An engineered xCas12i with high activity, high specificity and broad PAM range.. [DOI: 10.1101/2022.06.15.496255] [Reference Citation Analysis]
50 Outeiro-Pinho G, Barros-Silva D, Moreira-Silva F, Lobo J, Carneiro I, Morais A, Martins EP, Gonçalves CS, Costa BM, Correia MP, Henrique R, Jerónimo C. Epigenetically-regulated miR-30a/c-5p directly target TWF1 and hamper ccRCC cell aggressiveness. Transl Res 2022:S1931-5244(22)00141-4. [PMID: 35697274 DOI: 10.1016/j.trsl.2022.06.009] [Reference Citation Analysis]
51 Liu S, Raman H, Xiang Y, Zhao C, Huang J, Zhang Y. De novo design of future rapeseed crops: Challenges and opportunities. The Crop Journal 2022;10:587-96. [DOI: 10.1016/j.cj.2022.05.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Van Vu T, Das S, Hensel G, Kim JY. Genome editing and beyond: what does it mean for the future of plant breeding? Planta 2022;255:130. [PMID: 35587292 DOI: 10.1007/s00425-022-03906-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Lattke M, Guillemot F. Understanding astrocyte differentiation: Clinical relevance, technical challenges, and new opportunities in the omics era. WIREs Mech Dis 2022;:e1557. [PMID: 35546493 DOI: 10.1002/wsbm.1557] [Reference Citation Analysis]
54 Wei CT, Peleg O, Borenstein E, Maly DJ, Fowler DM. A versatile, chemically-controlled DNA binding switch enables temporal modulation of Cas9-based effectors.. [DOI: 10.1101/2022.05.10.491425] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Kojima S, Shiochi N, Sato K, Yamaura M, Ito T, Yamamura N, Goto N, Odamoto M, Kobayashi S, Kimura T, Sekita Y. Epigenome editing reveals core DNA methylation for imprinting control in the Dlk1-Dio3 imprinted domain. Nucleic Acids Res 2022:gkac344. [PMID: 35544282 DOI: 10.1093/nar/gkac344] [Reference Citation Analysis]
56 Brooks IR, Garrone CM, Kerins C, Kiar CS, Syntaka S, Xu JZ, Spagnoli FM, Watt FM. Functional genomics and the future of iPSCs in disease modeling. Stem Cell Reports 2022;17:1033-47. [PMID: 35487213 DOI: 10.1016/j.stemcr.2022.03.019] [Reference Citation Analysis]
57 Bohnsack JP, Zhang H, Wandling GM, He D, Kyzar EJ, Lasek AW, Pandey SC. Targeted epigenomic editing ameliorates adult anxiety and excessive drinking after adolescent alcohol exposure. Sci Adv 2022;8:eabn2748. [PMID: 35507645 DOI: 10.1126/sciadv.abn2748] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
58 Hörnblad A, Remeseiro S. Epigenetics, Enhancer Function and 3D Chromatin Organization in Reprogramming to Pluripotency. Cells 2022;11:1404. [DOI: 10.3390/cells11091404] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Franklin KA, Shields CE, Haynes KA. Beyond the marks: reader-effectors as drivers of epigenetics and chromatin engineering. Trends Biochem Sci 2022;47:417-32. [PMID: 35427480 DOI: 10.1016/j.tibs.2022.03.002] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Cheng A, Harikrishna JA, Redwood CS, Lit LC, Nath SK, Chua KH. Genetics Matters: Voyaging from the Past into the Future of Humanity and Sustainability. IJMS 2022;23:3976. [DOI: 10.3390/ijms23073976] [Reference Citation Analysis]
61 Nie W, Xing E, Wang J, Mao Y, Ding X, Guo J. Emerging Strategies Mold Plasticity of Vegetable Plants in Response to High Temperature Stress. Plants 2022;11:959. [DOI: 10.3390/plants11070959] [Reference Citation Analysis]
62 Li G, Li X, Zhuang S, Wang L, Zhu Y, Chen Y, Sun W, Wu Z, Zhou Z, Chen J, Huang X, Wang J, Li D, Li W, Wang H, Wei W. Gene editing and its applications in biomedicine. Sci China Life Sci 2022;65:660-700. [DOI: 10.1007/s11427-021-2057-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
63 Wei W, Gao C. Gene editing: from technologies to applications in research and beyond. Sci China Life Sci 2022;65:657-659. [DOI: 10.1007/s11427-022-2087-5] [Reference Citation Analysis]
64 Santaló J, Berdasco M. Ethical implications of epigenetics in the era of personalized medicine. Clin Epigenetics 2022;14:44. [PMID: 35337378 DOI: 10.1186/s13148-022-01263-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Lan T, Que H, Luo M, Zhao X, Wei X. Genome editing via non-viral delivery platforms: current progress in personalized cancer therapy. Mol Cancer 2022;21:71. [PMID: 35277177 DOI: 10.1186/s12943-022-01550-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
66 Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
67 Tseng H. Patterns of basic knowledge. iScience 2022;25:103803. [PMID: 35198869 DOI: 10.1016/j.isci.2022.103803] [Reference Citation Analysis]
68 Mposhi A, Liang L, Mennega KP, Yildiz D, Kampert C, Hof IH, Jellema PG, de Koning TJ, Faber KN, Ruiters MHJ, Niezen-Koning KE, Rots MG. The Mitochondrial Epigenome: An Unexplored Avenue to Explain Unexplained Myopathies? Int J Mol Sci 2022;23:2197. [PMID: 35216315 DOI: 10.3390/ijms23042197] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
69 Becirovic E. Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications. Cell Mol Life Sci 2022;79. [DOI: 10.1007/s00018-022-04175-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
70 Shin H, Choi WL, Lim JY, Huh JH. Epigenome editing: targeted manipulation of epigenetic modifications in plants. Genes Genomics 2022. [PMID: 35000141 DOI: 10.1007/s13258-021-01199-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Ramadier S, Chalumeau A, Felix T, Othman N, Aknoun S, Casini A, Maule G, Masson C, De Cian A, Frati G, Brusson M, Concordet JP, Cavazzana M, Cereseto A, El Nemer W, Amendola M, Wattellier B, Meneghini V, Miccio A. Combination of lentiviral and genome editing technologies for the treatment of sickle cell disease. Mol Ther 2022;30:145-63. [PMID: 34418541 DOI: 10.1016/j.ymthe.2021.08.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
72 Cortés-mancera FM, Sarno F, Goubert D, Rots MG. Gene-Targeted DNA Methylation: Towards Long-Lasting Reprogramming of Gene Expression? Advances in Experimental Medicine and Biology 2022. [DOI: 10.1007/978-3-031-11454-0_18] [Reference Citation Analysis]
73 Zhou Y, Fu Q, Shi H, Zhou G. CRISPR Guide RNA Library Screens in Human Induced Pluripotent Stem Cells. Methods in Molecular Biology 2022. [DOI: 10.1007/7651_2021_455] [Reference Citation Analysis]
74 Woodcraft C, Chooi Y, Roux I. The expanding CRISPR toolbox for natural product discovery and engineering in filamentous fungi. Nat Prod Rep 2022. [DOI: 10.1039/d2np00055e] [Reference Citation Analysis]
75 Wang W, Akhunov E. Application of CRISPR-Cas-Based Genome Editing for Precision Breeding in Wheat. Wheat Improvement 2022. [DOI: 10.1007/978-3-030-90673-3_29] [Reference Citation Analysis]
76 Yu J, Li T, Zhu J. Gene Therapy Strategies Targeting Aging-Related Diseases. Aging and disease 2022. [DOI: 10.14336/ad.2022.00725] [Reference Citation Analysis]
77 Smith J, Banerjee R, Weeks RJ, Chatterjee A. Editing of DNA Methylation Patterns Using CRISPR-Based Tools. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2140-0_4] [Reference Citation Analysis]
78 Cooper RM, Hasty J. Multiplexing with CRISPR-Cas Arrays. Reference Module in Life Sciences 2022. [DOI: 10.1016/b978-0-12-822563-9.00088-3] [Reference Citation Analysis]
79 Liu G, Lin Q, Jin S, Gao C. The CRISPR-Cas toolbox and gene editing technologies. Mol Cell 2021:S1097-2765(21)01039-X. [PMID: 34968414 DOI: 10.1016/j.molcel.2021.12.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 16.0] [Reference Citation Analysis]
80 Mandrioli M. Genome Editing among Bioethics and Regulatory Practices. Biomolecules 2021;12:13. [DOI: 10.3390/biom12010013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
81 Jeusset LM, McManus KJ. Characterizing and exploiting the many roles of aberrant H2B monoubiquitination in cancer pathogenesis. Semin Cancer Biol 2021:S1044-579X(21)00300-X. [PMID: 34953650 DOI: 10.1016/j.semcancer.2021.12.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
82 Maity S, Farrell K, Navabpour S, Narayanan SN, Jarome TJ. Epigenetic Mechanisms in Memory and Cognitive Decline Associated with Aging and Alzheimer's Disease. Int J Mol Sci 2021;22:12280. [PMID: 34830163 DOI: 10.3390/ijms222212280] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
83 Smith J, Banerjee R, Waly R, Urbano A, Gimenez G, Day R, Eccles MR, Weeks RJ, Chatterjee A. Locus-Specific DNA Methylation Editing in Melanoma Cell Lines Using a CRISPR-Based System. Cancers (Basel) 2021;13:5433. [PMID: 34771597 DOI: 10.3390/cancers13215433] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
84 Noonepalle SKR, Karabon L, Chiappinelli KB, Villagra A. Editorial: Genetic and Epigenetic Control of Immune Responses. Front Immunol 2021;12:775101. [PMID: 34675944 DOI: 10.3389/fimmu.2021.775101] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
85 Xu X, Chemparathy A, Zeng L, Kempton HR, Shang S, Nakamura M, Qi LS. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol Cell 2021;81:4333-4345.e4. [PMID: 34480847 DOI: 10.1016/j.molcel.2021.08.008] [Cited by in Crossref: 57] [Cited by in F6Publishing: 34] [Article Influence: 28.5] [Reference Citation Analysis]
86 Gao Y, Han M, Shang S, Wang H, Qi LS. Interrogation of the dynamic properties of higher-order heterochromatin using CRISPR-dCas9. Mol Cell 2021;81:4287-4299.e5. [PMID: 34428454 DOI: 10.1016/j.molcel.2021.07.034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
87 Dai Z, Li R, Hou Y, Li Q, Zhao K, Li T, Li MJ, Wu X. Inducible CRISPRa screen identifies putative enhancers. J Genet Genomics 2021;48:917-27. [PMID: 34531148 DOI: 10.1016/j.jgg.2021.06.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
88 Makasheva K, Bryan LC, Anders C, Panikulam S, Jinek M, Fierz B. Multiplexed Single-Molecule Experiments Reveal Nucleosome Invasion Dynamics of the Cas9 Genome Editor. J Am Chem Soc 2021;143:16313-9. [PMID: 34597515 DOI: 10.1021/jacs.1c06195] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
89 Lyu Z, Genereux JC. Methodologies for Measuring Protein Trafficking across Cellular Membranes. Chempluschem 2021;86:1397-415. [PMID: 34636167 DOI: 10.1002/cplu.202100304] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
90 Smith J, Banerjee R, Waly R, Urbano A, Gimenez G, Day R, Eccles MR, Weeks RJ, Chatterjee A. Locus-Specific DNA Methylation Editing in Mammalian Cells using a CRISPR-Based System.. [DOI: 10.1101/2021.10.12.463855] [Reference Citation Analysis]
91 Karlson CKS, Mohd-Noor SN, Nolte N, Tan BC. CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences. Plants (Basel) 2021;10:2055. [PMID: 34685863 DOI: 10.3390/plants10102055] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
92 Barth S, Kushnir S. Enhancing Genetic Diversity through new Breeding Techniques. Exploiting genetic diversity of forages to fulfil their economic and environmental roles: Proceedings of the 2021 Meeting of the Fodder Crops and Amenity Grasses Section of EUCARPIA. [DOI: 10.5507/vup.21.24459677.23] [Reference Citation Analysis]
93 González Castro N, Bjelic J, Malhotra G, Huang C, Alsaffar SH. Comparison of the Feasibility, Efficiency, and Safety of Genome Editing Technologies. Int J Mol Sci 2021;22:10355. [PMID: 34638696 DOI: 10.3390/ijms221910355] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
94 Przybyla L, Gilbert LA. A new era in functional genomics screens. Nat Rev Genet 2021. [PMID: 34545248 DOI: 10.1038/s41576-021-00409-w] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
95 Lange M, Begolli R, Giakountis A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021;7:47. [PMID: 34449663 DOI: 10.3390/ncrna7030047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
96 Harbers L, Agostini F, Nicos M, Poddighe D, Bienko M, Crosetto N. Somatic Copy Number Alterations in Human Cancers: An Analysis of Publicly Available Data From The Cancer Genome Atlas. Front Oncol 2021;11:700568. [PMID: 34395272 DOI: 10.3389/fonc.2021.700568] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
97 Heckwolf MJ, Meyer BS. The time is ripe for functional genomics: Can epigenetic changes mediate reproductive timing? Mol Ecol 2021;30:3641-4. [PMID: 34228848 DOI: 10.1111/mec.16063] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
98 Carpenter JC, Lignani G. Gene Editing and Modulation: the Holy Grail for the Genetic Epilepsies? Neurotherapeutics 2021. [PMID: 34235638 DOI: 10.1007/s13311-021-01081-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
99 Nakamura M, Ivec AE, Gao Y, Qi LS. Durable CRISPR-Based Epigenetic Silencing. BioDesign Research 2021;2021:1-8. [DOI: 10.34133/2021/9815820] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
100 Singh P, Kairuz D, Arbuthnot P, Bloom K. Silencing hepatitis B virus covalently closed circular DNA: The potential of an epigenetic therapy approach. World J Gastroenterol 2021; 27(23): 3182-3207 [PMID: 34163105 DOI: 10.3748/wjg.v27.i23.3182] [Cited by in CrossRef: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
101 Palaz F, Kalkan AK, Can Ö, Demir AN, Tozluyurt A, Özcan A, Ozsoz M. CRISPR-Cas13 System as a Promising and Versatile Tool for Cancer Diagnosis, Therapy, and Research. ACS Synth Biol 2021;10:1245-67. [PMID: 34037380 DOI: 10.1021/acssynbio.1c00107] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
102 Horodecka K, Düchler M. CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles. Int J Mol Sci 2021;22:6072. [PMID: 34199901 DOI: 10.3390/ijms22116072] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
103 Sieber KR, Dorman T, Newell N, Yan H. (Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. Insects 2021;12:498. [PMID: 34071806 DOI: 10.3390/insects12060498] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
104 Nakamura M, Ivec A, Gao Y, Qi LS. Quantification of durable CRISPR-based gene silencing activity.. [DOI: 10.1101/2021.03.31.436355] [Reference Citation Analysis]
105 Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021;15:652215. [PMID: 33815052 DOI: 10.3389/fnins.2021.652215] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]