BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qian Y, Wang X, Song J, Chen W, Chen S, Jin Y, Ouyang Y, Yuan WE, Fan C. Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds. NPJ Regen Med 2021;6:31. [PMID: 34078912 DOI: 10.1038/s41536-021-00142-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 15.5] [Reference Citation Analysis]
Number Citing Articles
1 Yao X, Zhan L, Yan Z, Li J, Kong L, Wang X, Xiao H, Jiang H, Huang C, Ouyang Y, Qian Y, Fan C. Non-electric bioelectrical analog strategy by a biophysical-driven nano-micro spatial anisotropic scaffold for regulating stem cell niche and tissue regeneration in a neuronal therapy. Bioactive Materials 2023;20:319-38. [DOI: 10.1016/j.bioactmat.2022.05.034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Yan Z, Ye T, Yang L, Jiang H, Chen C, Chen S, Qian Y, Fan C. Nanobiology Dependent Therapeutic Convergence between Biocompatibility and Bioeffectiveness of Graphene Oxide Quantum Dot Scaffold for Immuno‐Inductive Angiogenesis and Nerve Regeneration. Adv Funct Materials 2023. [DOI: 10.1002/adfm.202211709] [Reference Citation Analysis]
3 Qian Y, Yan Z, Li X, Chen S, Jiang H, Chen C, Yuan W, Fan C. Gradient Nanoaggregation in a Magnetically Actuated Scaffold for Multiscale Immunoregulation and Microenvironment Remodeling Accelerates Nerve and Muscle Repair. ACS Materials Lett 2023. [DOI: 10.1021/acsmaterialslett.2c00684] [Reference Citation Analysis]
4 Conklin B, Conley BM, Hou Y, Chen M, Lee KB. Advanced theragnostics for the central nervous system (CNS) and neurological disorders using functional inorganic nanomaterials. Adv Drug Deliv Rev 2023;192:114636. [PMID: 36481291 DOI: 10.1016/j.addr.2022.114636] [Reference Citation Analysis]
5 Lee SY, Thow SY, Abdullah S, Ng MH, Mohamed Haflah NH. Advancement of Electrospun Nerve Conduit for Peripheral Nerve Regeneration: A Systematic Review (2016-2021). Int J Nanomedicine 2022;17:6723-58. [PMID: 36600878 DOI: 10.2147/IJN.S362144] [Reference Citation Analysis]
6 Yan Z, Chen W, Qian Y, Fan C. Nerve Regeneration. Biofabrication for Orthopedics 2022. [DOI: 10.1002/9783527831371.ch21] [Reference Citation Analysis]
7 Lu N, Wang X, Li X, Shi W, Wang X, Zou Y, Yang G, Tang X, Zhang Z, Xiang W, Weng Y. EMSCs‐Seeded Micro‐Stripe Patterned Polycaprolactone Promoting Sciatic Nerve Regeneration. Adv Materials Inter 2022. [DOI: 10.1002/admi.202201929] [Reference Citation Analysis]
8 Zhang Y, Niu Y, Weng Q. Ginkgetin promotes proliferation and migration of Schwann cells via PIGF/p38 MAPK signaling pathway. Tissue and Cell 2022;79:101967. [DOI: 10.1016/j.tice.2022.101967] [Reference Citation Analysis]
9 Yan J, Zhang L, Li L, He W, Liu W. Developmentally engineered bio-assemblies releasing neurotrophic exosomes guide in situ neuroplasticity following spinal cord injury. Materials Today Bio 2022;16:100406. [DOI: 10.1016/j.mtbio.2022.100406] [Reference Citation Analysis]
10 Hui Y, Yan Z, Yang H, Xu X, Yuan WE, Qian Y. Graphene Family Nanomaterials for Stem Cell Neurogenic Differentiation and Peripheral Nerve Regeneration. ACS Appl Bio Mater 2022;5:4741-59. [PMID: 36102324 DOI: 10.1021/acsabm.2c00663] [Reference Citation Analysis]
11 Li X, Jiang H, He N, Yuan W, Qian Y, Ouyang Y. Graphdiyne-Related Materials in Biomedical Applications and Their Potential in Peripheral Nerve Tissue Engineering. Cyborg and Bionic Systems 2022;2022:1-20. [DOI: 10.34133/2022/9892526] [Reference Citation Analysis]
12 Macdonald AF, Harley-troxell ME, Newby SD, Dhar MS. 3D-Printing Graphene Scaffolds for Bone Tissue Engineering. Pharmaceutics 2022;14:1834. [DOI: 10.3390/pharmaceutics14091834] [Reference Citation Analysis]
13 Wang S, Yao Z, Zhang X, Li J, Huang C, Ouyang Y, Qian Y, Fan C. Energy-Supporting Enzyme-Mimic Nanoscaffold Facilitates Tendon Regeneration Based on a Mitochondrial Protection and Microenvironment Remodeling Strategy. Adv Sci (Weinh) 2022;:e2202542. [PMID: 36000796 DOI: 10.1002/advs.202202542] [Reference Citation Analysis]
14 Kaushik G, Khatua C, Ghosh S, Lahiri D. Electrical Stimulation-Mediated Differentiation of Neural Cells on Conductive Carbon Nanofiller-Based Scaffold. Biomedical Materials & Devices 2022. [DOI: 10.1007/s44174-022-00011-6] [Reference Citation Analysis]
15 Jaswal R, Kaliannagounder VK, Kumar D, Park CH, Kim CS. Modulated plasmonic nanofibrous scaffold reinforced breast cancer photo-ablation and breast neurotization with resensation. Composites Part B: Engineering 2022;243:110129. [DOI: 10.1016/j.compositesb.2022.110129] [Reference Citation Analysis]
16 Ghosh S, Roy P, Lahiri D. Enhanced neurogenic differentiation on anisotropically conductive carbon nanotube reinforced polycaprolactone-collagen scaffold by applying direct coupling electrical stimulation. Int J Biol Macromol 2022;218:269-84. [PMID: 35843399 DOI: 10.1016/j.ijbiomac.2022.07.087] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zhu S, Liu Y, Gu Z, Zhao Y. Research trends in biomedical applications of two-dimensional nanomaterials over the last decade - A bibliometric analysis. Adv Drug Deliv Rev 2022;188:114420. [PMID: 35835354 DOI: 10.1016/j.addr.2022.114420] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Jabbari F, Babaeipour V, Bakhtiari S. Bacterial cellulose-based composites for nerve tissue engineering. Int J Biol Macromol 2022;217:120-30. [PMID: 35820488 DOI: 10.1016/j.ijbiomac.2022.07.037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Niknam Z, Hosseinzadeh F, Shams F, Fath-Bayati L, Nuoroozi G, Mohammadi Amirabad L, Mohebichamkhorami F, Khakpour Naeimi S, Ghafouri-Fard S, Zali H, Tayebi L, Rasmi Y. Recent advances and challenges in graphene-based nanocomposite scaffolds for tissue engineering application. J Biomed Mater Res A 2022. [PMID: 35762460 DOI: 10.1002/jbm.a.37417] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Kong L, Gao X, Qian Y, Sun W, You Z, Fan C. Biomechanical microenvironment in peripheral nerve regeneration: from pathophysiological understanding to tissue engineering development. Theranostics 2022;12:4993-5014. [PMID: 35836812 DOI: 10.7150/thno.74571] [Reference Citation Analysis]
21 Zhang Q, Burrell JC, Zeng J, Motiwala FI, Shi S, Cullen DK, Le AD. Implantation of a nerve protector embedded with human GMSC-derived Schwann-like cells accelerates regeneration of crush-injured rat sciatic nerves. Stem Cell Res Ther 2022;13:263. [PMID: 35725660 DOI: 10.1186/s13287-022-02947-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Haag H, Dalton PD, Bloemen V. The Synergy of Biomimetic Design Strategies for Tissue Constructs. Adv Funct Materials. [DOI: 10.1002/adfm.202201414] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 He X, Zhu Y, Ma B, Xu X, Huang R, Cheng L, Zhu R. Bioactive 2D nanomaterials for neural repair and regeneration. Adv Drug Deliv Rev 2022;187:114379. [PMID: 35667464 DOI: 10.1016/j.addr.2022.114379] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Liu K, Yan L, Li R, Song Z, Ding J, Liu B, Chen X. 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. Adv Sci (Weinh) 2022;9:e2103875. [PMID: 35182046 DOI: 10.1002/advs.202103875] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
25 Jin Y, Zhang W, Zhang Y, Yang Y, Fang Z, Song J, Qian Y, Yuan WE. Multifunctional biomimetic hydrogel based on graphene nanoparticles and sodium alginate for peripheral nerve injury therapy. Biomater Adv 2022;135:212727. [PMID: 35929199 DOI: 10.1016/j.bioadv.2022.212727] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Nan L, Lin Z, Wang F, Jin X, Fang J, Xu B, Liu S, Zhang F, Wu Z, Zhou Z, Chen F, Cao W, Wang J, Liu J. Ti3C2Tx MXene-Coated Electrospun PCL Conduits for Enhancing Neurite Regeneration and Angiogenesis. Front Bioeng Biotechnol 2022;10:850650. [DOI: 10.3389/fbioe.2022.850650] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Sadeghi A, Fatemi MJ, Zandi M, Bagheri T, Ghadimi T, Tamimi M, Pezeshki-Modaress M. Multilayered 3-D nanofibrous scaffold with chondroitin sulfate sustained release as dermal substitute. Int J Biol Macromol 2022:S0141-8130(22)00531-1. [PMID: 35304196 DOI: 10.1016/j.ijbiomac.2022.03.061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Mutepfa AR, Hardy JG, Adams CF. Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury. Front Med Technol 2022;4:693438. [DOI: 10.3389/fmedt.2022.693438] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Yao Z, Qian Y, Jin Y, Wang S, Li J, Yuan WE, Fan C. Biomimetic multilayer polycaprolactone/sodium alginate hydrogel scaffolds loaded with melatonin facilitate tendon regeneration. Carbohydr Polym 2022;277:118865. [PMID: 34893270 DOI: 10.1016/j.carbpol.2021.118865] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
30 Ikram R, Shamsuddin SAA, Mohamed Jan B, Abdul Qadir M, Kenanakis G, Stylianakis MM, Anastasiadis SH. Impact of Graphene Derivatives as Artificial Extracellular Matrices on Mesenchymal Stem Cells. Molecules 2022;27:379. [PMID: 35056690 DOI: 10.3390/molecules27020379] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
31 Jiang H, Wang X, Li X, Jin Y, Yan Z, Yao X, Yuan W, Qian Y, Ouyang Y. A multifunctional ATP-generating system by reduced graphene oxide-based scaffold repairs neuronal injury by improving mitochondrial function and restoring bioelectricity conduction. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100211] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
32 Aleemardani M, Zare P, Seifalian A, Bagher Z, Seifalian AM. Graphene-Based Materials Prove to Be a Promising Candidate for Nerve Regeneration Following Peripheral Nerve Injury. Biomedicines 2022;10:73. [DOI: 10.3390/biomedicines10010073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
33 Yao X, Yan Z, Li X, Li Y, Ouyang Y, Fan C. Tacrolimus-Induced Neurotrophic Differentiation of Adipose-Derived Stem Cells as Novel Therapeutic Method for Peripheral Nerve Injury. Front Cell Neurosci 2021;15:799151. [PMID: 34955758 DOI: 10.3389/fncel.2021.799151] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
34 Tang M, Zhang X, Yang A, Liu Y, Xie K, Zhou Y, Wang C, Liu J, Shi P, Lin X. Injectable Black Phosphorus Nanosheets for Wireless Nongenetic Neural Stimulation. Small 2021;:e2105388. [PMID: 34894073 DOI: 10.1002/smll.202105388] [Reference Citation Analysis]
35 Sun J, Li L, Xing F, Yang Y, Gong M, Liu G, Wu S, Luo R, Duan X, Liu M, Zou M, Xiang Z. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration. Stem Cell Res Ther 2021;12:591. [PMID: 34863288 DOI: 10.1186/s13287-021-02634-w] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
36 Qian Y, Lin H, Yan Z, Shi J, Fan C. Functional nanomaterials in peripheral nerve regeneration: Scaffold design, chemical principles and microenvironmental remodeling. Materials Today 2021;51:165-87. [DOI: 10.1016/j.mattod.2021.09.014] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 16.0] [Reference Citation Analysis]
37 Zhan L, Deng J, Ke Q, Li X, Ouyang Y, Huang C, Liu X, Qian Y. Grooved Fibers: Preparation Principles Through Electrospinning and Potential Applications. Adv Fiber Mater . [DOI: 10.1007/s42765-021-00116-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 9.5] [Reference Citation Analysis]
38 Yan Z, Chen C, Rosso G, Qian Y, Fan C. Two-Dimensional Nanomaterials for Peripheral Nerve Engineering: Recent Advances and Potential Mechanisms. Front Bioeng Biotechnol 2021;9:746074. [PMID: 34820361 DOI: 10.3389/fbioe.2021.746074] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]