1 |
Golas S, Chory EJ. Proximity labeling of endogenous protein interactions enabled by directed evolution. Trends Biotechnol 2023;41:301-3. [PMID: 36710130 DOI: 10.1016/j.tibtech.2023.01.012] [Reference Citation Analysis]
|
2 |
Kreissl FK, Banki MA, Droujinine IA. Molecular methods to study protein trafficking between organs. Proteomics 2023;23:e2100331. [PMID: 36478633 DOI: 10.1002/pmic.202100331] [Reference Citation Analysis]
|
3 |
Ahn J, Suh Y, Lee K. Chordin-like 1, a Novel Adipokine, Markedly Promotes Adipogenesis and Lipid Accumulation. Cells 2023;12. [PMID: 36831292 DOI: 10.3390/cells12040624] [Reference Citation Analysis]
|
4 |
Xu WQ, Cheah JS, Xu C, Messing J, Freibaum BD, Boeynaems S, Taylor JP, Udeshi ND, Carr SA, Ting AY. Dynamic mapping of proteome trafficking within and between living cells by TransitID. bioRxiv 2023:2023. [PMID: 36798302 DOI: 10.1101/2023.02.07.527548] [Reference Citation Analysis]
|
5 |
Fenech EJ, Cohen N, Kupervaser M, Gazi Z, Schuldiner M. A toolbox for systematic discovery of stable and transient protein interactors in baker's yeast. Mol Syst Biol 2023;19:e11084. [PMID: 36651308 DOI: 10.15252/msb.202211084] [Reference Citation Analysis]
|
6 |
Islam MM, Mutoh H, Aoto K, Belal H, Saitsu H. Cnpy3(2xHA) mice reveal neuronal expression of Cnpy3 in the brain. J Neurosci Methods 2023;383:109730. [PMID: 36280087 DOI: 10.1016/j.jneumeth.2022.109730] [Reference Citation Analysis]
|
7 |
Shuster SA, Li J, Chon U, Sinantha-Hu MC, Luginbuhl DJ, Udeshi ND, Carey DK, Takeo YH, Xie Q, Xu C, Mani DR, Han S, Ting AY, Carr SA, Luo L. In situ cell-type-specific cell-surface proteomic profiling in mice. Neuron 2022;110:3882-3896.e9. [PMID: 36220098 DOI: 10.1016/j.neuron.2022.09.025] [Reference Citation Analysis]
|
8 |
Wei W, Riley NM, Lyu X, Shen X, Guo J, Zhao M, Moya-garzon MD, Basu H, Tung A, Li VL, Huang W, Svensson KJ, Snyder MP, Bertozzi CR, Long JZ. Organism-wide secretome mapping uncovers pathways of tissue crosstalk in exercise.. [DOI: 10.1101/2022.11.21.517385] [Reference Citation Analysis]
|
9 |
Sunna S, Bowen C, Zeng H, Rayaprolu S, Kumar P, Bagchi P, Duong DM, Bitarafan S, Natu A, Wood L, Seyfried NT, Rangaraju S. Cellular proteomic profiling using proximity labelling by TurboID-NES in microglial and neuronal cell lines.. [DOI: 10.1101/2022.09.27.509765] [Reference Citation Analysis]
|
10 |
Zhou D, Borsa M, Puleston DJ, Zellner S, Capera J, Sanderson S, Schifferer M, Hester SS, Ge X, Fischer R, Jostins L, Behrends C, Alsaleh G, Simon AK. Mapping autophagosome contents identifies interleukin-7 receptor-α as a key cargo modulating CD4+ T cell proliferation. Nat Commun 2022;13:5174. [PMID: 36055998 DOI: 10.1038/s41467-022-32718-x] [Reference Citation Analysis]
|
11 |
Zhang K, Li Y, Huang T, Li Z. Potential application of TurboID-based proximity labeling in studying the protein interaction network in plant response to abiotic stress. Front Plant Sci 2022;13:974598. [DOI: 10.3389/fpls.2022.974598] [Reference Citation Analysis]
|
12 |
Yang R, Meyer AS, Droujinine IA, Udeshi ND, Hu Y, Guo J, McMahon JA, Carey DK, Xu C, Fang Q, Sha J, Qin S, Rocco D, Wohlschlegel J, Ting AY, Carr SA, Perrimon N, McMahon AP. A genetic model for in vivo proximity labelling of the mammalian secretome. Open Biol 2022;12:220149. [PMID: 35946312 DOI: 10.1098/rsob.220149] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Kokaji T, Kuroda S. Construction of an inter-organ transomic network for whole-body metabolism. Current Opinion in Endocrine and Metabolic Research 2022;25:100361. [DOI: 10.1016/j.coemr.2022.100361] [Reference Citation Analysis]
|
14 |
Kang MG, Rhee HW. Molecular Spatiomics by Proximity Labeling. Acc Chem Res 2022;55:1411-22. [PMID: 35512328 DOI: 10.1021/acs.accounts.2c00061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
15 |
Okamoto N, Watanabe A. Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly 2022;16:152-76. [DOI: 10.1080/19336934.2022.2061834] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
16 |
Fenech EJ, Cohen N, Kupervaser M, Gazi Z, Schuldiner M. A toolbox for systematic discovery of stable and transient protein interactors in baker’s yeast.. [DOI: 10.1101/2022.04.27.489741] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Yang R, Meyer AS, Droujinine IA, Udeshi ND, Hu Y, Guo J, Mcmahon JA, Carey DK, Xu C, Fang Q, Sha J, Qin S, Rocco D, Wohlschlegel J, Ting AY, Carr SA, Perrimon N, Mcmahon AP. A genetic model for in vivo proximity labeling of the mammalian secretome.. [DOI: 10.1101/2022.04.13.488228] [Reference Citation Analysis]
|
18 |
Zhou D, Borsa M, Puleston DJ, Zellner S, Capera J, Sanderson S, Jostins L, Behrends C, Alsaleh G, Simon AK. Mapping of the autophagosomal degradome identifies IL-7Rα as key cargo in proliferating CD4+ T-cells.. [DOI: 10.1101/2021.12.08.471825] [Reference Citation Analysis]
|
19 |
Reyes-Impellizzeri S, Moreno AA. The Endoplasmic Reticulum Role in the Plant Response to Abiotic Stress. Front Plant Sci 2021;12:755447. [PMID: 34868142 DOI: 10.3389/fpls.2021.755447] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
20 |
Strack R. Revealing the secretome. Nat Methods 2021;18:1273. [PMID: 34732904 DOI: 10.1038/s41592-021-01320-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
21 |
Lyu Z, Genereux JC. Methodologies for Measuring Protein Trafficking across Cellular Membranes. Chempluschem 2021;86:1397-415. [PMID: 34636167 DOI: 10.1002/cplu.202100304] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|