BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang C, Wang XM, Li SR, Twelkmeyer T, Wang WH, Zhang SY, Wang SF, Chen JZ, Jin X, Wu YZ, Chen XW, Wang SD, Niu JQ, Chen HR, Tang H. NKG2A is a NK cell exhaustion checkpoint for HCV persistence. Nat Commun 2019;10:1507. [PMID: 30944315 DOI: 10.1038/s41467-019-09212-y] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 15.7] [Reference Citation Analysis]
Number Citing Articles
1 Chen Y, Xin Z, Huang L, Zhao L, Wang S, Cheng J, Wu P, Chai Y. CD8+ T Cells Form the Predominant Subset of NKG2A+ Cells in Human Lung Cancer. Front Immunol 2019;10:3002. [PMID: 32010126 DOI: 10.3389/fimmu.2019.03002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
2 Judge SJ, Murphy WJ, Canter RJ. Characterizing the Dysfunctional NK Cell: Assessing the Clinical Relevance of Exhaustion, Anergy, and Senescence. Front Cell Infect Microbiol 2020;10:49. [PMID: 32117816 DOI: 10.3389/fcimb.2020.00049] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 15.0] [Reference Citation Analysis]
3 Spoerl S, Kremer AN, Aigner M, Eisenhauer N, Koch P, Meretuk L, Löffler P, Tenbusch M, Maier C, Überla K, Heinzerling L, Frey B, Lutzny-Geier G, Winkler TH, Krönke G, Vetter M, Bruns H, Neurath MF, Mackensen A, Kremer AE, Völkl S. Upregulation of CCR4 in activated CD8+ T cells indicates enhanced lung homing in patients with severe acute SARS-CoV-2 infection. Eur J Immunol 2021;51:1436-48. [PMID: 33784417 DOI: 10.1002/eji.202049135] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
4 Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, Xu Y, Tian Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17:533-535. [PMID: 32203188 DOI: 10.1038/s41423-020-0402-2] [Cited by in Crossref: 703] [Cited by in F6Publishing: 688] [Article Influence: 351.5] [Reference Citation Analysis]
5 van Hall T, André P, Horowitz A, Ruan DF, Borst L, Zerbib R, Narni-Mancinelli E, van der Burg SH, Vivier E. Monalizumab: inhibiting the novel immune checkpoint NKG2A. J Immunother Cancer 2019;7:263. [PMID: 31623687 DOI: 10.1186/s40425-019-0761-3] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 18.3] [Reference Citation Analysis]
6 Gosain R, Abdou Y, Singh A, Rana N, Puzanov I, Ernstoff MS. COVID-19 and Cancer: a Comprehensive Review. Curr Oncol Rep. 2020;22:53. [PMID: 32385672 DOI: 10.1007/s11912-020-00934-7] [Cited by in Crossref: 108] [Cited by in F6Publishing: 101] [Article Influence: 54.0] [Reference Citation Analysis]
7 Tabll AA, Afifi MS, El-Etrawy AS, El-Kousy SM, Smolic M, El Abd YS. CXCL9 chemokine level is associated with spontaneous clearance and sustained virological response in Egyptian Chronic Hepatitis C patients receiving direct acting antivirals. Hum Antibodies 2020;28:141-8. [PMID: 32675406 DOI: 10.3233/HAB-190400] [Reference Citation Analysis]
8 Al-Ani M, Elemam NM, Hundt JE, Maghazachi AA. Drugs for Multiple Sclerosis Activate Natural Killer Cells: Do They Protect Against COVID-19 Infection? Infect Drug Resist 2020;13:3243-54. [PMID: 33061471 DOI: 10.2147/IDR.S269797] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
9 Fisicaro P, Rossi M, Vecchi A, Acerbi G, Barili V, Laccabue D, Montali I, Zecca A, Penna A, Missale G, Ferrari C, Boni C. The Good and the Bad of Natural Killer Cells in Virus Control: Perspective for Anti-HBV Therapy. Int J Mol Sci 2019;20:E5080. [PMID: 31614928 DOI: 10.3390/ijms20205080] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
10 Kothari A, Singh V, Nath UK, Kumar S, Rai V, Kaushal K, Omar BJ, Pandey A, Jain N. Immune Dysfunction and Multiple Treatment Modalities for the SARS-CoV-2 Pandemic: Races of Uncontrolled Running Sweat? Biology (Basel) 2020;9:E243. [PMID: 32846906 DOI: 10.3390/biology9090243] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Liu G, Jiang X, Zeng X, Pan Y, Xu H. Analysis of Lymphocyte Subpopulations and Cytokines in COVID-19-Associated Pneumonia and Community-Acquired Pneumonia. J Immunol Res 2021;2021:6657894. [PMID: 34150910 DOI: 10.1155/2021/6657894] [Reference Citation Analysis]
12 Ram DR, Arias CF, Kroll K, Hueber B, Manickam C, Jones RA, Smith ST, Shah SV, Varner VH, Reeves RK. Characterization of Rhesus Macaque Liver-Resident CD49a+ NK Cells During Retrovirus Infections. Front Immunol 2020;11:1676. [PMID: 32849583 DOI: 10.3389/fimmu.2020.01676] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Ren YR, Golding A, Sorbello A, Ji P, Chen J, Saluja B, Witzmann K, Arya V, Reynolds KS, Choi SY, Nikolov NP, Sahajwalla C. A Comprehensive Updated Review on SARS-CoV-2 and COVID-19. J Clin Pharmacol 2020;60:954-75. [PMID: 32469437 DOI: 10.1002/jcph.1673] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
14 Fernández-Lázaro D, Fernandez-Lazaro CI, Mielgo-Ayuso J, Adams DP, García Hernández JL, González-Bernal J, González-Gross M. Glycophosphopeptical AM3 Food Supplement: A Potential Adjuvant in the Treatment and Vaccination of SARS-CoV-2. Front Immunol 2021;12:698672. [PMID: 34220861 DOI: 10.3389/fimmu.2021.698672] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Lin A, Yan WH. Perspective of HLA-G Induced Immunosuppression in SARS-CoV-2 Infection. Front Immunol 2021;12:788769. [PMID: 34938296 DOI: 10.3389/fimmu.2021.788769] [Reference Citation Analysis]
16 Abdella S, Tessema M, Tasew G, Defar A, Deressa A, Regasa F, Teka F, Tigabu E, Nigussie D, Belachew T, Molla M, Deribew A, Abebe W, Yigzaw T, Nigatu T, Mitike G, Haile T, Taame H, Ahmed M, Nigatu F, Tolesa T, Wolka E, Amogne W, Laillou A, Amare M, Fufa Y, Argaw A, Waganew W, Azazh A, Worku A, Redae B, Sultan M, Walelegn M, Tefera M, Yifru S, Argaw R, Brehau N, Teklu S, Demoz G, Seman Y, Salasibew M, Ejeta E, Whiting SJ, Wolday D, Tollera G, Abate E, Duguma D. Prognostic factors and outcomes of COVID-19 cases in Ethiopia: multi-center cohort study protocol. BMC Infect Dis 2021;21:956. [PMID: 34530744 DOI: 10.1186/s12879-021-06652-0] [Reference Citation Analysis]
17 Taefehshokr N, Taefehshokr S, Heit B. Mechanisms of Dysregulated Humoral and Cellular Immunity by SARS-CoV-2. Pathogens 2020;9:E1027. [PMID: 33302366 DOI: 10.3390/pathogens9121027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
18 Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci 2020;57:389-99. [PMID: 32503382 DOI: 10.1080/10408363.2020.1770685] [Cited by in Crossref: 110] [Cited by in F6Publishing: 128] [Article Influence: 55.0] [Reference Citation Analysis]
19 Córdova-Martínez A, Caballero-García A, Roche E, Noriega DC. β-Glucans Could Be Adjuvants for SARS-CoV-2 Virus Vaccines (COVID-19). Int J Environ Res Public Health 2021;18:12636. [PMID: 34886361 DOI: 10.3390/ijerph182312636] [Reference Citation Analysis]
20 Ducoin K, Oger R, Bilonda Mutala L, Deleine C, Jouand N, Desfrançois J, Podevin J, Duchalais E, Cruard J, Benlalam H, Labarrière N, Bossard C, Jarry A, Gervois-segain N. Targeting NKG2A to boost anti-tumor CD8 T-cell responses in human colorectal cancer. OncoImmunology 2022;11:2046931. [DOI: 10.1080/2162402x.2022.2046931] [Reference Citation Analysis]
21 Rahi MS, Jindal V, Reyes SP, Gunasekaran K, Gupta R, Jaiyesimi I. Hematologic disorders associated with COVID-19: a review. Ann Hematol 2021;100:309-20. [PMID: 33415422 DOI: 10.1007/s00277-020-04366-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
22 Njiomegnie GF, Read SA, Fewings N, George J, McKay F, Ahlenstiel G. Immunomodulation of the Natural Killer Cell Phenotype and Response during HCV Infection. J Clin Med. 2020;9. [PMID: 32268490 DOI: 10.3390/jcm9041030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
23 Highton AJ, Schuster IS, Degli-Esposti MA, Altfeld M. The role of natural killer cells in liver inflammation. Semin Immunopathol 2021. [PMID: 34230995 DOI: 10.1007/s00281-021-00877-6] [Reference Citation Analysis]
24 Cifaldi L, Doria M, Cotugno N, Zicari S, Cancrini C, Palma P, Rossi P. DNAM-1 Activating Receptor and Its Ligands: How Do Viruses Affect the NK Cell-Mediated Immune Surveillance during the Various Phases of Infection? Int J Mol Sci 2019;20:E3715. [PMID: 31366013 DOI: 10.3390/ijms20153715] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
25 Kandikattu HK, Venkateshaiah SU, Kumar S, Mishra A. IL-15 immunotherapy is a viable strategy for COVID-19. Cytokine Growth Factor Rev 2020;54:24-31. [PMID: 32536564 DOI: 10.1016/j.cytogfr.2020.06.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
26 Chowdhury P, Barooah AK. Tea Bioactive Modulate Innate Immunity: In Perception to COVID-19 Pandemic. Front Immunol 2020;11:590716. [PMID: 33193427 DOI: 10.3389/fimmu.2020.590716] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
27 Ye CH, Hsu WL, Peng GR, Yu WC, Lin WC, Hu S, Yu SH. Role of the Immune Microenvironment in SARS-CoV-2 Infection. Cell Transplant 2021;30:9636897211010632. [PMID: 33949207 DOI: 10.1177/09636897211010632] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
28 Sugawara S, Manickam C, Reeves RK. TRIGGERED: could refocused cell signaling be key to natural killer cell-based HIV immunotherapeutics? AIDS 2021;35:165-76. [PMID: 33116071 DOI: 10.1097/QAD.0000000000002743] [Reference Citation Analysis]
29 Jeyaraman M, Muthu S, Bapat A, Jain R, Sushmitha ES, Gulati A, Channaiah Anudeep T, Dilip SJ, Jha NK, Kumar D, Kesari KK, Ojha S, Dholpuria S, Gupta G, Dureja H, Chellappan DK, Singh SK, Dua K, Jha SK. Bracing NK cell based therapy to relegate pulmonary inflammation in COVID-19. Heliyon 2021;7:e07635. [PMID: 34312598 DOI: 10.1016/j.heliyon.2021.e07635] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Ivanova DL, Krempels R, Denton SL, Fettel KD, Saltz GM, Rach D, Fatima R, Mundhenke T, Materi J, Dunay IR, Gigley JP. NK Cells Negatively Regulate CD8 T Cells to Promote Immune Exhaustion and Chronic Toxoplasma gondii Infection. Front Cell Infect Microbiol 2020;10:313. [PMID: 32733814 DOI: 10.3389/fcimb.2020.00313] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Shokouhifar A, Anani Sarab G, Yazdanifar M, Fereidouni M, Nouri M, Ebrahimi M. Overcoming the UCB HSCs -Derived NK cells Dysfunction through Harnessing RAS/MAPK, IGF-1R and TGF-β Signaling Pathways. Cancer Cell Int 2021;21:298. [PMID: 34098947 DOI: 10.1186/s12935-021-01983-z] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Piñeiro Fernández J, Luddy KA, Harmon C, O'Farrelly C. Hepatic Tumor Microenvironments and Effects on NK Cell Phenotype and Function. Int J Mol Sci 2019;20:E4131. [PMID: 31450598 DOI: 10.3390/ijms20174131] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
33 Willows S, Alam SB, Sandhu JK, Kulka M. A Canadian perspective on severe acute respiratory syndrome coronavirus 2 infection and treatment: how prevalent underlying inflammatory disease contributes to pathogenesis. Biochem Cell Biol 2021;99:173-94. [PMID: 33027600 DOI: 10.1139/bcb-2020-0341] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
34 Han S, Jung M, Kim AS, Lee DY, Cha BH, Putnam CW, Lim KS, Bull DA, Won YW. Peptide Adjuvant to Invigorate Cytolytic Activity of NK Cells in an Obese Mouse Cancer Model. Pharmaceutics 2021;13:1279. [PMID: 34452238 DOI: 10.3390/pharmaceutics13081279] [Reference Citation Analysis]
35 Saint-Criq V, Lugo-Villarino G, Thomas M. Dysbiosis, malnutrition and enhanced gut-lung axis contribute to age-related respiratory diseases. Ageing Res Rev 2021;66:101235. [PMID: 33321253 DOI: 10.1016/j.arr.2020.101235] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
36 Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O, Borrego F. NK Cell Metabolism and Tumor Microenvironment. Front Immunol 2019;10:2278. [PMID: 31616440 DOI: 10.3389/fimmu.2019.02278] [Cited by in Crossref: 56] [Cited by in F6Publishing: 60] [Article Influence: 18.7] [Reference Citation Analysis]
37 Pinato DJ, Guerra N, Fessas P, Murphy R, Mineo T, Mauri FA, Mukherjee SK, Thursz M, Wong CN, Sharma R, Rimassa L. Immune-based therapies for hepatocellular carcinoma. Oncogene 2020;39:3620-37. [PMID: 32157213 DOI: 10.1038/s41388-020-1249-9] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 23.5] [Reference Citation Analysis]
38 Gong L, Kwong DL, Dai W, Wu P, Li S, Yan Q, Zhang Y, Zhang B, Fang X, Liu L, Luo M, Liu B, Chow LK, Chen Q, Huang J, Lee VH, Lam KO, Lo AW, Chen Z, Wang Y, Lee AW, Guan XY. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma. Nat Commun 2021;12:1540. [PMID: 33750785 DOI: 10.1038/s41467-021-21795-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
39 Ma Q, Dong X, Liu S, Zhong T, Sun D, Zong L, Zhao C, Lu Q, Zhang M, Gao Y, Ye Y, Cheng J, Xu Y, Zheng M. Hepatitis B e Antigen Induces NKG2A+ Natural Killer Cell Dysfunction via Regulatory T Cell-Derived Interleukin 10 in Chronic Hepatitis B Virus Infection. Front Cell Dev Biol 2020;8:421. [PMID: 32582704 DOI: 10.3389/fcell.2020.00421] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
40 Zheng M, Tian Z. Liver-Mediated Adaptive Immune Tolerance. Front Immunol 2019;10:2525. [PMID: 31787967 DOI: 10.3389/fimmu.2019.02525] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 13.0] [Reference Citation Analysis]
41 Keam S, Megawati D, Patel SK, Tiwari R, Dhama K, Harapan H. Immunopathology and immunotherapeutic strategies in severe acute respiratory syndrome coronavirus 2 infection. Rev Med Virol 2020;30:e2123. [PMID: 32648313 DOI: 10.1002/rmv.2123] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 20.0] [Reference Citation Analysis]
42 Lee J, Park SS, Kim TY, Lee DG, Kim DW. Lymphopenia as a Biological Predictor of Outcomes in COVID-19 Patients: A Nationwide Cohort Study. Cancers (Basel) 2021;13:471. [PMID: 33530509 DOI: 10.3390/cancers13030471] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
43 Deng X, Terunuma H, Nieda M. Exploring the Utility of NK Cells in COVID-19. Biomedicines 2022;10:1002. [DOI: 10.3390/biomedicines10051002] [Reference Citation Analysis]
44 Taefehshokr N, Taefehshokr S, Hemmat N, Heit B. Covid-19: Perspectives on Innate Immune Evasion. Front Immunol 2020;11:580641. [PMID: 33101306 DOI: 10.3389/fimmu.2020.580641] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 16.5] [Reference Citation Analysis]
45 Chauhan V, Rungta T, Rawat M, Goyal K, Gupta Y, Singh MP. Excavating SARS-coronavirus 2 genome for epitope-based subunit vaccine synthesis using immunoinformatics approach. J Cell Physiol 2021;236:1131-47. [PMID: 32643158 DOI: 10.1002/jcp.29923] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
46 Yaqinuddin A, Kashir J. Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using Monalizumab, Cholroquine, and antiviral agents. Med Hypotheses 2020;140:109777. [PMID: 32344314 DOI: 10.1016/j.mehy.2020.109777] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
47 Zhang YY, Li BR, Ning BT. The Comparative Immunological Characteristics of SARS-CoV, MERS-CoV, and SARS-CoV-2 Coronavirus Infections. Front Immunol 2020;11:2033. [PMID: 32922406 DOI: 10.3389/fimmu.2020.02033] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
48 Braun C, Weichhart T. mTOR-dependent immunometabolism as Achilles' heel of anticancer therapy. Eur J Immunol 2021. [PMID: 34648202 DOI: 10.1002/eji.202149270] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Bobcakova A, Barnova M, Vysehradsky R, Petriskova J, Kocan I, Diamant Z, Jesenak M. Activated CD8+CD38+ Cells Are Associated With Worse Clinical Outcome in Hospitalized COVID-19 Patients. Front Immunol 2022;13:861666. [DOI: 10.3389/fimmu.2022.861666] [Reference Citation Analysis]
50 Meyyazhagan A, Pushparaj K, Balasubramanian B, Kuchi Bhotla H, Pappusamy M, Arumugam VA, Easwaran M, Pottail L, Mani P, Tsibizova V, Di Renzo GC. COVID-19 in pregnant women and children: Insights on clinical manifestations, complexities, and pathogenesis. Int J Gynaecol Obstet 2021. [PMID: 34735717 DOI: 10.1002/ijgo.14007] [Reference Citation Analysis]
51 Abulizi A, Shao Y, Aji T, Li Z, Zhang C, Aini A, Wang H, Tuxun T, Li L, Zhang N, Lin R, Wen H. Echinococcus multilocularis inoculation induces NK cell functional decrease through high expression of NKG2A in C57BL/6 mice. BMC Infect Dis 2019;19:792. [PMID: 31500589 DOI: 10.1186/s12879-019-4417-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
52 Gupta A, Gupta GS. Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs. Mol Cell Biochem 2021;476:2917-42. [PMID: 33745077 DOI: 10.1007/s11010-021-04107-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
53 Masselli E, Vaccarezza M, Carubbi C, Pozzi G, Presta V, Mirandola P, Vitale M. NK cells: A double edge sword against SARS-CoV-2. Adv Biol Regul 2020;77:100737. [PMID: 32773100 DOI: 10.1016/j.jbior.2020.100737] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
54 Wang X, Huang K, Jiang H, Hua L, Yu W, Ding D, Wang K, Li X, Zou Z, Jin M, Xu S. Long-Term Existence of SARS-CoV-2 in COVID-19 Patients: Host Immunity, Viral Virulence, and Transmissibility. Virol Sin 2020;35:793-802. [PMID: 33156486 DOI: 10.1007/s12250-020-00308-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
55 Wijaya RS, Read SA, Selvamani SP, Schibeci S, Azardaryany MK, Ong A, van der Poorten D, Lin R, Douglas MW, George J, Ahlenstiel G. Hepatitis C Virus (HCV) Eradication With Interferon-Free Direct-Acting Antiviral-Based Therapy Results in KLRG1+ HCV-Specific Memory Natural Killer Cells. J Infect Dis 2021;223:1183-95. [PMID: 32777077 DOI: 10.1093/infdis/jiaa492] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]