BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fekry B, Jeffries KA, Esmaeilniakooshkghazi A, Szulc ZM, Knagge KJ, Kirchner DR, Horita DA, Krupenko SA, Krupenko NI. C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nat Commun 2018;9:4149. [PMID: 30297838 DOI: 10.1038/s41467-018-06650-y] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 9.8] [Reference Citation Analysis]
Number Citing Articles
1 Ekroos K, Lavrynenko O, Titz B, Pater C, Hoeng J, Ivanov NV. Lipid-based biomarkers for CVD, COPD, and aging - A translational perspective. Prog Lipid Res 2020;78:101030. [PMID: 32339553 DOI: 10.1016/j.plipres.2020.101030] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
2 Grafen A, Schumacher F, Chithelen J, Kleuser B, Beyersdorf N, Schneider-Schaulies J. Use of Acid Ceramidase and Sphingosine Kinase Inhibitors as Antiviral Compounds Against Measles Virus Infection of Lymphocytes in vitro. Front Cell Dev Biol 2019;7:218. [PMID: 31632969 DOI: 10.3389/fcell.2019.00218] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
3 Tea MN, Poonnoose SI, Pitson SM. Targeting the Sphingolipid System as a Therapeutic Direction for Glioblastoma. Cancers (Basel) 2020;12:E111. [PMID: 31906280 DOI: 10.3390/cancers12010111] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
4 Pitman M, Oehler MK, Pitson SM. Sphingolipids as multifaceted mediators in ovarian cancer. Cell Signal 2021;81:109949. [PMID: 33571664 DOI: 10.1016/j.cellsig.2021.109949] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Hanada K, Sakai S, Kumagai K. Natural Ligand-Mimetic and Nonmimetic Inhibitors of the Ceramide Transport Protein CERT. Int J Mol Sci 2022;23:2098. [PMID: 35216212 DOI: 10.3390/ijms23042098] [Reference Citation Analysis]
6 Molendijk J, Robinson H, Djuric Z, Hill MM. Lipid mechanisms in hallmarks of cancer. Mol Omics 2020;16:6-18. [PMID: 31755509 DOI: 10.1039/c9mo00128j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
7 Xu Z, Wu W, Yan H, Hu Y, He Q, Luo P. Regulation of p53 stability as a therapeutic strategy for cancer. Biochem Pharmacol 2021;185:114407. [PMID: 33421376 DOI: 10.1016/j.bcp.2021.114407] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Griese M, Bonella F, Costabel U, de Blic J, Tran N, Liebisch G. Quantitative Lipidomics in Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2019;200:881-7. [DOI: 10.1164/rccm.201901-0086oc] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
9 Chithelen J, Franke H, Länder N, Grafen A, Schneider-schaulies J. The Sphingolipid Inhibitors Ceranib-2 and SKI-II Reduce Measles Virus Replication in Primary Human Lymphocytes: Effects on mTORC1 Downstream Signaling. Front Physiol 2022;13:856143. [DOI: 10.3389/fphys.2022.856143] [Reference Citation Analysis]
10 Elhady SS, Habib ES, Abdelhameed RFA, Goda MS, Hazem RM, Mehanna ET, Helal MA, Hosny KM, Diri RM, Hassanean HA, Ibrahim AK, Eltamany EE, Abdelmohsen UR, Ahmed SA. Anticancer Effects of New Ceramides Isolated from the Red Sea Red Algae Hypnea musciformis in a Model of Ehrlich Ascites Carcinoma: LC-HRMS Analysis Profile and Molecular Modeling. Mar Drugs 2022;20:63. [PMID: 35049918 DOI: 10.3390/md20010063] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Tzou FY, Su TY, Lin WS, Kuo HC, Yu YL, Yeh YH, Liu CC, Kuo CH, Huang SY, Chan CC. Dihydroceramide desaturase regulates the compartmentalization of Rac1 for neuronal oxidative stress. Cell Rep 2021;35:108972. [PMID: 33852856 DOI: 10.1016/j.celrep.2021.108972] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Clarke CJ, D'Angelo G, Silva LC. Sphingolipid metabolism and signaling: embracing diversity. FEBS Lett 2020;594:3579-82. [PMID: 33241880 DOI: 10.1002/1873-3468.13979] [Reference Citation Analysis]
13 Tripathi P, Zhu Z, Qin H, Elsherbini A, Crivelli SM, Roush E, Wang G, Spassieva SD, Bieberich E. Palmitoylation of acetylated tubulin and association with ceramide-rich platforms is critical for ciliogenesis. J Lipid Res 2021;62:100021. [PMID: 33380429 DOI: 10.1194/jlr.RA120001190] [Reference Citation Analysis]
14 Lu P, White-Gilbertson S, Nganga R, Kester M, Voelkel-Johnson C. Expression of the SNAI2 transcriptional repressor is regulated by C16-ceramide. Cancer Biol Ther 2019;20:922-30. [PMID: 30836822 DOI: 10.1080/15384047.2019.1579962] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
15 Shimasaki K, Kumagai K, Sakai S, Yamaji T, Hanada K. Hyperosmotic Stress Induces Phosphorylation of CERT and Enhances Its Tethering throughout the Endoplasmic Reticulum. Int J Mol Sci 2022;23:4025. [PMID: 35409383 DOI: 10.3390/ijms23074025] [Reference Citation Analysis]
16 Wang X, Wang Y, Xu J, Xue C. Sphingolipids in food and their critical roles in human health. Crit Rev Food Sci Nutr 2021;61:462-91. [PMID: 32208869 DOI: 10.1080/10408398.2020.1736510] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
17 Holmes RS, Barron KA, Krupenko NI. Ceramide Synthase 6: Comparative Analysis, Phylogeny and Evolution. Biomolecules 2018;8:E111. [PMID: 30297675 DOI: 10.3390/biom8040111] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
18 Xue Y, San Luis B, Lane DP. Intratumour heterogeneity of p53 expression; causes and consequences. J Pathol 2019;249:274-85. [PMID: 31322742 DOI: 10.1002/path.5328] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
19 Knapp P, Chomicz K, Świderska M, Chabowski A, Jach R. Unique Roles of Sphingolipids in Selected Malignant and Nonmalignant Lesions of Female Reproductive System. Biomed Res Int 2019;2019:4376583. [PMID: 31187044 DOI: 10.1155/2019/4376583] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Lin M, Li Y, Wang S, Cao B, Li C, Li G, Iyoda A. Sphingolipid Metabolism and Signaling in Lung Cancer: A Potential Therapeutic Target. Journal of Oncology 2022;2022:1-10. [DOI: 10.1155/2022/9099612] [Reference Citation Analysis]
21 Rizzo R, Russo D, Kurokawa K, Sahu P, Lombardi B, Supino D, Zhukovsky MA, Vocat A, Pothukuchi P, Kunnathully V, Capolupo L, Boncompain G, Vitagliano C, Zito Marino F, Aquino G, Montariello D, Henklein P, Mandrich L, Botti G, Clausen H, Mandel U, Yamaji T, Hanada K, Budillon A, Perez F, Parashuraman S, Hannun YA, Nakano A, Corda D, D'Angelo G, Luini A. Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO J 2021;40:e107238. [PMID: 33749896 DOI: 10.15252/embj.2020107238] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
22 Francis M, Abou Daher A, Azzam P, Mroueh M, Zeidan YH. Modulation of DNA Damage Response by Sphingolipid Signaling: An Interplay that Shapes Cell Fate. Int J Mol Sci 2020;21:E4481. [PMID: 32599736 DOI: 10.3390/ijms21124481] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
23 Dando I, Pozza ED, Ambrosini G, Torrens-Mas M, Butera G, Mullappilly N, Pacchiana R, Palmieri M, Donadelli M. Oncometabolites in cancer aggressiveness and tumour repopulation. Biol Rev Camb Philos Soc 2019;94:1530-46. [PMID: 30972955 DOI: 10.1111/brv.12513] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
24 Clifford RE, Govindarajah N, Bowden D, Sutton P, Glenn M, Darvish-Damavandi M, Buczacki S, McDermott U, Szulc Z, Ogretmen B, Parsons JL, Vimalachandran D. Targeting Acid Ceramidase to Improve the Radiosensitivity of Rectal Cancer. Cells 2020;9:E2693. [PMID: 33334013 DOI: 10.3390/cells9122693] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Yamashita S, Kinoshita M, Miyazawa T. Dietary Sphingolipids Contribute to Health via Intestinal Maintenance. Int J Mol Sci 2021;22:7052. [PMID: 34208952 DOI: 10.3390/ijms22137052] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Stith JL, Velazquez FN, Obeid LM. Advances in determining signaling mechanisms of ceramide and role in disease. J Lipid Res 2019;60:913-8. [PMID: 30846529 DOI: 10.1194/jlr.S092874] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
27 Lahalle A, Lacroix M, De Blasio C, Cissé MY, Linares LK, Le Cam L. The p53 Pathway and Metabolism: The Tree That Hides the Forest. Cancers (Basel) 2021;13:E133. [PMID: 33406607 DOI: 10.3390/cancers13010133] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
28 Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab 2020;33:2-22. [PMID: 31685430 DOI: 10.1016/j.molmet.2019.10.002] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 17.7] [Reference Citation Analysis]
29 Valentino TR, Rule BD, Mobley CB, Nikolova-Karakashian M, Vechetti IJ. Skeletal Muscle Cell Growth Alters the Lipid Composition of Extracellular Vesicles. Membranes (Basel) 2021;11:619. [PMID: 34436382 DOI: 10.3390/membranes11080619] [Reference Citation Analysis]
30 Ueda N. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury. Int J Mol Sci 2022;23:4010. [PMID: 35409370 DOI: 10.3390/ijms23074010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Lipidomics Standards Initiative Consortium. Lipidomics needs more standardization. Nat Metab 2019;1:745-7. [DOI: 10.1038/s42255-019-0094-z] [Cited by in Crossref: 51] [Cited by in F6Publishing: 29] [Article Influence: 17.0] [Reference Citation Analysis]
32 Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease and liver cancer. JHEP Reports 2022. [DOI: 10.1016/j.jhepr.2022.100479] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
33 Qi D, Song X, Xue C, Yao W, Shen P, Yu H, Zhang Z. AKT1/FOXP3 axis-mediated expression of CerS6 promotes p53 mutant pancreatic tumorigenesis. Cancer Lett 2021:S0304-3835(21)00309-8. [PMID: 34343636 DOI: 10.1016/j.canlet.2021.06.024] [Reference Citation Analysis]
34 Barron KA, Jeffries KA, Krupenko NI. Sphingolipids and the link between alcohol and cancer. Chem Biol Interact 2020;322:109058. [PMID: 32171848 DOI: 10.1016/j.cbi.2020.109058] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
35 Yamashita S, Soga M, Nguma E, Kinoshita M, Miyazawa T. Protective Mechanism of Rice-Derived Lipids and Glucosylceramide in an In Vitro Intestinal Tract Model. J Agric Food Chem 2021;69:10206-14. [PMID: 34455784 DOI: 10.1021/acs.jafc.1c04562] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Li Y, Zhang W, Li J, Sun Y, Yang Q, Wang S, Luo X, Wang W, Wang K, Bai W, Zhang H, Qin L. The imbalance in the aortic ceramide/sphingosine-1-phosphate rheostat in ovariectomized rats and the preventive effect of estrogen. Lipids Health Dis 2020;19:95. [PMID: 32430006 DOI: 10.1186/s12944-020-01279-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
37 Zhu Z, Chen J, Wang G, Elsherbini A, Zhong L, Jiang X, Qin H, Tripathi P, Zhi W, Spassieva SD, Morris AJ, Bieberich E. Ceramide regulates interaction of Hsd17b4 with Pex5 and function of peroxisomes. Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864:1514-24. [PMID: 31176039 DOI: 10.1016/j.bbalip.2019.05.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
38 Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, Bieberich E, Martinez-Martinez P. Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev 2020;159:214-31. [PMID: 31911096 DOI: 10.1016/j.addr.2019.12.003] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 15.5] [Reference Citation Analysis]
39 Barron K, Ogretmen B, Krupenko N. Dietary Folic Acid Alters Metabolism of Multiple Vitamins in a CerS6- and Sex-Dependent Manner. Front Nutr 2021;8:758403. [PMID: 34805245 DOI: 10.3389/fnut.2021.758403] [Reference Citation Analysis]
40 Brachtendorf S, El-hindi K, Grösch S. Ceramide synthases in cancer therapy and chemoresistance. Progress in Lipid Research 2019;74:160-85. [DOI: 10.1016/j.plipres.2019.04.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
41 Brachtendorf S, El-Hindi K, Grösch S. WITHDRAWN: Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019;:100992. [PMID: 31442523 DOI: 10.1016/j.plipres.2019.100992] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
42 Lee SC, Lin KH, Balogh A, Norman DD, Bavaria M, Kuo B, Yue J, Balázs L, Benyó Z, Tigyi G. Dysregulation of lysophospholipid signaling by p53 in malignant cells and the tumor microenvironment. Cell Signal 2021;78:109850. [PMID: 33253914 DOI: 10.1016/j.cellsig.2020.109850] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
43 Krupenko SA, Krupenko NI. Loss of ALDH1L1 folate enzyme confers a selective metabolic advantage for tumor progression. Chem Biol Interact 2019;302:149-55. [PMID: 30794800 DOI: 10.1016/j.cbi.2019.02.013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
44 Park LK, Garr Barry V, Hong J, Heebink J, Sah R, Peterson LR. Links between ceramides and cardiac function. Curr Opin Lipidol 2022;33:47-56. [PMID: 34889803 DOI: 10.1097/MOL.0000000000000802] [Reference Citation Analysis]
45 Sharma J, Krupenko SA. Folate pathways mediating the effects of ethanol in tumorigenesis. Chem Biol Interact 2020;324:109091. [PMID: 32283069 DOI: 10.1016/j.cbi.2020.109091] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Lu P, White-Gilbertson S, Beeson G, Beeson C, Ogretmen B, Norris J, Voelkel-Johnson C. Ceramide Synthase 6 Maximizes p53 Function to Prevent Progeny Formation from Polyploid Giant Cancer Cells. Cancers (Basel) 2021;13:2212. [PMID: 34062962 DOI: 10.3390/cancers13092212] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
47 Zietzer A, Jahnel AL, Bulic M, Gutbrod K, Düsing P, Hosen MR, Dörmann P, Werner N, Nickenig G, Jansen F. Activation of neutral sphingomyelinase 2 through hyperglycemia contributes to endothelial apoptosis via vesicle-bound intercellular transfer of ceramides. Cell Mol Life Sci 2021. [PMID: 34951654 DOI: 10.1007/s00018-021-04049-5] [Reference Citation Analysis]
48 Khiste SK, Liu Z, Roy KR, Uddin MB, Hosain SB, Gu X, Nazzal S, Hill RA, Liu YY. Ceramide-Rubusoside Nanomicelles, a Potential Therapeutic Approach to Target Cancers Carrying p53 Missense Mutations. Mol Cancer Ther 2020;19:564-74. [PMID: 31645443 DOI: 10.1158/1535-7163.MCT-19-0366] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
49 Canals D, Clarke CJ. Compartmentalization of Sphingolipid metabolism: Implications for signaling and therapy. Pharmacol Ther 2021;:108005. [PMID: 34582834 DOI: 10.1016/j.pharmthera.2021.108005] [Reference Citation Analysis]
50 Karakostis K, López I, Peña-Balderas AM, Fåhareus R, Olivares-Illana V. Molecular and Biochemical Techniques for Deciphering p53-MDM2 Regulatory Mechanisms. Biomolecules 2020;11:36. [PMID: 33396576 DOI: 10.3390/biom11010036] [Reference Citation Analysis]