BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ribeiro EA, Salery M, Scarpa JR, Calipari ES, Hamilton PJ, Ku SM, Kronman H, Purushothaman I, Juarez B, Heshmati M, Doyle M, Lardner C, Burek D, Strat A, Pirpinias S, Mouzon E, Han MH, Neve RL, Bagot RC, Kasarskis A, Koo JW, Nestler EJ. Transcriptional and physiological adaptations in nucleus accumbens somatostatin interneurons that regulate behavioral responses to cocaine. Nat Commun 2018;9:3149. [PMID: 30089879 DOI: 10.1038/s41467-018-05657-9] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Yu X, Yan H, Li W. Recent advances in neuropeptide-related omics and gene editing: Spotlight on NPY and somatostatin and their roles in growth and food intake of fish. Front Endocrinol 2022;13:1023842. [DOI: 10.3389/fendo.2022.1023842] [Reference Citation Analysis]
2 Retzlaff CL, Rothwell PE. Characterization and mu opioid receptor sensitivity of neuropeptide Y interneurons in the mouse nucleus accumbens. Neuropharmacology 2022;218:109212. [PMID: 35963449 DOI: 10.1016/j.neuropharm.2022.109212] [Reference Citation Analysis]
3 Luo PX, Zakharenkov HC, Torres LY, Rios RA, Gegenhuber B, Black AM, Xu CK, Minie VA, Tran AM, Tollkuhn J, Trainor BC. Oxytocin receptor behavioral effects and cell types in the bed nucleus of the stria terminalis. Hormones and Behavior 2022;143:105203. [DOI: 10.1016/j.yhbeh.2022.105203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Retzlaff CL, Rothwell PE. Characterization and mu opioid receptor sensitivity of neuropeptide Y interneurons in the nucleus accumbens.. [DOI: 10.1101/2022.05.02.490329] [Reference Citation Analysis]
5 Gallegos DA, Minto M, Liu F, Hazlett MF, Aryana Yousefzadeh S, Bartelt LC, West AE. Cell-type specific transcriptional adaptations of nucleus accumbens interneurons to amphetamine. Mol Psychiatry 2022. [PMID: 35173267 DOI: 10.1038/s41380-022-01466-1] [Reference Citation Analysis]
6 Liguz-lecznar M, Dobrzanski G, Kossut M. Somatostatin and Somatostatin-Containing Interneurons—From Plasticity to Pathology. Biomolecules 2022;12:312. [DOI: 10.3390/biom12020312] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Srinivasan C, Phan BN, Lawler AJ, Ramamurthy E, Kleyman M, Brown AR, Kaplow IM, Wirthlin ME, Pfenning AR. Addiction-Associated Genetic Variants Implicate Brain Cell Type- and Region-Specific Cis-Regulatory Elements in Addiction Neurobiology. J Neurosci 2021;41:9008-30. [PMID: 34462306 DOI: 10.1523/JNEUROSCI.2534-20.2021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Gallegos DA, Minto M, Liu F, Hazlett MF, Yousefzadeh SA, Bartelt LC, West AE. Cell-type specific transcriptional adaptations of nucleus accumbens interneurons to amphetamine.. [DOI: 10.1101/2021.07.08.451674] [Reference Citation Analysis]
9 Na HH, Ryu JM, Kim KC. Knockout of FosB gene changes drug sensitivity and invasion activity via the regulation of Bcl-2, E-cadherin, β-catenin, and vimentin expression. Biochem Biophys Res Commun 2021;567:131-7. [PMID: 34153682 DOI: 10.1016/j.bbrc.2021.06.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Kähler B, Romswinkel EV, Jakovcevski M, Moses A, Schachner M, Morellini F. Hyperfunction of the stress response system and novelty-induced hyperactivity correlate with enhanced cocaine-induced conditioned place preference in NCAM-deficient mice. Addict Biol 2021;26:e12887. [PMID: 32124535 DOI: 10.1111/adb.12887] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Salminen AV, Silvani A, Allen RP, Clemens S, Garcia-Borreguero D, Ghorayeb I, Ferré S, Li Y, Ondo W, Picchietti DL, Rye D, Siegel JM, Winkelman JW, Manconi M; International Restless Legs Syndrome Study Group (IRLSSG). Consensus Guidelines on Rodent Models of Restless Legs Syndrome. Mov Disord 2021;36:558-69. [PMID: 33382140 DOI: 10.1002/mds.28401] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
12 Gu Y, Zhu D. nNOS-mediated protein-protein interactions: promising targets for treating neurological and neuropsychiatric disorders. J Biomed Res 2020;35:1-10. [PMID: 33402546 DOI: 10.7555/JBR.34.20200108] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Srinivasan C, Phan BN, Lawler AJ, Ramamurthy E, Kleyman M, Brown AR, Kaplow IM, Wirthlin ME, Pfenning AR. Addiction-associated genetic variants implicate brain cell type- and region-specific cis-regulatory elements in addiction neurobiology.. [DOI: 10.1101/2020.09.29.318329] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Huggett SB, Stallings MC. Genetic Architecture and Molecular Neuropathology of Human Cocaine Addiction. J Neurosci 2020;40:5300-13. [PMID: 32457073 DOI: 10.1523/JNEUROSCI.2879-19.2020] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
15 Lee JH, Ribeiro EA, Kim J, Ko B, Kronman H, Jeong YH, Kim JK, Janak PH, Nestler EJ, Koo JW, Kim JH. Dopaminergic Regulation of Nucleus Accumbens Cholinergic Interneurons Demarcates Susceptibility to Cocaine Addiction. Biol Psychiatry 2020;88:746-57. [PMID: 32622465 DOI: 10.1016/j.biopsych.2020.05.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 8.5] [Reference Citation Analysis]
16 Gazan A, Rial D, Schiffmann SN. Ablation of striatal somatostatin interneurons affects MSN morphology and electrophysiological properties, and increases cocaine‐induced hyperlocomotion in mice. Eur J Neurosci 2020;51:1388-402. [DOI: 10.1111/ejn.14581] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
17 Siemsen BM, McFaddin JA, Haigh K, Brock AG, Nan Leath M, Hooker KN, McGonegal LK, Scofield MD. Amperometric measurements of cocaine cue and novel context-evoked glutamate and nitric oxide release in the nucleus accumbens core. J Neurochem 2020;153:599-616. [PMID: 31901130 DOI: 10.1111/jnc.14952] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
18 Robinson SL, Thiele TE. A role for the neuropeptide somatostatin in the neurobiology of behaviors associated with substances abuse and affective disorders. Neuropharmacology 2020;167:107983. [PMID: 32027909 DOI: 10.1016/j.neuropharm.2020.107983] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
19 Assous M. Emergence of novel functions in striatal low‐threshold spike interneurons (Commentary on Gazan et al., 2019). Eur J Neurosci 2020;52:3490-2. [DOI: 10.1111/ejn.14663] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Schröder H, Moser N, Huggenberger S. The Mouse Caudate Putamen, Motor System, and Nucleus Accumbens. Neuroanatomy of the Mouse 2020. [DOI: 10.1007/978-3-030-19898-5_13] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Castro DC, Bruchas MR. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019;102:529-52. [PMID: 31071288 DOI: 10.1016/j.neuron.2019.03.003] [Cited by in Crossref: 86] [Cited by in F6Publishing: 89] [Article Influence: 28.7] [Reference Citation Analysis]
22 Siemsen B, Mcfaddin J, Haigh K, Brock A, Leath M, Hooker K, Mcgonegal L, Scofield M. Amperometric measurements of cocaine cue and novel context-evoked glutamate and nitric oxide release in the nucleus accumbens core.. [DOI: 10.1101/826677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 Zhao J, Ying L, Liu Y, Liu N, Tu G, Zhu M, Wu Y, Xiao B, Ye L, Li J, Guo F, Zhang L, Wang H, Zhang L. Different roles of Rac1 in the acquisition and extinction of methamphetamine-associated contextual memory in the nucleus accumbens. Theranostics 2019;9:7051-71. [PMID: 31660086 DOI: 10.7150/thno.34655] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
24 Forero DA, González-giraldo Y. Convergent functional genomics of cocaine misuse in humans and animal models. The American Journal of Drug and Alcohol Abuse 2020;46:22-30. [DOI: 10.1080/00952990.2019.1636384] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
25 Turkson S, Kloster A, Hamilton PJ, Neigh GN. Neuroendocrine drivers of risk and resilience: The influence of metabolism & mitochondria. Front Neuroendocrinol 2019;54:100770. [PMID: 31288042 DOI: 10.1016/j.yfrne.2019.100770] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
26 Ribeiro EA, Nectow AR, Pomeranz LE, Ekstrand MI, Koo JW, Nestler EJ. Viral labeling of neurons synaptically connected to nucleus accumbens somatostatin interneurons. PLoS One 2019;14:e0213476. [PMID: 30845266 DOI: 10.1371/journal.pone.0213476] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]