BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Blackwell JM, Geffen MN. Progress and challenges for understanding the function of cortical microcircuits in auditory processing. Nat Commun 2017;8:2165. [PMID: 29255268 DOI: 10.1038/s41467-017-01755-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Chien VS, Wang P, Maess B, Fishman Y, Knösche TR. Laminar Neural Dynamics of Auditory Evoked Responses: Computational Modeling of Local Field Potentials in Auditory Cortex of Non-Human Primates.. [DOI: 10.1101/2022.12.21.521407] [Reference Citation Analysis]
2 Yusuf PA, Lamuri A, Hubka P, Tillein J, Vinck M, Kral A. Deficient Recurrent Cortical Processing in Congenital Deafness. Front Syst Neurosci 2022;16:806142. [DOI: 10.3389/fnsys.2022.806142] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Eggermont JJ. Loudness recruitment and hyperacusis. Tinnitus and Hyperacusis 2022. [DOI: 10.1016/b978-0-323-91912-8.00003-7] [Reference Citation Analysis]
4 Nocon JC, Gritton HJ, James NM, Han X, Sen K. Parvalbumin neurons, temporal coding, and cortical noise in complex scene analysis.. [DOI: 10.1101/2021.09.11.459906] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
5 Parras GG, Casado-Román L, Schröger E, Malmierca MS. The posterior auditory field is the chief generator of prediction error signals in the auditory cortex. Neuroimage 2021;242:118446. [PMID: 34352393 DOI: 10.1016/j.neuroimage.2021.118446] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
6 Herrmann B, Butler BE. Hearing loss and brain plasticity: the hyperactivity phenomenon. Brain Struct Funct 2021;226:2019-39. [PMID: 34100151 DOI: 10.1007/s00429-021-02313-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
7 Chang M, Kanold PO. Development of Auditory Cortex Circuits. J Assoc Res Otolaryngol 2021;22:237-59. [PMID: 33909161 DOI: 10.1007/s10162-021-00794-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yalcinbas EA, Cazares C, Gremel CM. Call for a more balanced approach to understanding orbital frontal cortex function. Behav Neurosci 2021;135:255-66. [PMID: 34060878 DOI: 10.1037/bne0000450] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Carson RG. Inter‐hemispheric inhibition sculpts the output of neural circuits by co‐opting the two cerebral hemispheres. J Physiol 2020;598:4781-802. [DOI: 10.1113/jp279793] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
10 Herrmann B, Augereau T, Johnsrude IS. Neural Responses and Perceptual Sensitivity to Sound Depend on Sound-Level Statistics. Sci Rep 2020;10:9571. [PMID: 32533068 DOI: 10.1038/s41598-020-66715-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
11 Gourévitch B, Martin C, Postal O, Eggermont JJ. Oscillations in the auditory system and their possible role. Neurosci Biobehav Rev 2020;113:507-28. [PMID: 32298712 DOI: 10.1016/j.neubiorev.2020.03.030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
12 Lakunina AA, Nardoci MB, Ahmadian Y, Jaramillo S. Somatostatin-Expressing Interneurons in the Auditory Cortex Mediate Sustained Suppression by Spectral Surround. J Neurosci 2020;40:3564-75. [PMID: 32220950 DOI: 10.1523/JNEUROSCI.1735-19.2020] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
13 Cooke JE, Kahn MC, Mann EO, King AJ, Schnupp JWH, Willmore BDB. Contrast gain control occurs independently of both parvalbumin-positive interneuron activity and shunting inhibition in auditory cortex. J Neurophysiol 2020;123:1536-51. [PMID: 32186432 DOI: 10.1152/jn.00587.2019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
14 Lee JH, Wang X, Bendor D. The role of adaptation in generating monotonic rate codes in auditory cortex. PLoS Comput Biol 2020;16:e1007627. [PMID: 32069272 DOI: 10.1371/journal.pcbi.1007627] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
15 Puigbò J, Arsiwalla XD, González-ballester MA, Verschure PFMJ. Switching Operation Modes in the Neocortex via Cholinergic Neuromodulation: A Computational Model of Uncertainty, Learning, and Inhibition. Mol Neurobiol 2020;57:139-49. [DOI: 10.1007/s12035-019-01764-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
16 Herrmann B, Augereau T, Johnsrude IS. Neural Responses and Perceptual Sensitivity to Sound Depend on Sound-Level Statistics.. [DOI: 10.1101/850339] [Reference Citation Analysis]
17 Weisenburger S, Tejera F, Demas J, Chen B, Manley J, Sparks FT, Martínez Traub F, Daigle T, Zeng H, Losonczy A, Vaziri A. Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy. Cell 2019;177:1050-1066.e14. [PMID: 30982596 DOI: 10.1016/j.cell.2019.03.011] [Cited by in Crossref: 104] [Cited by in F6Publishing: 114] [Article Influence: 26.0] [Reference Citation Analysis]
18 Carbajal GV, Malmierca MS. The Neuronal Basis of Predictive Coding Along the Auditory Pathway: From the Subcortical Roots to Cortical Deviance Detection. Trends Hear 2018;22:2331216518784822. [PMID: 30022729 DOI: 10.1177/2331216518784822] [Cited by in Crossref: 50] [Cited by in F6Publishing: 62] [Article Influence: 12.5] [Reference Citation Analysis]
19 Concina G, Renna A, Grosso A, Sacchetti B. The auditory cortex and the emotional valence of sounds. Neuroscience & Biobehavioral Reviews 2019;98:256-64. [DOI: 10.1016/j.neubiorev.2019.01.018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
20 Lyngholm D, Sakata S. Cre-Dependent Optogenetic Transgenic Mice Without Early Age-Related Hearing Loss. Front Aging Neurosci 2019;11:29. [PMID: 30863301 DOI: 10.3389/fnagi.2019.00029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
21 Lyngholm D, Sakata S. Cre-dependent optogenetic transgenic mice without early age-related hearing loss.. [DOI: 10.1101/416164] [Reference Citation Analysis]
22 Vahaba DM, Remage-Healey L. Neuroestrogens rapidly shape auditory circuits to support communication learning and perception: Evidence from songbirds. Horm Behav 2018;104:77-87. [PMID: 29555375 DOI: 10.1016/j.yhbeh.2018.03.007] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]