BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cheng Z, He Z, Cai Y, Zhang C, Fu G, Li H, Sun W, Liu C, Cui X, Ning B, Xiang D, Zhou T, Li X, Xie W, Wang H, Ding J. Conversion of hepatoma cells to hepatocyte-like cells by defined hepatocyte nuclear factors. Cell Res 2019;29:124-35. [PMID: 30560924 DOI: 10.1038/s41422-018-0111-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Song J, Zhou H, Gu D, Xu Y. Hepatocellular Carcinoma Differentiation: Research Progress in Mechanism and Treatment. Front Oncol 2021;11:790358. [PMID: 35096588 DOI: 10.3389/fonc.2021.790358] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Ma H, Zhang Q, Yang X, Hu Y, Zhang J, Chen L, Zhao B, Yang W, Xu R, Duan B. HNF4A Regulates the Proliferation and Tumor Formation of Cervical Cancer Cells through the Wnt/β-Catenin Pathway. Oxidative Medicine and Cellular Longevity 2022;2022:1-17. [DOI: 10.1155/2022/8168988] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Wang X, Xiong T, Cui M, Li N, Li Q, Zhu L, Duan S, Wang Y, Guo Y. A novel targeted co-delivery nanosystem for enhanced ovarian cancer treatment via multidrug resistance reversion and mTOR-mediated signaling pathway. J Nanobiotechnology 2021;19:444. [PMID: 34949180 DOI: 10.1186/s12951-021-01139-1] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
4 Wang F, Breslin S J P, Qiu W. Novel oncogenes and tumor suppressor genes in hepatocellular carcinoma. Liver Res 2021;5:195-203. [PMID: 34900376 DOI: 10.1016/j.livres.2021.06.001] [Reference Citation Analysis]
5 Chu X, Wang J. Deciphering the molecular mechanism of the cancer formation by chromosome structural dynamics. PLoS Comput Biol 2021;17:e1009596. [PMID: 34752443 DOI: 10.1371/journal.pcbi.1009596] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Yang X, Cao N, Chen L, Liu L, Zhang M, Cao Y. Suppression of Cell Tumorigenicity by Non-neural Pro-differentiation Factors via Inhibition of Neural Property in Tumorigenic Cells. Front Cell Dev Biol 2021;9:714383. [PMID: 34595169 DOI: 10.3389/fcell.2021.714383] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Xu H, Li X, Wang S, Li F, Gao J, Yan L, Zhu L. Multiomics analysis identifies key genes and pathways related to N6-methyladenosine RNA modification in ovarian cancer. Epigenomics 2021;13:1359-83. [PMID: 34550011 DOI: 10.2217/epi-2021-0204] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Zimmermannova O, Caiado I, Ferreira AG, Pereira CF. Cell Fate Reprogramming in the Era of Cancer Immunotherapy. Front Immunol 2021;12:714822. [PMID: 34367185 DOI: 10.3389/fimmu.2021.714822] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Zou N, Zhang X, Li S, Li Y, Zhao Y, Yang X, Zhu S. Elevated HNF1A expression promotes radiation-resistance via driving PI3K/AKT signaling pathway in esophageal squamous cell carcinoma cells. J Cancer 2021;12:5013-24. [PMID: 34234870 DOI: 10.7150/jca.58023] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Wang X, Zhang W, Yang Y, Wang J, Qiu H, Liao L, Oikawa T, Wauthier E, Sethupathy P, Reid LM, Liu Z, He Z. A MicroRNA-Based Network Provides Potential Predictive Signatures and Reveals the Crucial Role of PI3K/AKT Signaling for Hepatic Lineage Maturation. Front Cell Dev Biol 2021;9:670059. [PMID: 34141708 DOI: 10.3389/fcell.2021.670059] [Reference Citation Analysis]
11 Howell L, Jenkins RE, Lynch S, Duckworth C, Kevin Park B, Goldring C. Proteomic profiling of murine biliary-derived hepatic organoids and their capacity for drug disposition, bioactivation and detoxification. Arch Toxicol 2021;95:2413-30. [PMID: 34050779 DOI: 10.1007/s00204-021-03075-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Rombaut M, Boeckmans J, Rodrigues RM, van Grunsven LA, Vanhaecke T, De Kock J. Direct reprogramming of somatic cells into induced hepatocytes: Cracking the Enigma code. J Hepatol 2021;75:690-705. [PMID: 33989701 DOI: 10.1016/j.jhep.2021.04.048] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
13 Issac J, Raveendran PS, Das AV. RFX1: a promising therapeutic arsenal against cancer. Cancer Cell Int 2021;21:253. [PMID: 33964962 DOI: 10.1186/s12935-021-01952-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Kim Y, Hong SA, Yu J, Eom J, Jang K, Yoon S, Hong DH, Seo D, Lee SN, Woo JS, Jeong J, Bae S, Choi D. Adenine base editing and prime editing of chemically derived hepatic progenitors rescue genetic liver disease. Cell Stem Cell 2021;28:1614-1624.e5. [PMID: 33951479 DOI: 10.1016/j.stem.2021.04.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 18] [Article Influence: 1.0] [Reference Citation Analysis]
15 Li Z, Wang Y, Ding Y, Repp L, Kwon GS, Hu Q. Cell‐Based Delivery Systems: Emerging Carriers for Immunotherapy. Adv Funct Mater 2021;31:2100088. [DOI: 10.1002/adfm.202100088] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 18.0] [Reference Citation Analysis]
16 Wang LJ, Li XX, Hou J, Song XH, Xie WH, Shen L. Integrated Analyses of Mouse Stem Cell Transcriptomes Provide Clues for Stem Cell Maintenance and Transdifferentiation. Front Genet 2020;11:563798. [PMID: 33101382 DOI: 10.3389/fgene.2020.563798] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
17 Zhong Y, Qi H, Li X, An M, Shi Q, Qi J. Tumor supernatant derived from hepatocellular carcinoma cells treated with vincristine sulfate have therapeutic activity. Eur J Pharm Sci 2020;155:105557. [PMID: 32946955 DOI: 10.1016/j.ejps.2020.105557] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Zhang X, Yu D, Wu Y, Gu T, Ma N, Dong S, Yao YG. Establishment and transcriptomic features of an immortalized hepatic cell line of the Chinese tree shrew. Appl Microbiol Biotechnol 2020;104:8813-23. [PMID: 32880691 DOI: 10.1007/s00253-020-10855-x] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
19 Nguyen TN, Nguyen HQ, Le DH. Unveiling prognostics biomarkers of tyrosine metabolism reprogramming in liver cancer by cross-platform gene expression analyses. PLoS One 2020;15:e0229276. [PMID: 32542016 DOI: 10.1371/journal.pone.0229276] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
20 Cheng Z, Wei-Qi J, Jin D. New insights on sorafenib resistance in liver cancer with correlation of individualized therapy. Biochim Biophys Acta Rev Cancer 2020;1874:188382. [PMID: 32522600 DOI: 10.1016/j.bbcan.2020.188382] [Cited by in Crossref: 6] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
21 Liu W, Ju L, Cheng S, Wang G, Qian K, Liu X, Xiao Y, Wang X. Conditional reprogramming: Modeling urological cancer and translation to clinics. Clin Transl Med 2020;10:e95. [PMID: 32508060 DOI: 10.1002/ctm2.95] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
22 Sonnenschein C, Soto AM. Over a century of cancer research: Inconvenient truths and promising leads. PLoS Biol 2020;18:e3000670. [PMID: 32236102 DOI: 10.1371/journal.pbio.3000670] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
23 Fan Z, Fan K, Deng S, Gong Y, Qian Y, Huang Q, Yang C, Cheng H, Jin K, Luo G, Liu C, Yu X. HNF-1a promotes pancreatic cancer growth and apoptosis resistance via its target gene PKLR. Acta Biochim Biophys Sin (Shanghai) 2020;52:241-50. [PMID: 32072180 DOI: 10.1093/abbs/gmz169] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
24 Teng S, Li YE, Yang M, Qi R, Huang Y, Wang Q, Zhang Y, Chen S, Li S, Lin K, Cao Y, Ji Q, Gu Q, Cheng Y, Chang Z, Guo W, Wang P, Garcia-Bassets I, Lu ZJ, Wang D. Tissue-specific transcription reprogramming promotes liver metastasis of colorectal cancer. Cell Res 2020;30:34-49. [PMID: 31811277 DOI: 10.1038/s41422-019-0259-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
25 Ofenbauer A, Tursun B. Strategies for in vivo reprogramming. Current Opinion in Cell Biology 2019;61:9-15. [DOI: 10.1016/j.ceb.2019.06.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
26 Gong L, Yan Q, Zhang Y, Fang X, Liu B, Guan X. Cancer cell reprogramming: a promising therapy converting malignancy to benignity. Cancer Commun (Lond) 2019;39:48. [PMID: 31464654 DOI: 10.1186/s40880-019-0393-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 28] [Article Influence: 6.3] [Reference Citation Analysis]
27 Zhao Y. Chemically induced cell fate reprogramming and the acquisition of plasticity in somatic cells. Curr Opin Chem Biol 2019;51:146-53. [PMID: 31153758 DOI: 10.1016/j.cbpa.2019.04.025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
28 Lu Y, Xu D, Peng J, Luo Z, Chen C, Chen Y, Chen H, Zheng M, Yin P, Wang Z. HNF1A inhibition induces the resistance of pancreatic cancer cells to gemcitabine by targeting ABCB1. EBioMedicine 2019;44:403-18. [PMID: 31103629 DOI: 10.1016/j.ebiom.2019.05.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
29 Zheng BN, Ding CH, Chen SJ, Zhu K, Shao J, Feng J, Xu WP, Cai LY, Zhu CP, Duan W, Ding J, Zhang X, Luo C, Xie WF. Targeting PRMT5 Activity Inhibits the Malignancy of Hepatocellular Carcinoma by Promoting the Transcription of HNF4α. Theranostics 2019;9:2606-17. [PMID: 31131056 DOI: 10.7150/thno.32344] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]