BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, Wang Q, Wang S, Rong D, Reiter FP, De Toni EN, Wang X. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther 2020;5:87. [PMID: 32532960 DOI: 10.1038/s41392-020-0187-x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 122] [Article Influence: 17.5] [Reference Citation Analysis]
Number Citing Articles
1 Xu W, Ye C, Qing X, Liu S, Lv X, Wang W, Dong X, Zhang Y. Multi-target tyrosine kinase inhibitor nanoparticle delivery systems for cancer therapy. Mater Today Bio 2022;16:100358. [PMID: 35880099 DOI: 10.1016/j.mtbio.2022.100358] [Reference Citation Analysis]
2 Sachi Das S, Singh SK, Verma PRP, Gahtori R, Sibuh BZ, Kesari KK, Jha NK, Dhanasekaran S, Thakur VK, Wong LS, Djearamane S, Gupta PK. Polyester nanomedicines targeting inflammatory signaling pathways for cancer therapy. Biomed Pharmacother 2022;154:113654. [PMID: 36067568 DOI: 10.1016/j.biopha.2022.113654] [Reference Citation Analysis]
3 Bai L, Sun S, Su W, Chen C, Lv Y, Zhang J, Zhao J, Li M, Qi Y, Zhang W, Wang Y. Melatonin inhibits HCC progression through regulating the alternative splicing of NEMO. Front Pharmacol 2022;13:1007006. [DOI: 10.3389/fphar.2022.1007006] [Reference Citation Analysis]
4 Wang C, Cheng X, Peng H, Zhang Y. NIR-Triggered and ROS-Boosted Nanoplatform for Enhanced Chemo/PDT/PTT Synergistic Therapy of Sorafenib in Hepatocellular Carcinoma. Nanoscale Res Lett 2022;17:92. [PMID: 36125619 DOI: 10.1186/s11671-022-03729-w] [Reference Citation Analysis]
5 Mo J, Da X, Li Q, Huang J, Lu L, Lu H, Liao R. The Study of Exosomes-Encapsulated mPEG-PLGA Polymer Drug-Loaded Particles for Targeted Therapy of Liver Cancer. Journal of Oncology 2022;2022:1-10. [DOI: 10.1155/2022/4234116] [Reference Citation Analysis]
6 Li H, Zhao J, Zhong X, Xu P, Du L, Fang P, Tan L, Li M, Zhang C, Cao T. CPLX2 Regulates Ferroptosis and Apoptosis Through NRF2 Pathway in Human Hepatocellular Carcinoma Cells. Appl Biochem Biotechnol. [DOI: 10.1007/s12010-022-04135-9] [Reference Citation Analysis]
7 Kahraman DC, Bilget Guven E, Aytac PS, Aykut G, Tozkoparan B, Cetin Atalay R. A new triazolothiadiazine derivative inhibits stemness and induces cell death in HCC by oxidative stress dependent JNK pathway activation. Sci Rep 2022;12:15139. [PMID: 36071119 DOI: 10.1038/s41598-022-17444-0] [Reference Citation Analysis]
8 Zhao Y, Liu X, Liu X, Yu J, Bai X, Wu X, Guo X, Liu Z, Liu X. Combination of phototherapy with immune checkpoint blockade: Theory and practice in cancer. Front Immunol 2022;13:955920. [DOI: 10.3389/fimmu.2022.955920] [Reference Citation Analysis]
9 Lin XH, Zhang DY, Liu ZY, Tang WQ, Chen RX, Li DP, Weng S, Dong L. lncRNA-AC079061.1/VIPR1 axis may suppress the development of hepatocellular carcinoma: a bioinformatics analysis and experimental validation. J Transl Med 2022;20:379. [PMID: 36038907 DOI: 10.1186/s12967-022-03573-7] [Reference Citation Analysis]
10 Cheng CC, Ho AS, Peng CL, Chang J, Sie ZL, Wang CL, Chen YL, Chen CY. Sorafenib suppresses radioresistance and synergizes radiotherapy-mediated CD8+ T cell activation to eradicate hepatocellular carcinoma. Int Immunopharmacol 2022;112:109110. [PMID: 36037651 DOI: 10.1016/j.intimp.2022.109110] [Reference Citation Analysis]
11 Luo J, Li L, Zhu Z, Chang B, Deng F, Wang D, Lu X, Zuo D, Chen Q, Zhou J. Fucoidan inhibits EGFR redistribution and potentiates sorafenib to overcome sorafenib-resistant hepatocellular carcinoma. Biomed Pharmacother 2022;154:113602. [PMID: 36029544 DOI: 10.1016/j.biopha.2022.113602] [Reference Citation Analysis]
12 Liu YC, Lin YH, Chi HC, Huang PS, Liao CJ, Liou YS, Lin CC, Yu CJ, Yeh CT, Huang YH, Lin KH. CRNDE acts as an epigenetic modulator of the p300/YY1 complex to promote HCC progression and therapeutic resistance. Clin Epigenetics 2022;14:106. [PMID: 35999564 DOI: 10.1186/s13148-022-01326-3] [Reference Citation Analysis]
13 Tian X, Yan T, Liu F, Liu Q, Zhao J, Xiong H, Jiang S. Link of sorafenib resistance with the tumor microenvironment in hepatocellular carcinoma: Mechanistic insights. Front Pharmacol 2022;13:991052. [DOI: 10.3389/fphar.2022.991052] [Reference Citation Analysis]
14 Tan XP, Xiong BH, Zhang YX, Wang SL, Zuo Q, Li J. FXYD5 promotes sorafenib resistance through the Akt/mTOR signaling pathway in hepatocellular carcinoma. Eur J Pharmacol 2022;931:175186. [PMID: 35977595 DOI: 10.1016/j.ejphar.2022.175186] [Reference Citation Analysis]
15 Lv S, Zhao X, Zhang E, Yan Y, Ma X, Li N, Zou Q, Sun L, Song T. Lysine demethylase KDM1A promotes cell growth via FKBP8-BCL2 axis in hepatocellular carcinoma. J Biol Chem 2022;:102374. [PMID: 35970393 DOI: 10.1016/j.jbc.2022.102374] [Reference Citation Analysis]
16 Liang X, You Z, Chen X, Li J. Targeting Ferroptosis in Colorectal Cancer. Metabolites 2022;12:745. [PMID: 36005616 DOI: 10.3390/metabo12080745] [Reference Citation Analysis]
17 Liu J, Nie C. KDM5B regulates the PTEN/PI3K/Akt pathway to increase sorafenib-resistance in hepatocellular carcinoma. Anticancer Drugs 2022. [PMID: 35946516 DOI: 10.1097/CAD.0000000000001329] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Kim N, Kim S, Song Y, Choi I, Lee SY, Kim KM, Rhu HC, Lee JY, Seo HR. Chromenopyrimidinone exhibit antitumor effects through inhibition of CAP1 (Adenylyl cyclase-associated protein 1) expression in hepatocellular carcinoma. Chem Biol Interact 2022;:110066. [PMID: 35931200 DOI: 10.1016/j.cbi.2022.110066] [Reference Citation Analysis]
19 Gong L, Zhang Y, Yang Y, Yan Q, Ren J, Luo J, Tiu YC, Fang X, Liu B, Lam RHW, Lam KO, Lee AW, Guan XY. Inhibition of lysyl oxidase-like 2 overcomes adhesion-dependent drug resistance in the collagen-enriched liver cancer microenvironment. Hepatol Commun 2022. [PMID: 35894804 DOI: 10.1002/hep4.1966] [Reference Citation Analysis]
20 Wang K, Ye X, Yin C, Ren Q, Chen Y, Qin X, Duan C, Lu A, Gao L, Guan D. Computational Metabolomics Reveals the Potential Mechanism of Matrine Mediated Metabolic Network Against Hepatocellular Carcinoma. Front Cell Dev Biol 2022;10:859236. [DOI: 10.3389/fcell.2022.859236] [Reference Citation Analysis]
21 Suzuki H, Iwamoto H, Shimose S, Niizeki T, Shirono T, Noda Y, Kamachi N, Yamaguchi T, Nakano M, Kuromatsu R, Koga H, Kawaguchi T. Case Report: Exacerbation of varices following atezolizumab plus bevacizumab treatment of hepatocellular carcinoma: A case series and literature review. Front Oncol 2022;12:948293. [DOI: 10.3389/fonc.2022.948293] [Reference Citation Analysis]
22 Zhang H, Du X, Dong H, Xu W, Zhou P, Liu S, Qing X, Zhang Y, Yang M, Zhang Y. Risk factors and predictive nomograms for early death of patients with advanced hepatocellular carcinoma: a large retrospective study based on the SEER database. BMC Gastroenterol 2022;22:348. [PMID: 35854221 DOI: 10.1186/s12876-022-02424-5] [Reference Citation Analysis]
23 Wang H, Cui Y, Gong H, Xu J, Huang S, Tang A. Suppression of AGTR1 Induces Cellular Senescence in Hepatocellular Carcinoma Through Inactivating ERK Signaling. Front Bioeng Biotechnol 2022;10:929979. [DOI: 10.3389/fbioe.2022.929979] [Reference Citation Analysis]
24 Zhu X, Zhang Y, Wu Y, Diao W, Deng G, Li Q, Wu C. HMOX1 Attenuates the Sensitivity of Hepatocellular Carcinoma Cells to Sorafenib via Modulating the Expression of ABC Transporters. Int J Genomics 2022;2022:9451557. [PMID: 35800617 DOI: 10.1155/2022/9451557] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Basu R, Qian Y, Mathes S, Terry J, Arnett N, Riddell T, Stevens A, Funk K, Bell S, Bokal Z, Batten C, Smith C, Mendez-gibson I, Duran-ortiz S, Lach G, Mora-criollo PA, Kulkarni P, Davis E, Teaford E, Berryman DE, List EO, Neggers S, Kopchick JJ. Growth hormone receptor antagonism downregulates ATP-binding cassette transporters contributing to improved drug efficacy against melanoma and hepatocarcinoma in vivo. Front Oncol 2022;12:936145. [DOI: 10.3389/fonc.2022.936145] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Li L, Yu S, Chen J, Quan M, Gao Y, Li Y. miR-15a and miR-20b sensitize hepatocellular carcinoma cells to sorafenib through repressing CDC37L1 and consequent PPIA downregulation. Cell Death Discov 2022;8. [DOI: 10.1038/s41420-022-01094-2] [Reference Citation Analysis]
27 Qi S, Deng S, Lian Z, Yu K. Novel Drugs with High Efficacy against Tumor Angiogenesis. IJMS 2022;23:6934. [DOI: 10.3390/ijms23136934] [Reference Citation Analysis]
28 Varlamova EG, Goltyaev MV, Simakin AV, Gudkov SV, Turovsky EA. Comparative Analysis of the Cytotoxic Effect of a Complex of Selenium Nanoparticles Doped with Sorafenib, "Naked" Selenium Nanoparticles, and Sorafenib on Human Hepatocyte Carcinoma HepG2 Cells. Int J Mol Sci 2022;23:6641. [PMID: 35743086 DOI: 10.3390/ijms23126641] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Hui F, Xu C, Xu X, Chen J, Geng H, Yang C, Zhang Y. What Is the Most Suitable Agent Combined With Apatinib for Transarterial Chemoembolization Treatment in Advanced Hepatocellular Carcinoma Patients? A Systematic Review and Network Meta-analysis. Front Oncol 2022;12:887332. [PMID: 35692745 DOI: 10.3389/fonc.2022.887332] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Liu J, Zhang Q, Yang D, Xie F, Wang Z. The role of long non-coding RNAs in angiogenesis and anti-angiogenic therapy resistance in cancer. Mol Ther Nucleic Acids 2022;28:397-407. [PMID: 35505957 DOI: 10.1016/j.omtn.2022.03.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
31 Xu F, Tautenhahn HM, Dirsch O, Dahmen U. Blocking autophagy with chloroquine aggravates lipid accumulation and reduces intracellular energy synthesis in hepatocellular carcinoma cells, both contributing to its anti-proliferative effect. J Cancer Res Clin Oncol 2022. [PMID: 35695930 DOI: 10.1007/s00432-022-04074-2] [Reference Citation Analysis]
32 Shueng PW, Chan HW, Lin WC, Kuo DY, Chuang HY. Orlistat Resensitizes Sorafenib-Resistance in Hepatocellular Carcinoma Cells through Modulating Metabolism. Int J Mol Sci 2022;23:6501. [PMID: 35742944 DOI: 10.3390/ijms23126501] [Reference Citation Analysis]
33 Shi C, Kwong DL, Li X, Wang X, Fang X, Sun L, Tang Y, Guan XY, Li SS. MAEL Augments Cancer Stemness Properties and Resistance to Sorafenib in Hepatocellular Carcinoma through the PTGS2/AKT/STAT3 Axis. Cancers (Basel) 2022;14:2880. [PMID: 35740546 DOI: 10.3390/cancers14122880] [Reference Citation Analysis]
34 Alhamad DW, Elgendy SM, Hersi F, El-Seedi HR, Omar HA. The inhibition of autophagy by spautin boosts the anticancer activity of fingolimod in multidrug-resistant hepatocellular carcinoma. Life Sci 2022;304:120699. [PMID: 35690108 DOI: 10.1016/j.lfs.2022.120699] [Reference Citation Analysis]
35 Hu J, Chang Y, Hsieh C, Huang S. The Synergistic Cytotoxic Effects of GW5074 and Sorafenib by Impacting Mitochondrial Functions in Human Colorectal Cancer Cell Lines. Front Oncol 2022;12:925653. [DOI: 10.3389/fonc.2022.925653] [Reference Citation Analysis]
36 Du F, Sun H, Sun F, Yang S, Tan H, Li X, Chai Y, Jiang Q, Han D. Knockdown of TANK-Binding Kinase 1 Enhances the Sensitivity of Hepatocellular Carcinoma Cells to Molecular-Targeted Drugs. Front Pharmacol 2022;13:924523. [DOI: 10.3389/fphar.2022.924523] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Zakaria S, Allam S, El-sisi AE. Perindopril sensitizes hepatocellular carcinoma to chemotherapy: A possible role of leptin / Wnt/ β-catenin axis with subsequent inhibition of liver cancer stem cells. Saudi Pharmaceutical Journal 2022. [DOI: 10.1016/j.jsps.2022.06.019] [Reference Citation Analysis]
38 Al-Noshokaty TM, Mesbah NM, Abo-Elmatty DM, Abulsoud AI, Abdel-Hamed AR. Selenium nanoparticles overcomes sorafenib resistance in thioacetamide induced hepatocellular carcinoma in rats by modulation of mTOR, NF-κB pathways and LncRNA-AF085935/GPC3 axis. Life Sci 2022;303:120675. [PMID: 35640776 DOI: 10.1016/j.lfs.2022.120675] [Reference Citation Analysis]
39 Yao L, Zhao MM, Luo QW, Zhang YC, Liu TT, Yang Z, Liao M, Tu P, Zeng KW. Carbon Quantum Dots-Based Nanozyme from Coffee Induces Cancer Cell Ferroptosis to Activate Antitumor Immunity. ACS Nano 2022. [PMID: 35622408 DOI: 10.1021/acsnano.2c01619] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
40 Swetha M, Keerthana CK, Rayginia TP, Nath LR, Haritha NH, Shabna A, Kalimuthu K, Thangarasu AK, Aiswarya SU, Jannet S, Pillai S, Harikumar KB, Sundaram S, Anto NP, Wu DH, Lankalapalli RS, Towner R, Isakov N, Deepa SS, Anto RJ. Augmented Efficacy of Uttroside B over Sorafenib in a Murine Model of Human Hepatocellular Carcinoma. Pharmaceuticals 2022;15:636. [DOI: 10.3390/ph15050636] [Reference Citation Analysis]
41 Zhang Y, Tan Y, Liu S, Yin H, Duan J, Fan L, Zhao X, Jiang B. Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis. Toxicol Mech Methods 2022;:1-9. [PMID: 35592903 DOI: 10.1080/15376516.2022.2075297] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Guan J, Pan Y, Li H, Zhu Y, Gao Y, Wang J, Zhou Y, Guan Z, Yang Z. Activity and Tissue Distribution of Antisense Oligonucleotide CT102 Encapsulated with Cytidinyl/Cationic Lipid against Hepatocellular Carcinoma. Mol Pharm 2022. [PMID: 35508302 DOI: 10.1021/acs.molpharmaceut.2c00026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Ma A, Biersack B, Goehringer N, Nitzsche B, Höpfner M. Novel Thienyl-Based Tyrosine Kinase Inhibitors for the Treatment of Hepatocellular Carcinoma. JPM 2022;12:738. [DOI: 10.3390/jpm12050738] [Reference Citation Analysis]
44 Wei Q, Ren Y, Zheng X, Yang S, Lu T, Ji H, Hua H, Shan K. Ginsenoside Rg3 and sorafenib combination therapy relieves the hepatocellular carcinomaprogression through regulating the HK2-mediated glycolysis and PI3K/Akt signaling pathway. Bioengineered 2022;13:13919-28. [PMID: 35719058 DOI: 10.1080/21655979.2022.2074616] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Wei T, Lin R, Fu X, Lu Y, Zhang W, Li Z, Zhang J, Wang H. Epigenetic regulation of the DNMT1/MT1G/KLF4/CA9 axis synergizes the anticancer effects of sorafenib in hepatocellular carcinoma. Pharmacological Research 2022. [DOI: 10.1016/j.phrs.2022.106244] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
46 Oekchuae S, Sirirak J, Charoensuksai P, Wongprayoon P, Chuaypen N, Boonsombat J, Ruchirawat S, Tangkijvanich P, Suksamrarn A, Limpachayaporn P. The Design and Synthesis of a New Series of 1,2,3-Triazole-Cored Structures Tethering Aryl Urea and Their Highly Selective Cytotoxicity toward HepG2. Pharmaceuticals 2022;15:504. [DOI: 10.3390/ph15050504] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Yang Y, Gao L, Chen J, Xiao W, Liu R, Kan H. Lamin B1 is a potential therapeutic target and prognostic biomarker for hepatocellular carcinoma. Bioengineered 2022;13:9211-31. [PMID: 35436411 DOI: 10.1080/21655979.2022.2057896] [Reference Citation Analysis]
48 Zhen Z, Shen Z, Sun P. Downregulation of Low-density lipoprotein receptor-related protein 1B (LRP1B) inhibits the progression of hepatocellular carcinoma cells by activating the endoplasmic reticulum stress signaling pathway. Bioengineered 2022;13:9467-81. [PMID: 35389768 DOI: 10.1080/21655979.2022.2060778] [Reference Citation Analysis]
49 Tang L, Zhang Y, Zhou Q, Hong Q, Wang Z. The Relationship between Ultrasonographic Features of Hepatocellular Carcinoma and the Severity of Hepatocellular Carcinoma and the Expression of PTEN and Tg737. J Healthc Eng 2022;2022:2608633. [PMID: 35368955 DOI: 10.1155/2022/2608633] [Reference Citation Analysis]
50 Lee S, Hwang Y, Kim TH, Jeong J, Choi D, Hwang J. UPF1 Inhibits Hepatocellular Carcinoma Growth through DUSP1/p53 Signal Pathway. Biomedicines 2022;10:793. [DOI: 10.3390/biomedicines10040793] [Reference Citation Analysis]
51 Chu H, Zhao Q, Shan Y, Zhang S, Sui Z, Li X, Fang F, Zhao B, Zhong S, Liang Z, Zhang L, Zhang Y. All-Ion Monitoring-Directed Low-Abundance Protein Quantification Reveals CALB2 as a Key Promoter in Hepatocellular Carcinoma Metastasis. Anal Chem 2022. [PMID: 35333527 DOI: 10.1021/acs.analchem.1c03562] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
52 Laneri F, Graziano ACE, Seggio M, Fraix A, Malanga M, Béni S, Longobardi G, Conte C, Quaglia F, Sortino S. Enhancing the Anticancer Activity of Sorafenib through Its Combination with a Nitric Oxide Photodelivering β-Cyclodextrin Polymer. Molecules 2022;27:1918. [PMID: 35335280 DOI: 10.3390/molecules27061918] [Reference Citation Analysis]
53 Qi X, Li Q, Che X, Wang Q, Wu G. Application of Regulatory Cell Death in Cancer: Based on Targeted Therapy and Immunotherapy. Front Immunol 2022;13:837293. [DOI: 10.3389/fimmu.2022.837293] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
54 Su K, Yuan Q, Hou H, Ke C, Huang C, Li S, Sun J, Yuan X, Lin Y, Chen Y, Xin H, Liang X, Du Z, Yuan Z. EV-T synergizes with AZD5582 to overcome TRAIL resistance through concomitant suppression of cFLIP, MCL-1, and IAPs in hepatocarcinoma. J Mol Med (Berl) 2022. [PMID: 35247069 DOI: 10.1007/s00109-022-02180-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Zhang X, Jiang M, Zhang X, Zhang J, Guo H, Wu C. An Extracellular Matrix-Based Signature Associated with Immune Microenvironment Predicts the Prognosis of Patients with hepatocellular carcinoma. Clinics and Research in Hepatology and Gastroenterology 2022. [DOI: 10.1016/j.clinre.2022.101877] [Reference Citation Analysis]
56 Abdellatif AAH, Ali AT, Bouazzaoui A, Alsharidah M, Al Rugaie O, Tolba NS. Formulation of polymeric nanoparticles loaded sorafenib; evaluation of cytotoxicity, molecular evaluation, and gene expression studies in lung and breast cancer cell lines. Nanotechnology Reviews 2022;11:987-1004. [DOI: 10.1515/ntrev-2022-0058] [Reference Citation Analysis]
57 Nath LR, Swetha M, Vijayakurup V, Thangarasu AK, Haritha NH, Shabna A, Aiswarya SU, Rayginia TP, Keerthana CK, Kalimuthu K, Sundaram S, Lankalapalli RS, Pillai S, Towner R, Isakov N, Anto RJ. Blockade of Uttroside B-Induced Autophagic Pro-Survival Signals Augments Its Chemotherapeutic Efficacy Against Hepatocellular Carcinoma. Front Oncol 2022;12:812598. [PMID: 35211405 DOI: 10.3389/fonc.2022.812598] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Park Y, Han Y, Kim D, Cho S, Kim W, Hwang H, Lee HW, Han DH, Kim KS, Yun M, Lee M. Impact of Exogenous Treatment with Histidine on Hepatocellular Carcinoma Cells. Cancers 2022;14:1205. [DOI: 10.3390/cancers14051205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
59 Zheng L, Fang S, Chen A, Chen W, Qiao E, Chen M, Shu G, Zhang D, Kong C, Weng Q, Xu S, Zhao Z, Ji J. Piperlongumine synergistically enhances the antitumour activity of sorafenib by mediating ROS-AMPK activation and targeting CPSF7 in liver cancer. Pharmacol Res 2022;177:106140. [PMID: 35202819 DOI: 10.1016/j.phrs.2022.106140] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
60 Yan X, Tian R, Sun J, Zhao Y, Liu B, Su J, Li M, Sun W, Xu X. Sorafenib-Induced Autophagy Promotes Glycolysis by Upregulating the p62/HDAC6/HSP90 Axis in Hepatocellular Carcinoma Cells. Front Pharmacol 2022;12:788667. [DOI: 10.3389/fphar.2021.788667] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
61 Chen R, Li Q, Xu S, Ye C, Tian T, Jiang Q, Shan J, Ruan J. Modulation of the tumour microenvironment in hepatocellular carcinoma by tyrosine kinase inhibitors: from modulation to combination therapy targeting the microenvironment. Cancer Cell Int 2022;22:73. [PMID: 35148789 DOI: 10.1186/s12935-021-02435-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
62 Chen J, Liu J, Xu B, Cao Y, Liang X, Wu F, Shen X, Ma X, Liu J. Ethoxy-erianin phosphate and afatinib synergistically inhibit liver tumor growth and angiogenesis via regulating VEGF and EGFR signaling pathways. Toxicol Appl Pharmacol 2022;:115911. [PMID: 35143806 DOI: 10.1016/j.taap.2022.115911] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Zhang N, Wu W, Huang Y, An L, He Z, Chang Z, He Z, Lai Y. Citrus Flavone Tangeretin Inhibits CRPC Cell Proliferation by Regulating Cx26, AKT, and AR Signaling. Evid Based Complement Alternat Med 2022;2022:6422500. [PMID: 35111229 DOI: 10.1155/2022/6422500] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
64 Li L, Xu H, Qu L, Xu K, Liu X. Daidzin inhibits hepatocellular carcinoma survival by interfering with the glycolytic/gluconeogenic pathway through downregulation of TPI1. Biofactors 2022. [PMID: 35118741 DOI: 10.1002/biof.1826] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
65 Yeung CLS, Yam JWP. Therapy-induced modulation of extracellular vesicles in hepatocellular carcinoma. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.02.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
66 Shen J, Shen H, Ke L, Chen J, Dang X, Liu B, Hua Y. Knowledge Mapping of Immunotherapy for Hepatocellular Carcinoma: A Bibliometric Study. Front Immunol 2022;13:815575. [DOI: 10.3389/fimmu.2022.815575] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
67 Feng G, Cheng Y, Chen K, Shi Z, Solimando AG. Correlation between Immunohistochemical Markers in Hepatocellular Carcinoma Cells and In Vitro High-Throughput Drug Sensitivity Screening. Canadian Journal of Gastroenterology and Hepatology 2022;2022:1-12. [DOI: 10.1155/2022/5969716] [Reference Citation Analysis]
68 El-Nakeep S. Molecular and genetic markers in hepatocellular carcinoma: In silico analysis to clinical validation (current limitations and future promises). World J Gastrointest Pathophysiol 2022; 13(1): 1-14 [PMID: 35116176 DOI: 10.4291/wjgp.v13.i1.1] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Ladju RB, Ulhaq ZS, Soraya GV. Nanotheranostics: A powerful next-generation solution to tackle hepatocellular carcinoma. World J Gastroenterol 2022; 28(2): 176-187 [DOI: 10.3748/wjg.v28.i2.176] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Qin Y, Pei Z, Feng Z, Lin P, Wang S, Li Y, Huo F, Wang Q, Wang Z, Chen ZN, Wu J, Wang YF. Oncogenic Activation of YAP Signaling Sensitizes Ferroptosis of Hepatocellular Carcinoma via ALOXE3-Mediated Lipid Peroxidation Accumulation. Front Cell Dev Biol 2021;9:751593. [PMID: 34977009 DOI: 10.3389/fcell.2021.751593] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Reinkens T, Stalke A, Huge N, Vajen B, Eilers M, Schäffer V, Dittrich-Breiholz O, Schlegelberger B, Illig T, Skawran B. Ago-RIP Sequencing Identifies New MicroRNA-449a-5p Target Genes Increasing Sorafenib Efficacy in Hepatocellular Carcinoma. J Cancer 2022;13:62-75. [PMID: 34976171 DOI: 10.7150/jca.66016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Mei J, Lin W, Li S, Tang Y, Ye Z, Lu L, Wen Y, Kan A, Zou J, Yu C, Wei W, Guo R. Long noncoding RNA TINCR facilitates hepatocellular carcinoma progression and dampens chemosensitivity to oxaliplatin by regulating the miR-195-3p/ST6GAL1/NF-κB pathway. J Exp Clin Cancer Res 2022;41:5. [PMID: 34980201 DOI: 10.1186/s13046-021-02197-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
73 Lu Y, Chan YT, Tan HY, Zhang C, Guo W, Xu Y, Sharma R, Chen ZS, Zheng YC, Wang N, Feng Y. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022;41:3. [PMID: 34980204 DOI: 10.1186/s13046-021-02208-x] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
74 Eresen A, Sun C, Zhou K, Shangguan J, Wang B, Pan L, Hu S, Ma Q, Yang J, Zhang Z, Yaghmai V. Early Differentiation of Irreversible Electroporation Ablation Regions With Radiomics Features of Conventional MRI. Acad Radiol 2021:S1076-6332(21)00559-6. [PMID: 34933803 DOI: 10.1016/j.acra.2021.11.020] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
75 Nath LR, Murali M, Nair B. Critical biomarkers of hepatocellular carcinoma in body fluids and gut microbiota. World J Gastrointest Oncol 2021; 13(12): 2219-2222 [DOI: 10.4251/wjgo.v13.i12.2219] [Reference Citation Analysis]
76 Tang P, Qu W, Wang T, Liu M, Wu D, Tan L, Zhou H. Identifying a Hypoxia-Related Long Non-Coding RNAs Signature to Improve the Prediction of Prognosis and Immunotherapy Response in Hepatocellular Carcinoma. Front Genet 2021;12:785185. [DOI: 10.3389/fgene.2021.785185] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
77 Wei J, Liu R, Zhang J, Liu S, Yan D, Wen X, Tian X. Baicalin Enhanced Oral Bioavailability of Sorafenib in Rats by Inducing Intestine Absorption. Front Pharmacol 2021;12:761763. [PMID: 34819863 DOI: 10.3389/fphar.2021.761763] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
78 Feng F, Pan L, Wu J, Li L, Xu H, Yang L, Xu K, Wang C. Cepharanthine inhibits hepatocellular carcinoma cell growth and proliferation by regulating amino acid metabolism and suppresses tumorigenesis in vivo. Int J Biol Sci 2021;17:4340-52. [PMID: 34803502 DOI: 10.7150/ijbs.64675] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
79 Lu Y, Shen H, Huang W, He S, Chen J, Zhang D, Shen Y, Sun Y. Genome-scale CRISPR-Cas9 knockout screening in hepatocellular carcinoma with lenvatinib resistance. Cell Death Discov 2021;7:359. [PMID: 34795217 DOI: 10.1038/s41420-021-00747-y] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
80 Rodriguez S, Skeet K, Mehmetoglu-Gurbuz T, Goldfarb M, Karri S, Rocha J, Shahinian M, Yazadi A, Poudel S, Subramani R. Phytochemicals as an Alternative or Integrative Option, in Conjunction with Conventional Treatments for Hepatocellular Carcinoma. Cancers (Basel) 2021;13:5753. [PMID: 34830907 DOI: 10.3390/cancers13225753] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
81 Romito I, Porru M, Braghini MR, Pompili L, Panera N, Crudele A, Gnani D, De Stefanis C, Scarsella M, Pomella S, Levi Mortera S, de Billy E, Conti AL, Marzano V, Putignani L, Vinciguerra M, Balsano C, Pastore A, Rota R, Tartaglia M, Leonetti C, Alisi A. Focal adhesion kinase inhibitor TAE226 combined with Sorafenib slows down hepatocellular carcinoma by multiple epigenetic effects. J Exp Clin Cancer Res 2021;40:364. [PMID: 34784956 DOI: 10.1186/s13046-021-02154-8] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
82 Zhou X, Li TM, Luo JZ, Lan CL, Wei ZL, Fu TH, Liao XW, Zhu GZ, Ye XP, Peng T. CYP2C8 Suppress Proliferation, Migration, Invasion and Sorafenib Resistance of Hepatocellular Carcinoma via PI3K/Akt/p27kip1 Axis. J Hepatocell Carcinoma 2021;8:1323-38. [PMID: 34765572 DOI: 10.2147/JHC.S335425] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
83 Jiang X, Zhang W, Li L, Xie S. Integrated Transcriptomic Analysis Revealed Hub Genes and Pathways Involved in Sorafenib Resistance in Hepatocellular Carcinoma. Pathol Oncol Res 2021;27:1609985. [PMID: 34737677 DOI: 10.3389/pore.2021.1609985] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
84 Fondevila F, Méndez-Blanco C, Fernández-Palanca P, Payo-Serafín T, van Pelt J, Verslype C, González-Gallego J, Mauriz JL. Autophagy-Related Chemoprotection against Sorafenib in Human Hepatocarcinoma: Role of FOXO3 Upregulation and Modulation by Regorafenib. Int J Mol Sci 2021;22:11770. [PMID: 34769197 DOI: 10.3390/ijms222111770] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
85 Lawal G, Xiao Y, Rahnemai-Azar AA, Tsilimigras DI, Kuang M, Bakopoulos A, Pawlik TM. The Immunology of Hepatocellular Carcinoma. Vaccines (Basel) 2021;9:1184. [PMID: 34696292 DOI: 10.3390/vaccines9101184] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
86 Kim MY, Lee H, Ji SY, Kim SY, Hwangbo H, Park SH, Kim GY, Park C, Leem SH, Hong SH, Choi YH. Induction of Apoptosis by Isoalantolactone in Human Hepatocellular Carcinoma Hep3B Cells through Activation of the ROS-Dependent JNK Signaling Pathway. Pharmaceutics 2021;13:1627. [PMID: 34683920 DOI: 10.3390/pharmaceutics13101627] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
87 Muraoka M, Maekawa S, Katoh R, Komiyama Y, Nakakuki N, Takada H, Matsuda S, Suzuki Y, Sato M, Tatsumi A, Miura M, Amemiya F, Shindo H, Takano S, Fukasawa M, Yamauchi K, Yamaguchi T, Nakayama Y, Inoue T, Enomoto N. Usefulness of Cell-Free Human Telomerase Reverse Transcriptase Mutant DNA Quantification in Blood for Predicting Hepatocellular Carcinoma Treatment Efficacy. Hepatol Commun 2021;5:1927-38. [PMID: 34558819 DOI: 10.1002/hep4.1762] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
88 Giannakoulis VG, Dubovan P, Papoutsi E, Kataki A, Koskinas J. Senescence in HBV-, HCV- and NAFLD- Mediated Hepatocellular Carcinoma and Senotherapeutics: Current Evidence and Future Perspective. Cancers (Basel) 2021;13:4732. [PMID: 34572959 DOI: 10.3390/cancers13184732] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
89 Song Y, Gao P, Ding H, Xu G, Hu Y, Tong Y, Xin W, Zhang L, Wu M, Fang L. Underlying mechanism of sorafenib resistance in hepatocellular carcinoma: a bioinformatics study based on validated resistance-related genes. J Gastrointest Oncol 2021;12:1895-904. [PMID: 34532137 DOI: 10.21037/jgo-21-377] [Reference Citation Analysis]
90 Li B, Wei S, Yang L, Peng X, Ma Y, Wu B, Fan Q, Yang S, Li X, Jin H, Tang S, Huang M, Li H, Liu J. CISD2 Promotes Resistance to Sorafenib-Induced Ferroptosis by Regulating Autophagy in Hepatocellular Carcinoma. Front Oncol 2021;11:657723. [PMID: 34485112 DOI: 10.3389/fonc.2021.657723] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
91 Qi F, Qin W, Zhang Y, Luo Y, Niu B, An Q, Yang B, Shi K, Yu Z, Chen J, Cao X, Xia J. Sulfarotene, a synthetic retinoid, overcomes stemness and sorafenib resistance of hepatocellular carcinoma via suppressing SOS2-RAS pathway. J Exp Clin Cancer Res 2021;40:280. [PMID: 34479623 DOI: 10.1186/s13046-021-02085-4] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
92 Shen H, Liu B, Xu J, Zhang B, Wang Y, Shi L, Cai X. Circular RNAs: characteristics, biogenesis, mechanisms and functions in liver cancer. J Hematol Oncol 2021;14:134. [PMID: 34461958 DOI: 10.1186/s13045-021-01145-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 15] [Article Influence: 1.0] [Reference Citation Analysis]
93 Lu Q, Guo Q, Xin M, Lim C, Gamero AM, Gerhard GS, Yang L. LncRNA TP53TG1 Promotes the Growth and Migration of Hepatocellular Carcinoma Cells via Activation of ERK Signaling. Noncoding RNA 2021;7:52. [PMID: 34564314 DOI: 10.3390/ncrna7030052] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
94 Atwa SM, Odenthal M, M El Tayebi H. Genetic Heterogeneity, Therapeutic Hurdle Confronting Sorafenib and Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Cancers (Basel) 2021;13:4343. [PMID: 34503153 DOI: 10.3390/cancers13174343] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
95 Muñoz-Martínez S, Iserte G, Sanduzzi-Zamparelli M, Llarch N, Reig M. Current pharmacological treatment of hepatocellular carcinoma. Curr Opin Pharmacol 2021;60:141-8. [PMID: 34418875 DOI: 10.1016/j.coph.2021.07.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
96 Qing X, Xu W, Zong J, Du X, Peng H, Zhang Y. Emerging treatment modalities for systemic therapy in hepatocellular carcinoma. Biomark Res 2021;9:64. [PMID: 34419152 DOI: 10.1186/s40364-021-00319-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
97 Lim J, Choi H, Ahn J, Jeon NL. 3D High‐Content Culturing and Drug Screening Platform to Study Vascularized Hepatocellular Carcinoma in Hypoxic Condition. Adv NanoBio Res 2021;1:2100078. [DOI: 10.1002/anbr.202100078] [Reference Citation Analysis]
98 Suk FM, Wang YH, Chiu WC, Liu CF, Wu CY, Chen TL, Liao YJ. Secretory NPC2 Protein-Mediated Free Cholesterol Levels Were Correlated with the Sorafenib Response in Hepatocellular Carcinoma. Int J Mol Sci 2021;22:8567. [PMID: 34445279 DOI: 10.3390/ijms22168567] [Reference Citation Analysis]
99 Hwang CY, Yu SJ, Won JK, Park SM, Noh H, Lee S, Cho EJ, Lee JH, Lee KB, Kim YJ, Suh KS, Yoon JH, Cho KH. Systems analysis identifies endothelin 1 axis blockade for enhancing the anti-tumor effect of multikinase inhibitor. Cancer Gene Ther 2021. [PMID: 34363028 DOI: 10.1038/s41417-021-00373-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
100 Chen B, Cha JH, Yan M, Cao N, Ye P, Yan X, Yang WH. ATXN7L3B promotes hepatocellular carcinoma stemness and is downregulated by metformin. Biochem Biophys Res Commun 2021;573:1-8. [PMID: 34375763 DOI: 10.1016/j.bbrc.2021.08.009] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
101 Li TT, Mou J, Pan YJ, Huo FC, Du WQ, Liang J, Wang Y, Zhang LS, Pei DS. MicroRNA-138-1-3p sensitizes sorafenib to hepatocellular carcinoma by targeting PAK5 mediated β-catenin/ABCB1 signaling pathway. J Biomed Sci 2021;28:56. [PMID: 34340705 DOI: 10.1186/s12929-021-00752-4] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
102 Yang Y, Jin M, Dai Y, Shan W, Chen S, Cai R, Yang H, Tang L, Li L. Involvement and Targeted Intervention of Mortalin-Regulated Proteome Phosphorylated-Modification in Hepatocellular Carcinoma. Front Oncol 2021;11:687871. [PMID: 34395254 DOI: 10.3389/fonc.2021.687871] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
103 Hu X, Zhu H, Shen Y, Zhang X, He X, Xu X. The Role of Non-Coding RNAs in the Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021;11:696705. [PMID: 34367979 DOI: 10.3389/fonc.2021.696705] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
104 Dahiya M, Dureja H. Sorafenib for hepatocellular carcinoma: potential molecular targets and resistance mechanisms. J Chemother 2021;:1-16. [PMID: 34291704 DOI: 10.1080/1120009X.2021.1955202] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
105 Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, Li Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021;6:263. [PMID: 34248142 DOI: 10.1038/s41392-021-00658-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 114] [Article Influence: 1.0] [Reference Citation Analysis]
106 Chen Y, Wu J, Deng Y, Wu Y, Wang X, Li AS, Wong LY, Fu X, Yu Z, Liang C. Ginsenoside Rg3 in combination with artesunate overcomes sorafenib resistance in hepatoma cell and mouse models. Journal of Ginseng Research 2021. [DOI: 10.1016/j.jgr.2021.07.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Jing Z, Gao J, Li J, Niu F, Tian L, Nan P, Sun Y, Xie X, Zhu Y, Zhao Y, Liu F, Zhou L, Sun Y, Zhao X. Acetylation-induced PCK isoenzyme transition promotes metabolic adaption of liver cancer to systemic therapy. Cancer Lett 2021;519:46-62. [PMID: 34166767 DOI: 10.1016/j.canlet.2021.06.016] [Reference Citation Analysis]
108 Fernández-Tussy P, Rodríguez-Agudo R, Fernández-Ramos D, Barbier-Torres L, Zubiete-Franco I, Davalillo SL, Herraez E, Goikoetxea-Usandizaga N, Lachiondo-Ortega S, Simón J, Lopitz-Otsoa F, Juan VG, McCain MV, Perugorria MJ, Mabe J, Navasa N, Rodrigues CMP, Fabregat I, Boix L, Sapena V, Anguita J, Lu SC, Mato JM, Banales JM, Villa E, Reeves HL, Bruix J, Reig M, Marin JJG, Delgado TC, Martínez-Chantar ML. Anti-miR-518d-5p overcomes liver tumor cell death resistance through mitochondrial activity. Cell Death Dis 2021;12:555. [PMID: 34050139 DOI: 10.1038/s41419-021-03827-0] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
109 Son Y, Shin NR, Kim SH, Park SC, Lee HJ. Fibrinogen-Like Protein 1 Modulates Sorafenib Resistance in Human Hepatocellular Carcinoma Cells. Int J Mol Sci 2021;22:5330. [PMID: 34069373 DOI: 10.3390/ijms22105330] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
110 Liskova A, Samec M, Koklesova L, Brockmueller A, Zhai K, Abdellatif B, Siddiqui M, Biringer K, Kudela E, Pec M, Gadanec LK, Šudomová M, Hassan STS, Zulli A, Shakibaei M, Giordano FA, Büsselberg D, Golubnitschaja O, Kubatka P. Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J 2021;:1-22. [PMID: 34025826 DOI: 10.1007/s13167-021-00242-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
111 Jeoung NH, Jo AL, Park HS. The effect of autocrine motility factor alone and in combination with methyl jasmonate on liver cancer cell growth. Biosci Biotechnol Biochem 2021;85:1711-5. [PMID: 33988672 DOI: 10.1093/bbb/zbab087] [Reference Citation Analysis]
112 Wong MM, Chan HY, Aziz NA, Ramasamy TS, Bong JJ, Ch'ng ES, Armon S, Peh SC, Teow SY. Interplay of autophagy and cancer stem cells in hepatocellular carcinoma. Mol Biol Rep 2021;48:3695-717. [PMID: 33893928 DOI: 10.1007/s11033-021-06334-9] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
113 Farzaneh Z, Vosough M, Agarwal T, Farzaneh M. Critical signaling pathways governing hepatocellular carcinoma behavior; small molecule-based approaches. Cancer Cell Int 2021;21:208. [PMID: 33849569 DOI: 10.1186/s12935-021-01924-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
114 Angerilli V, Galuppini F, Businello G, Dal Santo L, Savarino E, Realdon S, Guzzardo V, Nicolè L, Lazzarin V, Lonardi S, Loupakis F, Fassan M. MicroRNAs as Predictive Biomarkers of Resistance to Targeted Therapies in Gastrointestinal Tumors. Biomedicines 2021;9:318. [PMID: 33801049 DOI: 10.3390/biomedicines9030318] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
115 Chu H, Wu C, Zhao Q, Sun R, Yang K, Zhao B, Liu Y, Liang Z, Zhong S, Zhang L, Zhang Y. Quantitative proteomics identifies FOLR1 to drive sorafenib resistance via activating autophagy in hepatocellular carcinoma cells. Carcinogenesis 2021;42:753-61. [PMID: 33677528 DOI: 10.1093/carcin/bgab019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
116 Li Q, Ni Y, Zhang L, Jiang R, Xu J, Yang H, Hu Y, Qiu J, Pu L, Tang J, Wang X. HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther 2021;6:76. [PMID: 33619246 DOI: 10.1038/s41392-020-00453-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 46] [Article Influence: 3.0] [Reference Citation Analysis]
117 Ngo MT, Jeng HY, Kuo YC, Diony Nanda J, Brahmadhi A, Ling TY, Chang TS, Huang YH. The Role of IGF/IGF-1R Signaling in Hepatocellular Carcinomas: Stemness-Related Properties and Drug Resistance. Int J Mol Sci 2021;22:1931. [PMID: 33669204 DOI: 10.3390/ijms22041931] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
118 Zhou W, Lou W, Chen J, Ding B, Chen B, Xie H, Zhou L, Zheng S, Jiang D. AG-1024 Sensitizes Sorafenib-Resistant Hepatocellular Carcinoma Cells to Sorafenib via Enhancing G1/S Arrest. Onco Targets Ther 2021;14:1049-59. [PMID: 33623392 DOI: 10.2147/OTT.S289324] [Reference Citation Analysis]
119 Gryziak M, Woźniak K, Kraj L, Stec R. Milestones in the treatment of hepatocellular carcinoma: A systematic review. Critical Reviews in Oncology/Hematology 2021;157:103179. [DOI: 10.1016/j.critrevonc.2020.103179] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
120 Cheng L, Liu W, Zhong C, Ni P, Ni S, Wang Q, Zhang Q, Zhang J, Liu J, Xu M, Yao X, Cen X, Wang G, Jiang C, Zhou F. Remodeling the homeostasis of pro- and anti-angiogenic factors by Shenmai injection to normalize tumor vasculature for enhanced cancer chemotherapy. J Ethnopharmacol 2021;270:113770. [PMID: 33388426 DOI: 10.1016/j.jep.2020.113770] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
121 Sbenati RM, Zaraei SO, El-Gamal MI, Anbar HS, Tarazi H, Zoghbor MM, Mohamood NA, Khakpour MM, Zaher DM, Omar HA, Alach NN, Shehata MK, El-Gamal R. Design, synthesis, biological evaluation, and modeling studies of novel conformationally-restricted analogues of sorafenib as selective kinase-inhibitory antiproliferative agents against hepatocellular carcinoma cells. Eur J Med Chem 2021;210:113081. [PMID: 33310290 DOI: 10.1016/j.ejmech.2020.113081] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
122 Nia A, Dhanasekaran R. Genomic Landscape of HCC. Curr Hepatol Rep 2020;19:448-61. [PMID: 33816052 DOI: 10.1007/s11901-020-00553-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
123 Hu YT, Shu ZY, Jiang JH, Xie QF, Zheng SS. Torin2 overcomes sorafenib resistance via suppressing mTORC2-AKT-BAD pathway in hepatocellular carcinoma cells. Hepatobiliary Pancreat Dis Int 2020;19:547-54. [PMID: 33051131 DOI: 10.1016/j.hbpd.2020.09.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
124 Han TS, Hur K, Cho HS, Ban HS. Epigenetic Associations between lncRNA/circRNA and miRNA in Hepatocellular Carcinoma. Cancers (Basel) 2020;12:E2622. [PMID: 32937886 DOI: 10.3390/cancers12092622] [Cited by in Crossref: 16] [Cited by in F6Publishing: 45] [Article Influence: 8.0] [Reference Citation Analysis]