BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li Q, Ni Y, Zhang L, Jiang R, Xu J, Yang H, Hu Y, Qiu J, Pu L, Tang J, Wang X. HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther 2021;6:76. [PMID: 33619246 DOI: 10.1038/s41392-020-00453-8] [Cited by in Crossref: 52] [Cited by in F6Publishing: 61] [Article Influence: 52.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhao K, Wei B, Zhang Y, Shi W, Zhang G, Wang Z. M6A regulator-mediated immune infiltration and methylation modification in hepatocellular carcinoma microenvironment and immunotherapy. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1052177] [Reference Citation Analysis]
2 Su Z, Xu L, Dai X, Zhu M, Chen X, Li Y, Li J, Ge R, Cheng B, Wang Y. Prognostic and clinicopathological value of m6A regulators in human cancers: a meta-analysis. Aging 2022. [DOI: 10.18632/aging.204371] [Reference Citation Analysis]
3 Qu N, Zhang X, Wu X, Zhou X, Deng Z, Ma L, Liu Y, Ge W, Jiang H, Xu L, Jiang H. Clinical implications of m6A‐related regulators YTHDF1 and YTHDF2 in hepatocellular carcinoma. Precision Medical Sciences 2022. [DOI: 10.1002/prm2.12085] [Reference Citation Analysis]
4 Wang L, Hu X, Liu X, Feng Y, Zhang Y, Han J, Liu X, Meng F. m7G regulator-mediated methylation modification patterns define immune cell infiltration and patient survival. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1022720] [Reference Citation Analysis]
5 Shao X, Hua S, Feng T, Ocansey DKW, Yin L. Hypoxia-Regulated Tumor-Derived Exosomes and Tumor Progression: A Focus on Immune Evasion. IJMS 2022;23:11789. [DOI: 10.3390/ijms231911789] [Reference Citation Analysis]
6 Hao W, Dian M, Zhou Y, Zhong Q, Pang W, Li Z, Zhao Y, Ma J, Lin X, Luo R, Li Y, Jia J, Shen H, Huang S, Dai G, Wang J, Sun Y, Xiao D. Autophagy induction promoted by m6A reader YTHDF3 through translation upregulation of FOXO3 mRNA. Nat Commun 2022;13:5845. [PMID: 36195598 DOI: 10.1038/s41467-022-32963-0] [Reference Citation Analysis]
7 Xu Y, Zhou J, Li L, Yang W, Zhang Z, Zhang K, Ma K, Xie H, Zhang Z, Cai L, Gong Y, Gong K. FTO-mediated autophagy promotes progression of clear cell renal cell carcinoma via regulating SIK2 mRNA stability. Int J Biol Sci 2022;18:5943-62. [PMID: 36263177 DOI: 10.7150/ijbs.77774] [Reference Citation Analysis]
8 Liu K, Wu J, Xu Y, Li D, Huang S, Mao Y. . OTT 2022;Volume 15:1079-94. [DOI: 10.2147/ott.s383685] [Reference Citation Analysis]
9 Xu M, Zhuo R, Tao S, Liang Y, Liu C, Liu Q, Wang T, Zhong X. M6A RNA Methylation Mediates NOD1/NF-kB Signaling Activation in the Liver of Piglets Challenged with Lipopolysaccharide. Antioxidants 2022;11:1954. [DOI: 10.3390/antiox11101954] [Reference Citation Analysis]
10 Qu X, Zhang L, Li S, Li T, Zhao X, Wang N, Shi Y, Hu G. m6A-Related Angiogenic Genes to Construct Prognostic Signature, Reveal Immune and Oxidative Stress Landscape, and Screen Drugs in Hepatocellular Carcinoma. Oxidative Medicine and Cellular Longevity 2022;2022:1-24. [DOI: 10.1155/2022/8301888] [Reference Citation Analysis]
11 Huang Y, Gao D, Wu Y, Sun L, Chen J, Chen J, Huang X, Yang J, Li S. YTHDF1 Protects Auditory Hair Cells from Cisplatin-Induced Damage by Activating Autophagy via the Promotion of ATG14 Translation. Mol Neurobiol 2022. [PMID: 36097301 DOI: 10.1007/s12035-022-03021-z] [Reference Citation Analysis]
12 Zhao W, Xu M, Barkema HW, Xie X, Lin Y, Khan S, Kastelic JP, Wang D, Deng Z, Han B. Prototheca bovis induces autophagy in bovine mammary epithelial cells via the HIF-1α and AMPKα/ULK1 pathway. Front Immunol 2022;13:934819. [DOI: 10.3389/fimmu.2022.934819] [Reference Citation Analysis]
13 Feng Q, Wang D, Xue T, Lin C, Gao Y, Sun L, Jin Y, Liu D. The role of RNA modification in hepatocellular carcinoma. Front Pharmacol 2022;13:984453. [DOI: 10.3389/fphar.2022.984453] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Zhou J, Wang W, Xia G, Wang C. The programmed death of fetal oocytes and the correlated surveillance mechanisms. Reproductive and Developmental Medicine 2022;6:181-193. [DOI: 10.1097/rd9.0000000000000016] [Reference Citation Analysis]
15 Feng L, Du R, Chang B, Li M, Tian J, Wang S. Multilevel regulation of N6-methyladenosine RNA modifications: Implications in tumorigenesis and therapeutic opportunities. Genes & Diseases 2022. [DOI: 10.1016/j.gendis.2022.08.018] [Reference Citation Analysis]
16 Yang L, Cheng X, Shi W, Li H, Zhang Q, Huang S, Huang X, Wen S, Gan J, Liao Z, Sun J, Liang J, Ouyang Y, He M. Vasorin Deletion in C57BL/6J Mice Induces Hepatocyte Autophagy through Glycogen-Mediated mTOR Regulation. Nutrients 2022;14:3600. [DOI: 10.3390/nu14173600] [Reference Citation Analysis]
17 Wen X, Wang J, Wang Q, Liu P, Zhao H. Interaction between N6-methyladenosine and autophagy in the regulation of bone and tissue degeneration. Front Bioeng Biotechnol 2022;10:978283. [DOI: 10.3389/fbioe.2022.978283] [Reference Citation Analysis]
18 He M, Lei H, He X, Liu Y, Wang A, Ren Z, Liu X, Yan G, Wang W, Wang Y, Li G, Wang T, Pu J, Shen Z, Wang Y, Xie J, Du W, Yuan Y, Yang L. METTL14 Regulates Osteogenesis of Bone Marrow Mesenchymal Stem Cells via Inducing Autophagy Through m6A/IGF2BPs/Beclin-1 Signal Axis. Stem Cells Transl Med 2022:szac049. [PMID: 35980318 DOI: 10.1093/stcltm/szac049] [Reference Citation Analysis]
19 Cai G, Zhu J, Ning D, Li G, Zhang Y, Xiong Y, Liang J, Yu C, Chen X, Liang H, Ding Z. A Novel hepatocellular carcinoma specific hypoxic related signature for predicting prognosis and therapeutic responses. Front Immunol 2022;13:997316. [DOI: 10.3389/fimmu.2022.997316] [Reference Citation Analysis]
20 Fernandez Rodriguez G, Cesaro B, Fatica A. Multiple Roles of m6A RNA Modification in Translational Regulation in Cancer. IJMS 2022;23:8971. [DOI: 10.3390/ijms23168971] [Reference Citation Analysis]
21 Liu C, Zhou Y, Zhao D, Yu L, Zhou Y, Xu M, Tang L. Identification and validation of differentially expressed chromatin regulators for diagnosis of aortic dissection using integrated bioinformatics analysis and machine-learning algorithms. Front Genet 2022;13:950613. [DOI: 10.3389/fgene.2022.950613] [Reference Citation Analysis]
22 Fu J, Wu L, Hu G, Shi Q, Wang R, Zhu L, Yu H, Fu L. AMTDB: A comprehensive database of autophagic modulators for anti-tumor drug discovery. Front Pharmacol 2022;13:956501. [DOI: 10.3389/fphar.2022.956501] [Reference Citation Analysis]
23 Fang Z, Mei W, Qu C, Lu J, Shang L, Cao F, Li F. Role of m6A writers, erasers and readers in cancer. Exp Hematol Oncol 2022;11:45. [PMID: 35945641 DOI: 10.1186/s40164-022-00298-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Chen B, Yang Z, Lang Z, Tao Q, Zhang R, Zhan Y, Xu X, Zhu K, Zheng J, Yu Z, Yu S. M6A-related lncRNAs predict clinical outcome and regulate the tumor immune microenvironment in hepatocellular carcinoma. BMC Cancer 2022;22:867. [PMID: 35941582 DOI: 10.1186/s12885-022-09925-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Jia J, Wu S, Jia Z, Wang C, Ju C, Sheng J, He F, Zhou M, He J. Novel insights into m6A modification of coding and non-coding RNAs in tumor biology: From molecular mechanisms to therapeutic significance. Int J Biol Sci 2022;18:4432-51. [PMID: 35864970 DOI: 10.7150/ijbs.73093] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Li XY, Yang XT. Correlation Between the RNA Methylation Genes and Immune Infiltration and Prognosis of Patients with Hepatocellular Carcinoma: A Pan-Cancer Analysis. J Inflamm Res 2022;15:3941-56. [PMID: 35860228 DOI: 10.2147/JIR.S373776] [Reference Citation Analysis]
27 Chen D, Cheung H, Lau HC, Yu J, Wong CC. N6-Methyladenosine RNA-Binding Protein YTHDF1 in Gastrointestinal Cancers: Function, Molecular Mechanism and Clinical Implication. Cancers 2022;14:3489. [DOI: 10.3390/cancers14143489] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Lin H, Wang Y, Wang P, Long F, Wang T. Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: impacts on therapeutic resistance. Mol Cancer 2022;21:148. [PMID: 35843942 DOI: 10.1186/s12943-022-01620-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Zhang F, Liu H, Duan M, Wang G, Zhang Z, Wang Y, Qian Y, Yang Z, Jiang X. Crosstalk among m6A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. J Hematol Oncol 2022;15. [DOI: 10.1186/s13045-022-01304-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
30 Xia Z, Kong F, Wang K, Zhang X. Role of N6-Methyladenosine Methylation Regulators in the Drug Therapy of Digestive System Tumours. Front Pharmacol 2022;13:908079. [PMID: 35754499 DOI: 10.3389/fphar.2022.908079] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Ning Z, Hu C, Liu J, Tian H, Yu Z, Zhou H, Li H, Zong Z. The Hypoxic Landscape Stratifies Gastric Cancer Into 3 Subtypes With Distinct M6a Methylation and Tumor Microenvironment Infiltration Characteristics. Front Immunol 2022;13:860041. [DOI: 10.3389/fimmu.2022.860041] [Reference Citation Analysis]
32 Chen F, Xie X, Chao M, Cao H, Wang L. The Potential Value of m6A RNA Methylation in the Development of Cancers Focus on Malignant Glioma. Front Immunol 2022;13:917153. [DOI: 10.3389/fimmu.2022.917153] [Reference Citation Analysis]
33 Zhao J, Xu H, Su Y, Pan J, Xie S, Xu J, Qin L. Emerging Regulatory Mechanisms of N6-Methyladenosine Modification in Cancer Metastasis. Phenomics. [DOI: 10.1007/s43657-021-00043-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Xiao K, Yang Z, Yan X, Liu Z, Yang M, Guo L, Cai L. Molecular Characteristics of m6A Regulators and Tumor Microenvironment Infiltration in Soft Tissue Sarcoma: A Gene-Based Study. Front Bioeng Biotechnol 2022;10:846812. [DOI: 10.3389/fbioe.2022.846812] [Reference Citation Analysis]
35 Tan Z, Shi S, Xu J, Liu X, Lei Y, Zhang B, Hua J, Meng Q, Wang W, Yu X, Liang C. RNA N6-methyladenosine demethylase FTO promotes pancreatic cancer progression by inducing the autocrine activity of PDGFC in an m6A-YTHDF2-dependent manner. Oncogene. [DOI: 10.1038/s41388-022-02306-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
36 Paramasivam A, Priyadharsini JV. The emerging role of m6A modification in autophagy regulation and its implications in human disease. Epigenomics 2022. [PMID: 35387490 DOI: 10.2217/epi-2021-0531] [Reference Citation Analysis]
37 Lu X, Ding Y, Liu H, Sun M, Chen C, Yang Y, Wang H. The Role of Hydrogen Sulfide Regulation of Autophagy in Liver Disorders. Int J Mol Sci 2022;23:4035. [PMID: 35409395 DOI: 10.3390/ijms23074035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Guo Y, Ren Y, Dong X, Kan X, Zheng C. An Overview of Hepatocellular Carcinoma After Insufficient Radiofrequency Ablation. JHC 2022;Volume 9:343-55. [DOI: 10.2147/jhc.s358539] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Wilkinson E, Cui YH, He YY. Roles of RNA Modifications in Diverse Cellular Functions. Front Cell Dev Biol 2022;10:828683. [PMID: 35350378 DOI: 10.3389/fcell.2022.828683] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Yao X, Li W, Li L, Li M, Zhao Y, Fang, Zeng X, Luo Z. YTHDF1 upregulation mediates hypoxia-dependent breast cancer growth and metastasis through regulating PKM2 to affect glycolysis. Cell Death Dis 2022;13:258. [PMID: 35319018 DOI: 10.1038/s41419-022-04711-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
41 Xiao Q, Lei L, Ren J, Peng M, Jing Y, Jiang X, Huang J, Tao Y, Lin C, Yang J, Sun M, Tang L, Wei X, Yang Z, Zhang L. Mutant NPM1-Regulated FTO-Mediated m6A Demethylation Promotes Leukemic Cell Survival via PDGFRB/ERK Signaling Axis. Front Oncol 2022;12:817584. [PMID: 35211409 DOI: 10.3389/fonc.2022.817584] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Chen H, Yu Y, Yang M, Huang H, Ma S, Hu J, Xi Z, Guo H, Yao G, Yang L, Huang X, Zhang F, Tan G, Wu H, Zheng W, Li L. YTHDF1 promotes breast cancer progression by facilitating FOXM1 translation in an m6A-dependent manner. Cell Biosci 2022;12:19. [PMID: 35197112 DOI: 10.1186/s13578-022-00759-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
43 Deng L, Deng W, Fan S, Chen M, Qi M, Lyu W, Qi Q, Tiwari AK, Chen J, Zhang D, Chen Z. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer 2022;21. [DOI: 10.1186/s12943-022-01510-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
44 Liu L, Li H, Hu D, Wang Y, Shao W, Zhong J, Yang S, Liu J, Zhang J. Insights into N6-methyladenosine and programmed cell death in cancer. Mol Cancer 2022;21:32. [PMID: 35090469 DOI: 10.1186/s12943-022-01508-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
45 Tang F, Chen L, Gao H, Xiao D, Li X. m6A: An Emerging Role in Programmed Cell Death. Front Cell Dev Biol 2022;10:817112. [DOI: 10.3389/fcell.2022.817112] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
46 An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer 2022;21:14. [PMID: 35022030 DOI: 10.1186/s12943-022-01500-4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 37] [Article Influence: 26.0] [Reference Citation Analysis]
47 Kim H, Shin Y, Kim DH. Mechanobiological Implications of Cancer Progression in Space. Front Cell Dev Biol 2021;9:740009. [PMID: 34957091 DOI: 10.3389/fcell.2021.740009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
48 Yu JH, Ma S. Organoids as research models for hepatocellular carcinoma. Exp Cell Res 2021;411:112987. [PMID: 34942189 DOI: 10.1016/j.yexcr.2021.112987] [Reference Citation Analysis]
49 Wang G, Han JJ. Connections between metabolism and epigenetic modifications in cancer. Medical Review 2021;1:199-221. [DOI: 10.1515/mr-2021-0015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
50 Xu Y, Zhang M, Zhang Q, Yu X, Sun Z, He Y, Guo W. Role of Main RNA Methylation in Hepatocellular Carcinoma: N6-Methyladenosine, 5-Methylcytosine, and N1-Methyladenosine. Front Cell Dev Biol 2021;9:767668. [PMID: 34917614 DOI: 10.3389/fcell.2021.767668] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
51 Zhu LR, Ni WJ, Cai M, Dai WT, Zhou H. Advances in RNA Epigenetic Modifications in Hepatocellular Carcinoma and Potential Targeted Intervention Strategies. Front Cell Dev Biol 2021;9:777007. [PMID: 34778277 DOI: 10.3389/fcell.2021.777007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
52 Kostyusheva A, Brezgin S, Glebe D, Kostyushev D, Chulanov V. Host-cell interactions in HBV infection and pathogenesis: the emerging role of m6A modification. Emerg Microbes Infect 2021;10:2264-75. [PMID: 34767497 DOI: 10.1080/22221751.2021.2006580] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
53 Shen M, Li Y, Wang Y, Shao J, Zhang F, Yin G, Chen A, Zhang Z, Zheng S. N6-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biol 2021;47:102151. [PMID: 34607160 DOI: 10.1016/j.redox.2021.102151] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 22.0] [Reference Citation Analysis]
54 Zhou M, Zhang G, Hu J, Zhu Y, Lan H, Shen X, Lv Y, Huang L. Rutin attenuates Sorafenib-induced Chemoresistance and Autophagy in Hepatocellular Carcinoma by regulating BANCR/miRNA-590-5P/OLR1 Axis. Int J Biol Sci 2021;17:3595-607. [PMID: 34512168 DOI: 10.7150/ijbs.62471] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
55 Mukhopadhyay S, Mahapatra KK, Praharaj PP, Patil S, Bhutia SK. Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics. Semin Cancer Biol 2021:S1044-579X(21)00227-3. [PMID: 34500075 DOI: 10.1016/j.semcancer.2021.09.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
56 Song W, Ren J, Yuan W, Xiang R, Ge Y, Fu T. N6-Methyladenosine-Related lncRNA Signature Predicts the Overall Survival of Colorectal Cancer Patients. Genes (Basel) 2021;12:1375. [PMID: 34573357 DOI: 10.3390/genes12091375] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
57 Peng XF, Huang SF, Chen LJ, Xu L, Ye WC. Targeting epigenetics and lncRNAs in liver disease: From mechanisms to therapeutics. Pharmacol Res 2021;172:105846. [PMID: 34438063 DOI: 10.1016/j.phrs.2021.105846] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
58 Chen X, Wang J, Tahir M, Zhang F, Ran Y, Liu Z, Wang J. Current insights into the implications of m6A RNA methylation and autophagy interaction in human diseases. Cell Biosci 2021;11:147. [PMID: 34315538 DOI: 10.1186/s13578-021-00661-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
59 Jiang J, Xu H, Wang Y, Lu H. Identification and Validation of Autophagy-Related Gene Nomograms to Predict the Prognostic Value of Patients with Cervical Cancer. J Oncol 2021;2021:5583400. [PMID: 34257653 DOI: 10.1155/2021/5583400] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Yu ZL, Zhu ZM. Comprehensive analysis of N6-methyladenosine -related long non-coding RNAs and immune cell infiltration in hepatocellular carcinoma. Bioengineered 2021;12:1708-24. [PMID: 33955330 DOI: 10.1080/21655979.2021.1923381] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]