BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ju HQ, Lin JF, Tian T, Xie D, Xu RH. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther 2020;5:231. [PMID: 33028807 DOI: 10.1038/s41392-020-00326-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 64] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Wu C, Xu D, Ge M, Luo J, Chen L, Chen Z, You Y, Zhu Y, Lin H, Shi J. Blocking glutathione regeneration: Inorganic NADPH oxidase nanozyme catalyst potentiates tumoral ferroptosis. Nano Today 2022;46:101574. [DOI: 10.1016/j.nantod.2022.101574] [Reference Citation Analysis]
2 Sannigrahi MK, Rajagopalan P, Lai L, Liu X, Sahu V, Nakagawa H, Jalaly JB, Brody RM, Morgan IM, Windle BE, Wang X, Gimotty PA, Kelly DP, White EA, Basu D. HPV E6 regulates therapy responses in oropharyngeal cancer by repressing the PGC-1α/ERRα axis. JCI Insight 2022;7:e159600. [PMID: 36134662 DOI: 10.1172/jci.insight.159600] [Reference Citation Analysis]
3 Kumari P, Kumar S, Sethy M, Bhue S, Mohanta BK, Dixit A. Identification of therapeutically potential targets and their ligands for the treatment of OSCC. Front Oncol 2022;12:910494. [DOI: 10.3389/fonc.2022.910494] [Reference Citation Analysis]
4 Hao S, Meng Q, Sun H, Li Y, Li Y, Gu L, Liu B, Zhang Y, Zhou H, Xu Z, Wang Y. The role of transketolase in human cancer progression and therapy. Biomed Pharmacother 2022;154:113607. [PMID: 36030587 DOI: 10.1016/j.biopha.2022.113607] [Reference Citation Analysis]
5 Meng Q, Zhang Y, Hao S, Sun H, Liu B, Zhou H, Wang Y, Xu Z. Recent findings in the regulation of G6PD and its role in diseases. Front Pharmacol 2022;13:932154. [DOI: 10.3389/fphar.2022.932154] [Reference Citation Analysis]
6 Liu C, Boeren S, Miro Estruch I, Rietjens IMCM. The Gut Microbial Metabolite Pyrogallol Is a More Potent Inducer of Nrf2-Associated Gene Expression Than Its Parent Compound Green Tea (-)-Epigallocatechin Gallate. Nutrients 2022;14:3392. [DOI: 10.3390/nu14163392] [Reference Citation Analysis]
7 Li Q, Huang KX, Pan S, Su C, Bi J, Lu X, Hashmi MF. Thymol Disrupts Cell Homeostasis and Inhibits the Growth of Staphylococcus aureus. Contrast Media & Molecular Imaging 2022;2022:1-12. [DOI: 10.1155/2022/8743096] [Reference Citation Analysis]
8 Duan J, Huang Z, Nice EC, Xie N, Chen M, Huang C. Current advancements and future perspectives of long noncoding RNAs in lipid metabolism and signaling. J Adv Res 2022:S2090-1232(22)00188-6. [PMID: 35973552 DOI: 10.1016/j.jare.2022.08.007] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Mafi A, Rahmati A, Babaei Aghdam Z, Salami R, Salami M, Vakili O, Aghadavod E. Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett 2022;27:65. [PMID: 35922753 DOI: 10.1186/s11658-022-00354-4] [Reference Citation Analysis]
10 Yang C, Zhu Z, Jones JJ, Lomenick B, Chou T, Shan S. System-wide analyses reveal essential roles of N-terminal protein modification in bacterial membrane integrity. iScience 2022;25:104756. [DOI: 10.1016/j.isci.2022.104756] [Reference Citation Analysis]
11 Nguyen KT, Mun SH, Yang J, Lee J, Seok OH, Kim E, Kim D, An SY, Seo DY, Suh JY, Lee Y, Hwang CS. The MARCHF6 E3 ubiquitin ligase acts as an NADPH sensor for the regulation of ferroptosis. Nat Cell Biol 2022;24:1239-51. [PMID: 35941365 DOI: 10.1038/s41556-022-00973-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Mao C, Gan B. Navigating ferroptosis via an NADPH sensor. Nat Cell Biol 2022;24:1186-7. [PMID: 35941366 DOI: 10.1038/s41556-022-00963-3] [Reference Citation Analysis]
13 Mondal A, Mukherjee S, Dar W, Upadhyay P, Ranganathan A, Pati S, Singh S. G6PD deficiency: imbalance of functional dichotomy contributing to the severity of COVID-19. Future Microbiol 2022. [PMID: 35880537 DOI: 10.2217/fmb-2021-0299] [Reference Citation Analysis]
14 Laghai I, Muscas G, Tardelli E, Martini AL, Betti M, Fedeli L, Scoccianti S, Martella F, Palumbo P, Cecchin D, Della Puppa A, Mansi L, Sestini S. The new era of bio-molecular imaging with O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) in neurosurgery of gliomas. Clin Transl Imaging. [DOI: 10.1007/s40336-022-00509-5] [Reference Citation Analysis]
15 Wang C, Wang C, Mai R, Chen T, Li C, Chao C. Mutant p53-microRNA-200c-ZEB2-Axis-Induced CPT1C Elevation Contributes to Metabolic Reprogramming and Tumor Progression in Basal-Like Breast Cancers. Front Oncol 2022;12:940402. [DOI: 10.3389/fonc.2022.940402] [Reference Citation Analysis]
16 Kim J, Park A, Hwang J, Zhao X, Kwak J, Kim HW, Ku M, Yang J, Kim TI, Jeong KS, Choi U, Lee H, Shin SJ. KS10076, a chelator for redox-active metal ions, induces ROS-mediated STAT3 degradation in autophagic cell death and eliminates ALDH1+ stem cells. Cell Rep 2022;40:111077. [PMID: 35858554 DOI: 10.1016/j.celrep.2022.111077] [Reference Citation Analysis]
17 MacLean IA, Varma A, Storey KB. Purification and characterization of NADP-isocitrate dehydrogenase from skeletal muscle of Urocitellus richardsonii. Mol Cell Biochem 2022. [PMID: 35802222 DOI: 10.1007/s11010-022-04516-y] [Reference Citation Analysis]
18 Meng Q, Lu YX, Wei C, Wang ZX, Lin JF, Liao K, Luo XJ, Yu K, Han Y, Li JJ, Tan YT, Li H, Zeng ZL, Li B, Xu RH, Ju HQ. Arginine methylation of MTHFD1 by PRMT5 enhances anoikis resistance and cancer metastasis. Oncogene 2022. [PMID: 35798877 DOI: 10.1038/s41388-022-02387-7] [Reference Citation Analysis]
19 Li K, Zong D, Sun J, Chen D, Ma M, Jia L. Rewiring of the Endocrine Network in Triple-Negative Breast Cancer. Front Oncol 2022;12:830894. [DOI: 10.3389/fonc.2022.830894] [Reference Citation Analysis]
20 Du J, Estrella M, Solorio-Kirpichyan K, Jeffrey PD, Korennykh A. Structure of human NADK2 reveals atypical assembly and regulation of NAD kinases from animal mitochondria. Proc Natl Acad Sci U S A 2022;119:e2200923119. [PMID: 35733246 DOI: 10.1073/pnas.2200923119] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Vallejo FA, Sanchez A, Cuglievan B, Walters WM, De Angulo G, Vanni S, Graham RM. NAMPT Inhibition Induces Neuroblastoma Cell Death and Blocks Tumor Growth. Front Oncol 2022;12:883318. [DOI: 10.3389/fonc.2022.883318] [Reference Citation Analysis]
22 Tian LR, Lin MZ, Zhong HH, Cai YJ, Li B, Xiao ZC, Shuai XT. Nanodrug regulates lactic acid metabolism to reprogram the immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Biomater Sci 2022. [PMID: 35686599 DOI: 10.1039/d2bm00650b] [Reference Citation Analysis]
23 Min HY, Lee HJ, Suh YA, Pei H, Kwon H, Jang HJ, Yun HJ, Moon HG, Lee HY. Targeting epidermal growth factor receptor in paclitaxel-resistant human breast and lung cancer cells with upregulated glucose-6-phosphate dehydrogenase. Br J Cancer 2022. [PMID: 35597872 DOI: 10.1038/s41416-022-01843-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Murari A, Goparaju NSV, Rhooms SK, Hossain KFB, Liang FG, Garcia CJ, Osei C, Liu T, Li H, Kitsis RN, Patel R, Owusu-Ansah E. IDH2-mediated regulation of the biogenesis of the oxidative phosphorylation system. Sci Adv 2022;8:eabl8716. [PMID: 35544578 DOI: 10.1126/sciadv.abl8716] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Morita Y, Kishino Y, Fukuda K, Tohyama S. Scalable manufacturing of clinical-grade differentiated cardiomyocytes derived from human-induced pluripotent stem cells for regenerative therapy. Cell Prolif 2022;:e13248. [PMID: 35534945 DOI: 10.1111/cpr.13248] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Wu MJ, Shi L, Merritt J, Zhu AX, Bardeesy N. Biology of IDH mutant cholangiocarcinoma. Hepatology 2022;75:1322-37. [PMID: 35226770 DOI: 10.1002/hep.32424] [Reference Citation Analysis]
27 Quéré M, Alberto J, Broly F, Hergalant S, Christov C, Gauchotte G, Guéant J, Namour F, Battaglia-hsu S. ALDH1L2 Knockout in U251 Glioblastoma Cells Reduces Tumor Sphere Formation by Increasing Oxidative Stress and Suppressing Methionine Dependency. Nutrients 2022;14:1887. [DOI: 10.3390/nu14091887] [Reference Citation Analysis]
28 Tyagi K, Dixit T, Venkatesh V. Recent advances in catalytic anticancer drugs: Mechanistic investigations and future prospects. Inorganica Chimica Acta 2022;533:120754. [DOI: 10.1016/j.ica.2021.120754] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
29 Wang J, Qiao Y, Sun M, Sun H, Xie F, Chang H, Wang Y, Song J, Lai S, Yang C, Li X, Liu S, Zhao X, Ni K, Meng K, Zhang S, Shan C, Zhang C. FTO promotes colorectal cancer progression and chemotherapy resistance via demethylating G6PD/PARP1. Clin Transl Med 2022;12:e772. [PMID: 35297218 DOI: 10.1002/ctm2.772] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
30 Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses 2022;14:602. [DOI: 10.3390/v14030602] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Zhang J, Yin Y, Zhang J, Zhang J, Su W, Ma H, Jia F, Zhao G, Wang H. Suppression of Energy Metabolism in Cancer Cells with Nutrient-Sensing Nanodrugs. Nano Lett . [DOI: 10.1021/acs.nanolett.2c00356] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
32 Lin J, Hu P, Wang Y, Tan Y, Yu K, Liao K, Wu Q, Li T, Meng Q, Lin J, Liu Z, Pu H, Ju H, Xu R, Qiu M. Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis. Sig Transduct Target Ther 2022;7. [DOI: 10.1038/s41392-022-00889-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
33 Zhelev Z, Aoki I, Lazarova D, Vlaykova T, Higashi T, Bakalova R, Giudetti AM. A “Weird” Mitochondrial Fatty Acid Oxidation as a Metabolic “Secret” of Cancer. Oxidative Medicine and Cellular Longevity 2022;2022:1-38. [DOI: 10.1155/2022/2339584] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
34 Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer 2022. [PMID: 35102280 DOI: 10.1038/s41568-021-00435-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 25.0] [Reference Citation Analysis]
35 Zherebtsov EA, Potapova EV, Mamoshin AV, Shupletsov VV, Kandurova KY, Dremin VV, Abramov AY, Dunaev AV. Fluorescence lifetime needle optical biopsy discriminates hepatocellular carcinoma. Biomed Opt Express 2022;13:633. [DOI: 10.1364/boe.447687] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Meskers CJW, Franczak M, Smolenski RT, Giovannetti E, Peters GJ. Are we still on the right path(way)?: the altered expression of the pentose phosphate pathway in solid tumors and the potential of its inhibition in combination therapy. Expert Opin Drug Metab Toxicol 2022;18:61-83. [PMID: 35238253 DOI: 10.1080/17425255.2022.2049234] [Reference Citation Analysis]
37 Guo B, Pomicter AD, Li F, Bhatt S, Chen C, Li W, Qi M, Huang C, Deininger MW, Kong MG, Chen HL. Trident cold atmospheric plasma blocks three cancer survival pathways to overcome therapy resistance. Proc Natl Acad Sci U S A 2021;118:e2107220118. [PMID: 34916286 DOI: 10.1073/pnas.2107220118] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
38 Valentino T, Figueiredo VC, Mobley CB, McCarthy JJ, Vechetti IJ Jr. Evidence of myomiR regulation of the pentose phosphate pathway during mechanical load-induced hypertrophy. Physiol Rep 2021;9:e15137. [PMID: 34889054 DOI: 10.14814/phy2.15137] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Colombo G, Gelardi ELM, Balestrero FC, Moro M, Travelli C, Genazzani AA. Insight Into Nicotinamide Adenine Dinucleotide Homeostasis as a Targetable Metabolic Pathway in Colorectal Cancer. Front Pharmacol 2021;12:758320. [PMID: 34880756 DOI: 10.3389/fphar.2021.758320] [Reference Citation Analysis]
40 Soubeyrand S, Lau P, Beehler K, McShane K, McPherson R. miR1908-5p regulates energy homeostasis in hepatocyte models. Sci Rep 2021;11:23748. [PMID: 34887471 DOI: 10.1038/s41598-021-03156-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
41 Kumar P, Saini K, Saini V, Mitchell T. Oxalate Alters Cellular Bioenergetics, Redox Homeostasis, Antibacterial Response, and Immune Response in Macrophages. Front Immunol 2021;12:694865. [PMID: 34745086 DOI: 10.3389/fimmu.2021.694865] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
42 Castelli S, De Falco P, Ciccarone F, Desideri E, Ciriolo MR. Lipid Catabolism and ROS in Cancer: A Bidirectional Liaison. Cancers (Basel) 2021;13:5484. [PMID: 34771647 DOI: 10.3390/cancers13215484] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
43 Tasdogan A, Ubellacker JM, Morrison SJ. Redox Regulation in Cancer Cells during Metastasis. Cancer Discov 2021;11:2682-92. [PMID: 34649956 DOI: 10.1158/2159-8290.CD-21-0558] [Cited by in Crossref: 1] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
44 Ren J, Zhou J, Liu H, Jiao X, Cao Y, Xu Z, Kang Y, Xue P. Ultrasound (US)-activated redox dyshomeostasis therapy reinforced by immunogenic cell death (ICD) through a mitochondrial targeting liposomal nanosystem. Theranostics 2021;11:9470-91. [PMID: 34646381 DOI: 10.7150/thno.62984] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
45 Chen J, Zheng X, Zhang J, Ma Q, Zhao Z, Huang L, Wu W, Wang Y, Wang J, Dong S. Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic. National Science Review 2021. [DOI: 10.1093/nsr/nwab186] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
46 Polat IH, Tarrado-Castellarnau M, Benito A, Hernandez-Carro C, Centelles J, Marin S, Cascante M. Glutamine Modulates Expression and Function of Glucose 6-Phosphate Dehydrogenase via NRF2 in Colon Cancer Cells. Antioxidants (Basel) 2021;10:1349. [PMID: 34572981 DOI: 10.3390/antiox10091349] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
47 Yamawaki K, Mori Y, Sakai H, Kanda Y, Shiokawa D, Ueda H, Ishiguro T, Yoshihara K, Nagasaka K, Onda T, Kato T, Kondo T, Enomoto T, Okamoto K. Integrative analyses of gene expression and chemosensitivity of patient-derived ovarian cancer spheroids link G6PD-driven redox metabolism to cisplatin chemoresistance. Cancer Lett 2021;521:29-38. [PMID: 34419499 DOI: 10.1016/j.canlet.2021.08.018] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
48 Banstola A, Poudel K, Kim JO, Jeong JH, Yook S. Recent progress in stimuli-responsive nanosystems for inducing immunogenic cell death. J Control Release 2021;337:505-20. [PMID: 34314800 DOI: 10.1016/j.jconrel.2021.07.038] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
49 Ying M, You D, Zhu X, Cai L, Zeng S, Hu X. Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions. Redox Biol 2021;46:102065. [PMID: 34293554 DOI: 10.1016/j.redox.2021.102065] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
50 Xu L, Wang Y, Ma Y, Huan S, Song G. Monitoring Immunotherapy With Optical Molecular Imaging. ChemMedChem 2021;16:2547-57. [PMID: 33949786 DOI: 10.1002/cmdc.202100260] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
51 Matschke J, Larafa S, Jendrossek V. Metabolic reprograming of antioxidant defense: a precision medicine perspective for radiotherapy of lung cancer? Biochem Soc Trans 2021;49:1265-77. [PMID: 34110407 DOI: 10.1042/BST20200866] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
52 Ushio-Fukai M, Ash D, Nagarkoti S, Belin de Chantemèle EJ, Fulton DJR, Fukai T. Interplay Between Reactive Oxygen/Reactive Nitrogen Species and Metabolism in Vascular Biology and Disease. Antioxid Redox Signal 2021;34:1319-54. [PMID: 33899493 DOI: 10.1089/ars.2020.8161] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
53 Madsen S, Ramosaj M, Knobloch M. Lipid metabolism in focus: how the build-up and breakdown of lipids affects stem cells. Development 2021;148:dev191924. [PMID: 34042969 DOI: 10.1242/dev.191924] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Ghanbari F, Fortier AM, Park M, Philip A. Cholesterol-Induced Metabolic Reprogramming in Breast Cancer Cells Is Mediated via the ERRα Pathway. Cancers (Basel) 2021;13:2605. [PMID: 34073320 DOI: 10.3390/cancers13112605] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
55 Schiliro C, Firestein BL. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells 2021;10:1056. [PMID: 33946927 DOI: 10.3390/cells10051056] [Cited by in Crossref: 3] [Cited by in F6Publishing: 37] [Article Influence: 3.0] [Reference Citation Analysis]
56 Tran DH, Kesavan R, Rion H, Soflaee MH, Solmonson A, Bezwada D, Vu HS, Cai F, Phillips JA 3rd, DeBerardinis RJ, Hoxhaj G. Mitochondrial NADP+ is essential for proline biosynthesis during cell growth. Nat Metab 2021;3:571-85. [PMID: 33833463 DOI: 10.1038/s42255-021-00374-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
57 Sánchez-Castillo A, Vooijs M, Kampen KR. Linking Serine/Glycine Metabolism to Radiotherapy Resistance. Cancers (Basel) 2021;13:1191. [PMID: 33801846 DOI: 10.3390/cancers13061191] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
58 Choe JH, Mazambani S, Kim TH, Kim JW. Oxidative Stress and the Intersection of Oncogenic Signaling and Metabolism in Squamous Cell Carcinomas. Cells 2021;10:606. [PMID: 33803326 DOI: 10.3390/cells10030606] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
59 Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, Piao HL, Liu HX. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021;11:4839-57. [PMID: 33754031 DOI: 10.7150/thno.56747] [Cited by in Crossref: 49] [Cited by in F6Publishing: 62] [Article Influence: 49.0] [Reference Citation Analysis]
60 Carvalhais A, Pereira B, Sabato M, Seixas R, Dolbeth M, Marques A, Guilherme S, Pereira P, Pacheco M, Mieiro C. Mild Effects of Sunscreen Agents on a Marine Flatfish: Oxidative Stress, Energetic Profiles, Neurotoxicity and Behaviour in Response to Titanium Dioxide Nanoparticles and Oxybenzone. Int J Mol Sci 2021;22:1567. [PMID: 33557180 DOI: 10.3390/ijms22041567] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
61 Fragoso-Morales LG, Correa-Basurto J, Rosales-Hernández MC. Implication of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Its Inhibitors in Alzheimer's Disease Murine Models. Antioxidants (Basel) 2021;10:218. [PMID: 33540840 DOI: 10.3390/antiox10020218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
62 Sato T, Greco CM. Expanding the link between circadian rhythms and redox metabolism of epigenetic control. Free Radic Biol Med 2021;170:50-8. [PMID: 33450380 DOI: 10.1016/j.freeradbiomed.2021.01.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
63 Germain N, Dhayer M, Boileau M, Fovez Q, Kluza J, Marchetti P. Lipid Metabolism and Resistance to Anticancer Treatment. Biology (Basel) 2020;9:E474. [PMID: 33339398 DOI: 10.3390/biology9120474] [Cited by in Crossref: 7] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
64 Chang HW, Lee M, Lee YS, Kim SH, Lee JC, Park JJ, Nam HY, Kim MR, Han MW, Kim SW, Kim SY. p53-dependent glutamine usage determines susceptibility to oxidative stress in radioresistant head and neck cancer cells. Cell Signal 2021;77:109820. [PMID: 33137455 DOI: 10.1016/j.cellsig.2020.109820] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]