BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 2019;4:33. [PMID: 31637012 DOI: 10.1038/s41392-019-0068-3] [Cited by in Crossref: 207] [Cited by in F6Publishing: 220] [Article Influence: 69.0] [Reference Citation Analysis]
Number Citing Articles
1 Raval JB, Mehta VN, Kailasa SK. Carbon nanomaterials-based diagnostic tools. Carbon Dots in Analytical Chemistry 2023. [DOI: 10.1016/b978-0-323-98350-1.00019-0] [Reference Citation Analysis]
2 Kumari S, Bhardwaj JS, Kharavtekar SS, Grewal D, Ray SG, Bhardwaj A, Dubey SK, Kesharwani P, Arora T, Taliyan R. Futuristic aspect of nanocarriers on targeted delivery for dementia. Nanomedicine-Based Approaches for the Treatment of Dementia 2023. [DOI: 10.1016/b978-0-12-824331-2.00005-4] [Reference Citation Analysis]
3 Mbituyimana B, Ma G, Shi Z, Yang G. Polymer-based microneedle composites for enhanced non-transdermal drug delivery. Applied Materials Today 2022;29:101659. [DOI: 10.1016/j.apmt.2022.101659] [Reference Citation Analysis]
4 Karim ME, Haque ST, Al-busaidi H, Bakhtiar A, Tha KK, Holl MMB, Chowdhury EH. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Arch Pharm Res 2022. [DOI: 10.1007/s12272-022-01418-x] [Reference Citation Analysis]
5 Shah S, Famta P, Tiwari V, Kotha AK, Kashikar R, Chougule MB, Chung YH, Steinmetz NF, Uddin M, Singh SB, Srivastava S. Instigation of the epoch of nanovaccines in cancer immunotherapy. WIREs Nanomed Nanobiotechnol 2022. [DOI: 10.1002/wnan.1870] [Reference Citation Analysis]
6 Romero G, Park J, Koehler F, Pralle A, Anikeeva P. Modulating cell signalling in vivo with magnetic nanotransducers. Nat Rev Methods Primers 2022;2:92. [DOI: 10.1038/s43586-022-00170-2] [Reference Citation Analysis]
7 Qian Z, Zhao N, Wang C, Yuan W. Injectable self-healing polysaccharide hydrogel loading CuS and pH-responsive DOX@ZIF-8 nanoparticles for synergistic photothermal-photodynamic-chemo therapy of cancer. Journal of Materials Science & Technology 2022;127:245-55. [DOI: 10.1016/j.jmst.2022.04.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Rumon MMH, Akib AA, Sultana F, Moniruzzaman M, Niloy MS, Shakil MS, Roy CK. Self-Healing Hydrogels: Development, Biomedical Applications, and Challenges. Polymers 2022;14:4539. [DOI: 10.3390/polym14214539] [Reference Citation Analysis]
9 Sun H, Zhan M, Mignani S, Shcharbin D, Majoral J, Rodrigues J, Shi X, Shen M. Modulation of Macrophages Using Nanoformulations with Curcumin to Treat Inflammatory Diseases: A Concise Review. Pharmaceutics 2022;14:2239. [DOI: 10.3390/pharmaceutics14102239] [Reference Citation Analysis]
10 Xu J, Chen H, Qian H, Wang F, Xu Y. Advances in the modulation of ROS and transdermal administration for anti-psoriatic nanotherapies. J Nanobiotechnology 2022;20:448. [PMID: 36242051 DOI: 10.1186/s12951-022-01651-y] [Reference Citation Analysis]
11 Fei Y, Ma Y, Zhang H, Li H, Feng G, Fang J. Nanotechnology for research and treatment of the intestine. J Nanobiotechnology 2022;20:430. [PMID: 36175955 DOI: 10.1186/s12951-022-01517-3] [Reference Citation Analysis]
12 Zhang Y, Ranaei Pirmardan E, Barakat A, Naseri M, Hafezi-moghadam A. Nanoarchitectonics for Photo-Controlled Intracellular Drug Release in Immune Modulation. ACS Appl Mater Interfaces. [DOI: 10.1021/acsami.2c12440] [Reference Citation Analysis]
13 Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics 2022;6:400-23. [PMID: 36051855 DOI: 10.7150/ntno.74613] [Reference Citation Analysis]
14 Kampaengsri S, Chansaenpak K, Yong GY, Hiranmartsuwan P, Uengwanarat B, Lai RY, Meemon P, Kue CS, Kamkaew A. PEGylated Aza-BODIPY Nanoparticles for Photothermal Therapy. ACS Appl Bio Mater 2022. [PMID: 36054220 DOI: 10.1021/acsabm.2c00624] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Mohamed Abdoul-latif F, Elmi A, Merito A, Nour M, Risler A, Ainane A, Bignon J, Ainane T. Chemical Analysis of Essential Oils of Cymbopogon schoenanthus (L.) Spreng. and Nepeta azurea R.Br. ex Benth from Djbouti, In-Vitro Cytotoxicity against Cancer Cell Lines and Antibacterial Activities. Applied Sciences 2022;12:8699. [DOI: 10.3390/app12178699] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Hosseinikhah SM, Gheybi F, Moosavian SA, Shahbazi MA, Jaafari MR, Sillanpää M, Kesharwani P, Alavizadeh SH, Sahebkar A. Role of exosomes in tumor growth, chemoresistance and immunity: state-of-the-art. J Drug Target 2022;:1-35. [PMID: 35971773 DOI: 10.1080/1061186X.2022.2114000] [Reference Citation Analysis]
17 Yang L, Peng J, Shi A, Wang X, Li J, Su Y, Yin K, Zhao L, Zhao Y. Myocardium-Targeted Micelle Nanomedicine That Salvages the Heart from Ischemia/Reperfusion Injury. ACS Appl Mater Interfaces 2022. [PMID: 35973832 DOI: 10.1021/acsami.2c11117] [Reference Citation Analysis]
18 Farhat W, Yeung V, Ross A, Kahale F, Boychev N, Kuang L, Chen L, Ciolino JB. Advances in biomaterials for the treatment of retinoblastoma. Biomater Sci 2022. [PMID: 35959730 DOI: 10.1039/d2bm01005d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Thobakgale L, Ombinda-Lemboumba S, Mthunzi-Kufa P. Chemical Sensor Nanotechnology in Pharmaceutical Drug Research. Nanomaterials (Basel) 2022;12:2688. [PMID: 35957119 DOI: 10.3390/nano12152688] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Lee SY, Kim SY, Ku SH, Park EJ, Jang D, Kim ST, Kim S. Polyhydroxyalkanoate Decelerates the Release of Paclitaxel from Poly(lactic-co-glycolic acid) Nanoparticles. Pharmaceutics 2022;14:1618. [DOI: 10.3390/pharmaceutics14081618] [Reference Citation Analysis]
21 Hao W, Jia Y, Wang C, Wang X. Preparation, chemical characterization and determination of the antioxidant, cytotoxicity and therapeutic effects of gold nanoparticles green-synthesized by Calendula officinalis flower extract in diabetes-induced cardiac dysfunction in rat. Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.109931] [Reference Citation Analysis]
22 Golovin YI, Zhigachev AO, Klyachko NL, Golovin DY. Controlled localization of magnetic nanoparticle mechanical activation in suspension exposed to alternating magnetic field using gradient magnetic field. J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05501-8] [Reference Citation Analysis]
23 Malik A, Khan JM, Alhomida AS, Ola MS, Alshehri MA, Ahmad A. Metal nanoparticles: biomedical applications and their molecular mechanisms of toxicity. Chem Pap . [DOI: 10.1007/s11696-022-02351-5] [Reference Citation Analysis]
24 Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.07.010] [Reference Citation Analysis]
25 Karthikeyan L, Vivek R. Synergistic anti-cancer effects of NIR-light responsive nanotherapeutics for chemo-photothermal therapy and photothermal immunotherapy: A combined therapeutic approach. Advances in Cancer Biology - Metastasis 2022;4:100044. [DOI: 10.1016/j.adcanc.2022.100044] [Reference Citation Analysis]
26 Kokila GN, Mallikarjunaswamy C, Ranganatha VL. A review on synthesis and applications of versatile nanomaterials. Inorganic and Nano-Metal Chemistry 2022. [DOI: 10.1080/24701556.2022.2081189] [Reference Citation Analysis]
27 Wilson B, Mukundan Geetha K. Nanomedicine to deliver biological macromolecules for treating COVID-19. Vaccine 2022;40:3931-41. [PMID: 35660038 DOI: 10.1016/j.vaccine.2022.05.068] [Reference Citation Analysis]
28 Shariati A, Chegini Z, Ghaznavi-rad E, Zare EN, Hosseini SM. PLGA-Based Nanoplatforms in Drug Delivery for Inhibition and Destruction of Microbial Biofilm. Front Cell Infect Microbiol 2022;12:926363. [DOI: 10.3389/fcimb.2022.926363] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Andrade S, Loureiro JA, Ramirez S, Catumbela CSG, Soto C, Morales R, Pereira MC. Multi-Dose Intravenous Administration of Neutral and Cationic Liposomes in Mice: An Extensive Toxicity Study. Pharmaceuticals (Basel) 2022;15:761. [PMID: 35745680 DOI: 10.3390/ph15060761] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Adel M, Zahmatkeshan M, Akbarzadeh A, Rabiee N, Ahmadi S, Keyhanvar P, Rezayat SM, Seifalian AM. Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles. Biotechnology Reports 2022;34:e00730. [DOI: 10.1016/j.btre.2022.e00730] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Abbasi M, Sohail M, Minhas MU, Iqbal J, Mahmood A, Shaikh AJ. Folic acid-functionalized nanoparticles-laden biomaterials for the improved oral delivery of hydrophobic drug in colorectal cancer. Journal of Drug Delivery Science and Technology 2022;71:103287. [DOI: 10.1016/j.jddst.2022.103287] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Saravanakumar K, Sathiyaseelan A, Park S, Kim S, Priya VV, Wang M. Monoclonal Antibody Functionalized, and L-lysine α-Oxidase Loaded PEGylated-Chitosan Nanoparticle for HER2/Neu Targeted Breast Cancer Therapy. Pharmaceutics 2022;14:927. [DOI: 10.3390/pharmaceutics14050927] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Wu Z, Li J, Zhang X, Li Y, Wei D, Tang L, Deng S, Liu G. Rational Fabrication of Folate-Conjugated Zein/Soy Lecithin/Carboxymethyl Chitosan Core-Shell Nanoparticles for Delivery of Docetaxel. ACS Omega 2022;7:13371-81. [PMID: 35474787 DOI: 10.1021/acsomega.2c01270] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Basir KS, Mufida H, Ismail NI. Synthesis and Physicochemical Characterization of Naringeninand Gallic Acid-Loaded Polymeric Micelles for Cancer Drug Delivery. MJMHS 2022. [DOI: 10.47836/mjmhs.18.s6.7] [Reference Citation Analysis]
35 Karimi Alavijeh R, Akhbari K, Bernini MC, García Blanco AA, White JM. Design of Calcium-Based Metal–Organic Frameworks by the Solvent Effect and Computational Investigation of Their Potential as Drug Carriers. Crystal Growth & Design 2022;22:3154-62. [DOI: 10.1021/acs.cgd.2c00032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Zheng Y, Lakshmanan S, Ciobica A. Dose-Dependent Efficacy of Umbelliferone and Gelatin-Coated ZnO/ZnS Core-Shell Nanoparticles: A Novel Arthritis Agent for Severe Knee Arthritis. Oxidative Medicine and Cellular Longevity 2022;2022:1-15. [DOI: 10.1155/2022/7795602] [Reference Citation Analysis]
37 Shahriari M, Ali Hosseini Sedigh M, Shahriari M, Stenzel M, Mahdi Zangeneh M, Zangeneh A, Mahdavi B, Asadnia M, Gholami J, Karmakar B, Veisi H. Palladium nanoparticles decorated Chitosan-Pectin modified Kaolin: It’s catalytic activity for Suzuki-Miyaura coupling reaction, reduction of the 4-nitrophenol, and treatment of lung cancer. Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.109523] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Choi CE, Chakraborty A, Coyle A, Shamiya Y, Paul A. Contact-Free Remote Manipulation of Hydrogel Properties Using Light-Triggerable Nanoparticles: A Materials Science Perspective for Biomedical Applications. Adv Healthc Mater 2022;11:e2102088. [PMID: 35032156 DOI: 10.1002/adhm.202102088] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
39 Liu X, Yang Y, Lu Y, Li N, Hu F, Zhang B, Dai H, Cai H, Yan J. Active nanomaterials containing YAPTAZ reshape tumor immune microenvironment and enhance sensitivity of triple-negative breast cancer to immunotherapy. mat express 2022;12:603-8. [DOI: 10.1166/mex.2022.2188] [Reference Citation Analysis]
40 Galindres DM, Cifuentes D, Tinoco LE, Murillo-acevedo Y, Rodrigo MM, Ribeiro ACF, Esteso MA. A Review of the Application of Resorcinarenes and SBA-15 in Drug Delivery. Processes 2022;10:684. [DOI: 10.3390/pr10040684] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Cholkar SS, Gawade AR, Kuchekar AB. The Use of Medicinal Plant Extract in Hand Sanitizer and Spray to Combat Against Covid-19. Biosci , Biotech Res Asia 2022;19:183-189. [DOI: 10.13005/bbra/2977] [Reference Citation Analysis]
42 Cholkar SS, Gawade AR, Kuchekar AB. Lipid Nanoparticles: Key Facilitators of mRNA Vaccine Development. Biosci , Biotech Res Asia 2022;19:199-213. [DOI: 10.13005/bbra/2979] [Reference Citation Analysis]
43 Sharar AAA, Ramadan SZ, Hussein-al-ali SH. Multiobjective optimization of fluphenazine nanocomposite formulation using NSGA-II method. Materials Science-Poland 2022;0. [DOI: 10.2478/msp-2021-0042] [Reference Citation Analysis]
44 Shukla SS, Pandey RK, Kalyani G. Controlled Drug Delivery Systems. Advancements in Controlled Drug Delivery Systems 2022. [DOI: 10.4018/978-1-7998-8908-3.ch008] [Reference Citation Analysis]
45 Peddapalli H, Radha GV. Current approaches in Lipidic-nanoparticle Systems for Buccal Drug Delivery. RJPT 2022. [DOI: 10.52711/0974-360x.2022.00226] [Reference Citation Analysis]
46 Soundararajan D, Ramana LN, Shankaran P, Krishnan UM. Nanoparticle-based strategies to target HIV-infected cells. Colloids Surf B Biointerfaces 2022;213:112405. [PMID: 35255375 DOI: 10.1016/j.colsurfb.2022.112405] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Hao M, Xia H, Duan J, Zhou H, Zhang G, Li D, Chen X, Wang W, Sang Y, Feng S, Liu H. A Living Material Constructed from Stem Cells for Tumor‐Tropic Oncotherapy with Real‐Time Imaging. Adv Funct Materials 2022;32:2201013. [DOI: 10.1002/adfm.202201013] [Reference Citation Analysis]
48 Xie D, Wang Z, Li J, Guo D, Lu A, Liang C. Targeted Delivery of Chemotherapeutic Agents for Osteosarcoma Treatment. Front Oncol 2022;12:843345. [DOI: 10.3389/fonc.2022.843345] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
49 Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022;10:486. [DOI: 10.3390/biomedicines10020486] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
50 Mehanna MM, Abla KK. siRNA nanohybrid systems: false hope or feasible answer in cancer management. Ther Deliv 2022. [PMID: 35105155 DOI: 10.4155/tde-2021-0068] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Phuna ZX, Panda BP, Shivashekaregowda NKH, Madhavan P. Recent development in nanocrystal based drug delivery for neurodegenerative diseases: Scope, challenges, current and future prospects. Journal of Drug Delivery Science and Technology 2022;68:102921. [DOI: 10.1016/j.jddst.2021.102921] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Zong P, Lin Q, Feng J, Yue L. A Systemic Review of the Integral Role of TRPM2 in Ischemic Stroke: From Upstream Risk Factors to Ultimate Neuronal Death. Cells 2022;11:491. [PMID: 35159300 DOI: 10.3390/cells11030491] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Taliyan R, Kakoty V, Sarathlal KC, Kharavtekar SS, Karennanavar CR, Choudhary YK, Singhvi G, Riadi Y, Dubey SK, Kesharwani P. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer's disease. J Control Release 2022:S0168-3659(22)00058-X. [PMID: 35114208 DOI: 10.1016/j.jconrel.2022.01.044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
54 Sharma S. Nanomedicine: a solution to the key problems of diabetes research? Nanomedicine (Lond) 2022. [PMID: 35023375 DOI: 10.2217/nnm-2021-0339] [Reference Citation Analysis]
55 Hassanisaadi M, Barani M, Rahdar A, Heidary M, Thysiadou A, Kyzas GZ. Role of agrochemical-based nanomaterials in plants: biotic and abiotic stress with germination improvement of seeds. Plant Growth Regul. [DOI: 10.1007/s10725-021-00782-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
56 Thangavelu L, Raghunandhakumar S, Anand RS, Balusamy SR, Devaraj E, Veeramuthu AK, Roy A, Ramesh S, Perumalsamy H, David S. Recent Trends in Nanomedicine for Diagnosis and Treatment of Pulmonary Diseases. Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases 2022. [DOI: 10.1007/978-981-16-4392-7_11] [Reference Citation Analysis]
57 Samal P, Begum S. Drug loaded nanomaterials for hematological malignancies diagnosis and enhanced targeted therapy. Advanced Nanomaterials for Point of Care Diagnosis and Therapy 2022. [DOI: 10.1016/b978-0-323-85725-3.00016-7] [Reference Citation Analysis]
58 Pardeshi CV, Pardeshi SR, Naik JB. Strategies for Enhanced Drug Targeting to Inflamed Lungs: Novel Perspectives. Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases 2022. [DOI: 10.1007/978-981-16-4392-7_12] [Reference Citation Analysis]
59 Gade J, Jain B, Rawat R, Prashant Sharma P, Gupta P. An effective nanoparticles for drug delivery system. Materials Today: Proceedings 2022;51:A1-A7. [DOI: 10.1016/j.matpr.2021.05.407] [Reference Citation Analysis]
60 Abdelhafiz FM, Mohamed DE, Khattab A, Mohamed AS, Soliman EA, Kassem TM. Designing of quaternized hyperbranched polyamidoamines dendrimers: Surface activity, pharmaceutical efficacy, and safety approach. Journal of Drug Delivery Science and Technology 2022;67:102929. [DOI: 10.1016/j.jddst.2021.102929] [Reference Citation Analysis]
61 Parin FN, Terzioğlu P. Electrospun Porous Biobased Polymer Mats for Biomedical Applications. Advanced Functional Porous Materials 2022. [DOI: 10.1007/978-3-030-85397-6_18] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
62 Gill A, Nate Z, Chauhan R, Faya M, Karpoormath R, Omolo CA. Nanobioengineering: A promising approach for early detection of COVID-19. Sensing Tools and Techniques for COVID-19 2022. [DOI: 10.1016/b978-0-323-90280-9.00004-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Patil SM, Ramu R, Shirahatti PS, Ranganatha LV, Kumar N, Shbeer AM, Al-ghorbani M, Chandra JS. Advances in nanotechnology for drug discovery and design. Applications of Nanotechnology in Drug Discovery and Delivery 2022. [DOI: 10.1016/b978-0-12-824408-1.00014-4] [Reference Citation Analysis]
64 Arora V, Kabra A, Sharma RB, Dureja H, Dua K. Advanced drug delivery system in the treatment of hyperglycemia and hypoglycemia. Drug Delivery Systems for Metabolic Disorders 2022. [DOI: 10.1016/b978-0-323-99616-7.00019-0] [Reference Citation Analysis]
65 Kaushal D, Gupta S, Pathak YV. Delivery of siRNA to Macrophages: Challenges and Opportunities. Macrophage Targeted Delivery Systems 2022. [DOI: 10.1007/978-3-030-84164-5_21] [Reference Citation Analysis]
66 Prasad S, Mohan A, Huang K, Prasad V. Nuclear medicine therapy of lung cancer, breast cancer and colorectal cancer. Nuclear Medicine and Molecular Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00172-1] [Reference Citation Analysis]
67 Singh P, Mishra G, Pottoo FH, Zeleke MM, Ewunetei A. Nanotechnological Applications in the Diagnosis and Treatment of Alzheimer’s Dementia. Current Thoughts on Dementia 2022. [DOI: 10.1007/978-981-16-7606-2_22] [Reference Citation Analysis]
68 Tezcan T, Hsu C. Nanotechnology in healthcare: nanoparticles for diagnostic and therapy. Biotechnology in Healthcare, Volume 1 2022. [DOI: 10.1016/b978-0-323-89837-9.00005-x] [Reference Citation Analysis]
69 Eid MM. Application of Nanoparticles in Medicine. Handbook of Consumer Nanoproducts 2022. [DOI: 10.1007/978-981-16-8698-6_88] [Reference Citation Analysis]
70 Kiran P, Debnath SK, Neekhra S, Pawar V, Khan A, Dias F, Pallod S, Srivastava R. Designing nanoformulation for the nose‐to‐brain delivery in Parkinson's disease: Advancements and barrier. WIREs Nanomed Nanobiotechnol 2022;14. [DOI: 10.1002/wnan.1768] [Reference Citation Analysis]
71 Vellingiri S, Rejeeth C, Varukattu NB, Sharma A, Kumar RS, Almansour AI, Arumugam N, Afewerki S, Kannan S. In vivo delivery of nuclear targeted drugs for lung cancer using novel synthesis and functionalization of iron oxide nanocrystals. New J Chem . [DOI: 10.1039/d1nj05867c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Baldim I, Oliveira WP, Rao R, Raghuvir S, Mahant S, Gama FM, Souto EB. Biofate and cellular interactions of lipid nanoparticles. Nanoparticle Therapeutics 2022. [DOI: 10.1016/b978-0-12-820757-4.00015-6] [Reference Citation Analysis]
73 Perera WPTD, Dissanayake DMRK, Unagolla JM, De Silva RT, Bathige SDNK, Pahalagedara LR. Albumin grafted coaxial electrosparyed polycaprolactone-zinc oxide nanoparticle for sustained release and activity enhanced antibacterial drug delivery. RSC Adv 2022;12:1718-27. [DOI: 10.1039/d1ra07847j] [Reference Citation Analysis]
74 Tinku, Prajapati AK, Choudhary S. Understanding the partitioning of polyamines in micelles and delivery to the carrier protein: Thermodynamic approach. Journal of Molecular Liquids 2022;346:118303. [DOI: 10.1016/j.molliq.2021.118303] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
75 Massana Roquero D, Smutok O, Othman A, Melman A, Katz E. "Smart" Delivery of Monoclonal Antibodies from a Magnetic Responsive Microgel Nanocomposite. ACS Appl Bio Mater 2021;4:8487-97. [PMID: 35005932 DOI: 10.1021/acsabm.1c00994] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
76 Agarwal T, Tan S, Onesto V, Law JX, Agrawal G, Pal S, Lim WL, Sharifi E, Moghaddam FD, Maiti TK. Engineered herbal scaffolds for tissue repair and regeneration: Recent trends and technologies. Biomedical Engineering Advances 2021;2:100015. [DOI: 10.1016/j.bea.2021.100015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
77 Sharma R, Geranpayehvaghei M, Ejeian F, Razmjou A, Asadnia M. Recent advances in polymeric nanostructured ion selective membranes for biomedical applications. Talanta 2021;235:122815. [PMID: 34517671 DOI: 10.1016/j.talanta.2021.122815] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
78 Bilal M, Qindeel M, Raza A, Mehmood S, Rahdar A. Stimuli-responsive nanoliposomes as prospective nanocarriers for targeted drug delivery. Journal of Drug Delivery Science and Technology 2021;66:102916. [DOI: 10.1016/j.jddst.2021.102916] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
79 González-Félix MA, Mejía-Manzano LA, González-Valdez J. Biological nanoparticles: Relevance as novel target drug delivery systems and leading chromatographic isolation approaches. Electrophoresis 2021. [PMID: 34791693 DOI: 10.1002/elps.202100124] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
80 Huang R, Hu J, Qian W, Chen L, Zhang D. Recent advances in nanotherapeutics for the treatment of burn wounds. Burns Trauma 2021;9:tkab026. [PMID: 34778468 DOI: 10.1093/burnst/tkab026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
81 Qi D, Liu Y, Li J, Huang JH, Hu X, Wu E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med Res Rev 2021. [PMID: 34786735 DOI: 10.1002/med.21870] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
82 Ebrahimnejad P, Sodagar Taleghani A, Asare-Addo K, Nokhodchi A. An updated review of folate-functionalized nanocarriers: A promising ligand in cancer. Drug Discov Today 2021:S1359-6446(21)00490-6. [PMID: 34781032 DOI: 10.1016/j.drudis.2021.11.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
83 Rabie EM, Khalil MMH, Elaasser MM, Ismail EH. Macro‐ and nano‐oligomers ternary metal complexes preparation, structural elucidation: Antimicrobial, anticancer activities, and mechanistic study of Cu nanocomplexes on liver carcinoma. Applied Organom Chemis 2021;35. [DOI: 10.1002/aoc.6392] [Reference Citation Analysis]
84 Ganesan K, Wang Y, Gao F, Liu Q, Zhang C, Li P, Zhang J, Chen J. Targeting Engineered Nanoparticles for Breast Cancer Therapy. Pharmaceutics 2021;13:1829. [PMID: 34834243 DOI: 10.3390/pharmaceutics13111829] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
85 Yu H, Liu D, Shu G, Jin F, Du Y. Recent advances in nanotherapeutics for the treatment and prevention of acute kidney injury. Asian J Pharm Sci 2021;16:432-43. [PMID: 34703493 DOI: 10.1016/j.ajps.2020.11.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
86 Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel) 2021;13:5414. [PMID: 34771577 DOI: 10.3390/cancers13215414] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Razzaq S, Rauf A, Raza A, Akhtar S, Tabish TA, Sandhu MA, Zaman M, Ibrahim IM, Shahnaz G, Rahdar A, Díez-Pascual AM. A Multifunctional Polymeric Micelle for Targeted Delivery of Paclitaxel by the Inhibition of the P-Glycoprotein Transporters. Nanomaterials (Basel) 2021;11:2858. [PMID: 34835622 DOI: 10.3390/nano11112858] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
88 Tiwari V, Kumar M, Tiwari A, Sahoo BM, Singh S, Kumar S, Saharan R. Current trends in diagnosis and treatment strategies of COVID-19 infection. Environ Sci Pollut Res Int 2021;28:64987-5013. [PMID: 34601675 DOI: 10.1007/s11356-021-16715-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Dabholkar N, Waghule T, Krishna Rapalli V, Gorantla S, Alexander A, Narayan Saha R, Singhvi G. Lipid shell lipid nanocapsules as smart generation lipid nanocarriers. Journal of Molecular Liquids 2021;339:117145. [DOI: 10.1016/j.molliq.2021.117145] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
90 Adepu S, Ramakrishna S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021;26:5905. [PMID: 34641447 DOI: 10.3390/molecules26195905] [Cited by in Crossref: 28] [Cited by in F6Publishing: 36] [Article Influence: 28.0] [Reference Citation Analysis]
91 Kiwumulo HF, Muwonge H, Ibingira C, Kirabira JB, Ssekitoleko RT. A systematic review of modeling and simulation approaches in designing targeted treatment technologies for Leukemia Cancer in low and middle income countries. Math Biosci Eng 2021;18:8149-73. [PMID: 34814293 DOI: 10.3934/mbe.2021404] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
92 Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. Beilstein J Nanotechnol 2021;12:808-62. [PMID: 34476167 DOI: 10.3762/bjnano.12.64] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
93 López-Lugo JD, Pimentel-Domínguez R, Benítez-Martínez JA, Hernández-Cordero J, Vélez-Cordero JR, Sánchez-Arévalo FM. Photomechanical Polymer Nanocomposites for Drug Delivery Devices. Molecules 2021;26:5376. [PMID: 34500809 DOI: 10.3390/molecules26175376] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
94 Li H, Yao Y, Fu H. Novel pediatric suspension of nanoparticulate zafirlukast for the treatment of asthma: Assessment and evaluation in animal model. Micro & Nano Letters 2021;16:485-91. [DOI: 10.1049/mna2.12078] [Reference Citation Analysis]
95 Mitra S, Gera R, Linderoth B, Lind G, Wahlberg L, Almqvist P, Behbahani H, Eriksdotter M. A Review of Techniques for Biodelivery of Nerve Growth Factor (NGF) to the Brain in Relation to Alzheimer's Disease. Adv Exp Med Biol 2021;1331:167-91. [PMID: 34453298 DOI: 10.1007/978-3-030-74046-7_11] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
96 Thangam R, Patel KD, Kang H, Paulmurugan R. Advances in Engineered Polymer Nanoparticle Tracking Platforms towards Cancer Immunotherapy-Current Status and Future Perspectives. Vaccines (Basel) 2021;9:935. [PMID: 34452059 DOI: 10.3390/vaccines9080935] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
97 Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021;9:6770-801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
98 Abdel-Rashid RS, Abd Allah FI, Hassan AA, Hashim FM. Design, optimization, and in-vivo hypoglycaemic effect of nanosized glibenclamide for inhalation delivery. J Liposome Res 2021;31:291-303. [PMID: 32762273 DOI: 10.1080/08982104.2020.1806874] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
99 Heidarzadeh M, Gürsoy-Özdemir Y, Kaya M, Eslami Abriz A, Zarebkohan A, Rahbarghazi R, Sokullu E. Exosomal delivery of therapeutic modulators through the blood-brain barrier; promise and pitfalls. Cell Biosci 2021;11:142. [PMID: 34294165 DOI: 10.1186/s13578-021-00650-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 25.0] [Reference Citation Analysis]
100 Asdaq SMB, Ikbal AMA, Sahu RK, Bhattacharjee B, Paul T, Deka B, Fattepur S, Widyowati R, Vijaya J, Al Mohaini M, Alsalman AJ, Imran M, Nagaraja S, Nair AB, Attimarad M, Venugopala KN. Nanotechnology Integration for SARS-CoV-2 Diagnosis and Treatment: An Approach to Preventing Pandemic. Nanomaterials (Basel) 2021;11:1841. [PMID: 34361227 DOI: 10.3390/nano11071841] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
101 Musale S, Giram P, Department of Pharmaceutics, Dr. D. Y. Patil Unitech Society’s Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Sant Tukaram Nagar, Pimpri, Pune - 411 018, Maharashtra, India. NOSE TO BRAIN DELIVERY: ROLE OF VIRAL AND NON-VIRAL VECTORS FOR NEUROLOGICAL DISORDER. Ind Dru 2021;58:7-20. [DOI: 10.53879/id.58.05.12489] [Reference Citation Analysis]
102 Taherian A, Esfandiari N, Rouhani S. Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nano 2021;12. [DOI: 10.1186/s12645-021-00086-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
103 Szabat-Iriaka B, Le Borgne M. Brain safety concerns of nanomedicines: The need for a specific regulatory framework. Drug Discov Today 2021;26:2502-7. [PMID: 34224902 DOI: 10.1016/j.drudis.2021.06.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
104 Dolai J, Mandal K, Jana NR. Nanoparticle Size Effects in Biomedical Applications. ACS Appl Nano Mater 2021;4:6471-96. [DOI: 10.1021/acsanm.1c00987] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 20.0] [Reference Citation Analysis]
105 Chang RYK, Okamoto Y, Morales S, Kutter E, Chan HK. Hydrogel formulations containing non-ionic polymers for topical delivery of bacteriophages. Int J Pharm 2021;605:120850. [PMID: 34216771 DOI: 10.1016/j.ijpharm.2021.120850] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
106 Sharifi-Rad J, Quispe C, Butnariu M, Rotariu LS, Sytar O, Sestito S, Rapposelli S, Akram M, Iqbal M, Krishna A, Kumar NVA, Braga SS, Cardoso SM, Jafernik K, Ekiert H, Cruz-Martins N, Szopa A, Villagran M, Mardones L, Martorell M, Docea AO, Calina D. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int 2021;21:318. [PMID: 34167552 DOI: 10.1186/s12935-021-02025-4] [Cited by in Crossref: 55] [Cited by in F6Publishing: 58] [Article Influence: 55.0] [Reference Citation Analysis]
107 Rumanti AP, Maruf A, Liu H, Ge S, Lei D, Wang G. Engineered bioresponsive nanotherapeutics: recent advances in the treatment of atherosclerosis and ischemic-related disease. J Mater Chem B 2021;9:4804-25. [PMID: 34085084 DOI: 10.1039/d1tb00330e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
108 Bajpai S, Tiwary SK, Sonker M, Joshi A, Gupta V, Kumar Y, Shreyash N, Biswas S. Recent Advances in Nanoparticle-Based Cancer Treatment: A Review. ACS Appl Nano Mater 2021;4:6441-70. [DOI: 10.1021/acsanm.1c00779] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
109 Zhirnov VV, Velihina YS, Mitiukhin OP, Brovarets VS. Intrinsic drug potential of oxazolo[5,4-d]pyrimidines and oxazolo[4,5-d]pyrimidines. Chem Biol Drug Des 2021. [PMID: 34148293 DOI: 10.1111/cbdd.13911] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
110 Yong HW, Kakkar A. Nanoengineering Branched Star Polymer-Based Formulations: Scope, Strategies, and Advances. Macromol Biosci 2021;21:e2100105. [PMID: 34117840 DOI: 10.1002/mabi.202100105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
111 Helmi O, Elshishiny F, Mamdouh W. Targeted doxorubicin delivery and release within breast cancer environment using PEGylated chitosan nanoparticles labeled with monoclonal antibodies. Int J Biol Macromol 2021;184:325-38. [PMID: 34119547 DOI: 10.1016/j.ijbiomac.2021.06.014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
112 Alsudir SA, Almalik A, Alhasan AH. Catalogue of self-targeting nano-medical inventions to accelerate clinical trials. Biomater Sci 2021;9:3898-910. [PMID: 33912874 DOI: 10.1039/d1bm00235j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
113 Yu H, Wang B, Zhou S, Zhu M, Chen W, Chen H, Li X, Liang S, Wang M, Zheng L, Zhao L, Chai Z, Feng W. Polyvinylpyrrolidone functionalization induces deformable structure of graphene oxide nanosheets for lung-targeting delivery. Nano Today 2021;38:101151. [DOI: 10.1016/j.nantod.2021.101151] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
114 Guastaferro M, Reverchon E, Baldino L. Agarose, Alginate and Chitosan Nanostructured Aerogels for Pharmaceutical Applications: A Short Review. Front Bioeng Biotechnol 2021;9:688477. [PMID: 34055766 DOI: 10.3389/fbioe.2021.688477] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
115 Zhang L, Wei F, Al-Ammari A, Sun D. An optimized mesoporous silica nanosphere-based carrier system with chemically removable Au nanoparticle caps for redox-stimulated and targeted drug delivery. Nanotechnology 2020;31:475102. [PMID: 32413886 DOI: 10.1088/1361-6528/ab9391] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
116 Guan H, Yang S, Zheng C, Zhu L, Sun S, Guo M, Hu X, Huang X, Wang L, Shen Z. DNAzyme-based sensing probe protected by DNA tetrahedron from nuclease degradation for the detection of lead ions. Talanta 2021;233:122543. [PMID: 34215046 DOI: 10.1016/j.talanta.2021.122543] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
117 Mat Rani NNI, Mustafa Hussein Z, Mustapa F, Azhari H, Sekar M, Chen XY, Mohd Amin MCI. Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Pharm Biopharm 2021;165:84-105. [PMID: 33974973 DOI: 10.1016/j.ejpb.2021.04.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
118 Vazquez-Padron RI, Martinez L, Duque JC, Salman LH, Tabbara M. The anatomical sources of neointimal cells in the arteriovenous fistula. J Vasc Access 2021;:11297298211011875. [PMID: 33960241 DOI: 10.1177/11297298211011875] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
119 Porrang S, Rahemi N, Davaran S, Mahdavi M, Hassanzadeh B. Preparation and in-vitro evaluation of mesoporous biogenic silica nanoparticles obtained from rice and wheat husk as a biocompatible carrier for anti-cancer drug delivery. Eur J Pharm Sci 2021;163:105866. [PMID: 33957220 DOI: 10.1016/j.ejps.2021.105866] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
120 Gassen R, Thompkins D, Routt A, Jones P, Smith M, Thompson W, Couture P, Bozhko DA, Celinski Z, Camley RE, Hagen GM, Spendier K. Optical Imaging of Magnetic Particle Cluster Oscillation and Rotation in Glycerol. J Imaging 2021;7:82. [PMID: 34460678 DOI: 10.3390/jimaging7050082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Liu Y, Sun Y, Ye M, Zhu L, Zhang L, Zhu S. Improvement in storage quality of postharvest tomato fruits by nitroxyl liposomes treatment. Food Chem 2021;359:129933. [PMID: 33951606 DOI: 10.1016/j.foodchem.2021.129933] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 Jariwala T, Ico G, Tai Y, Park H, Myung NV, Nam J. Mechano-Responsive Piezoelectric Nanofiber as an On-Demand Drug Delivery Vehicle. ACS Appl Bio Mater 2021;4:3706-15. [PMID: 35014455 DOI: 10.1021/acsabm.1c00232] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
123 Iqbal SMA, Mahgoub I, Du E, Leavitt MA, Asghar W. Advances in healthcare wearable devices. npj Flex Electron 2021;5. [DOI: 10.1038/s41528-021-00107-x] [Cited by in Crossref: 65] [Cited by in F6Publishing: 69] [Article Influence: 65.0] [Reference Citation Analysis]
124 Al-sawaftah NM, Abusamra RH, Husseini GA. Carbohydrate-functionalized Liposomes in Cancer Therapy. CCTR 2021;17:4-20. [DOI: 10.2174/1573394716999200626144921] [Reference Citation Analysis]
125 Franco P, De Marco I. Contact Lenses as Ophthalmic Drug Delivery Systems: A Review. Polymers (Basel) 2021;13:1102. [PMID: 33808363 DOI: 10.3390/polym13071102] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
126 Ebadi M, Bullo S, Buskaran K, Hussein MZ, Fakurazi S, Pastorin G. Dual-Functional Iron Oxide Nanoparticles Coated with Polyvinyl Alcohol/5-Fluorouracil/Zinc-Aluminium-Layered Double Hydroxide for a Simultaneous Drug and Target Delivery System. Polymers (Basel) 2021;13:855. [PMID: 33802205 DOI: 10.3390/polym13060855] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
127 Zarghami Dehaghani M, Bagheri B, Yousefi F, Nasiriasayesh A, Hamed Mashhadzadeh A, Zarrintaj P, Rabiee N, Bagherzadeh M, Fierro V, Celzard A, Saeb MR, Mostafavi E. Boron Nitride Nanotube as an Antimicrobial Peptide Carrier: A Theoretical Insight. Int J Nanomedicine 2021;16:1837-47. [PMID: 33692624 DOI: 10.2147/IJN.S298699] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
128 Kho KW, Berselli GB, Keyes TE. A Nanoplasmonic Assay of Oligonucleotide-Cargo Delivery from Cationic Lipoplexes. Small 2021;17:e2005815. [PMID: 33634594 DOI: 10.1002/smll.202005815] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
129 Hamamichi S, Fukuhara T, Umeda IO, Fujii H, Hattori N. Novel method for screening functional antibody with comprehensive analysis of its immunoliposome. Sci Rep 2021;11:4625. [PMID: 33633189 DOI: 10.1038/s41598-021-84043-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 Czyzynska-Cichon I, Janik-Hazuka M, Szafraniec-Szczęsny J, Jasinski K, Węglarz WP, Zapotoczny S, Chlopicki S. Low Dose Curcumin Administered in Hyaluronic Acid-Based Nanocapsules Induces Hypotensive Effect in Hypertensive Rats. Int J Nanomedicine 2021;16:1377-90. [PMID: 33658778 DOI: 10.2147/IJN.S291945] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
131 Kamal NAMA, Abdulmalek E, Fakurazi S, Cordova KE, Abdul Rahman MB. Surface peptide functionalization of zeolitic imidazolate framework-8 for autonomous homing and enhanced delivery of chemotherapeutic agent to lung tumor cells. Dalton Trans 2021;50:2375-86. [PMID: 33555001 DOI: 10.1039/d1dt00116g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
132 Shukla A, Singh AP, Maiti P. Injectable hydrogels of newly designed brush biopolymers as sustained drug-delivery vehicle for melanoma treatment. Signal Transduct Target Ther 2021;6:63. [PMID: 33589586 DOI: 10.1038/s41392-020-00431-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
133 An JM, Shahriar SMS, Hwang YH, Hwang SR, Lee DY, Cho S, Lee Y. Oral Delivery of Parathyroid Hormone Using a Triple-Padlock Nanocarrier for Osteoporosis via an Enterohepatic Circulation Pathway. ACS Appl Mater Interfaces 2021;13:23314-27. [DOI: 10.1021/acsami.0c22170] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
134 Cyboran-Mikołajczyk S, Sareło P, Pasławski R, Pasławska U, Przybyło M, Nowak K, Płóciennik M, Podbielska H, Kopaczyńska M, Wawrzyńska M. Impact of Liposomal Drug Formulations on the RBCs Shape, Transmembrane Potential, and Mechanical Properties. Int J Mol Sci 2021;22:1710. [PMID: 33567766 DOI: 10.3390/ijms22041710] [Reference Citation Analysis]
135 Anastasio AT, Paniagua A, Diamond C, Ferlauto HR, Fernandez-Moure JS. Nanomaterial Nitric Oxide Delivery in Traumatic Orthopedic Regenerative Medicine. Front Bioeng Biotechnol 2020;8:592008. [PMID: 33537289 DOI: 10.3389/fbioe.2020.592008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
136 Ferraz de Paiva RE, Vieira EG, Rodrigues da Silva D, Wegermann CA, Costa Ferreira AM. Anticancer Compounds Based on Isatin-Derivatives: Strategies to Ameliorate Selectivity and Efficiency. Front Mol Biosci 2020;7:627272. [PMID: 33614708 DOI: 10.3389/fmolb.2020.627272] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 24.0] [Reference Citation Analysis]
137 Safa M, Dorranian D, Masoudi AA, Matin LF. Influence of transverse magnetic field on the properties of laser ablation produced nickel oxide nanoparticles. Phys Scr 2021;96:025804. [DOI: 10.1088/1402-4896/abd057] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
138 Alagarsamy KN, Mathan S, Yan W, Rafieerad A, Sekaran S, Manego H, Dhingra S. Carbon nanomaterials for cardiovascular theranostics: Promises and challenges. Bioact Mater 2021;6:2261-80. [PMID: 33553814 DOI: 10.1016/j.bioactmat.2020.12.030] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
139 Prabhu S, Deng H, Cross TL, Shahoei SH, Konopka CJ, Gonzalez Medina N, Applegate CC, Wallig MA, Dobrucki LW, Nelson ER, Smith AM, Swanson KS. Nanocarriers targeting adipose macrophages increase glucocorticoid anti-inflammatory potency to ameliorate metabolic dysfunction. Biomater Sci 2021;9:506-18. [PMID: 33200765 DOI: 10.1039/d0bm01142h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
140 Aranda-Lara L, García BEO, Isaac-Olivé K, Ferro-Flores G, Meléndez-Alafort L, Morales-Avila E. Drug Delivery Systems-Based Dendrimers and Polymer Micelles for Nuclear Diagnosis and Therapy. Macromol Biosci 2021;21:e2000362. [PMID: 33458936 DOI: 10.1002/mabi.202000362] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
141 Tiwari R, Banerjee S, Tyde D, Saha KD, Ethirajan A, Mukherjee N, Chattopadhy S, Pramanik SK, Das A. Redox-Responsive Nanocapsules for the Spatiotemporal Release of Miltefosine in Lysosome: Protection against Leishmania. Bioconjug Chem 2021;32:245-53. [PMID: 33438999 DOI: 10.1021/acs.bioconjchem.0c00667] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
142 Zhong W, Zhang X, Zeng Y, Lin D, Wu J. Recent applications and strategies in nanotechnology for lung diseases. Nano Res 2021;:1-23. [PMID: 33456721 DOI: 10.1007/s12274-020-3180-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
143 Wang Y, Wang C, Li K, Song X, Yan X, Yu L, He Z. Recent advances of nanomedicine-based strategies in diabetes and complications management: Diagnostics, monitoring, and therapeutics. J Control Release 2021;330:618-40. [PMID: 33417985 DOI: 10.1016/j.jconrel.2021.01.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
144 Mustfa SA, Maurizi E, Mcgrath J, Chiappini C. Nanomedicine Approaches to Negotiate Local Biobarriers for Topical Drug Delivery. Adv Therap 2021;4:2000160. [DOI: 10.1002/adtp.202000160] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
145 Zheng M, Jia H, Wang H, Liu L, He Z, Zhang Z, Yang W, Gao L, Gao X, Gao F. Application of nanomaterials in the treatment of rheumatoid arthritis. RSC Adv 2021;11:7129-37. [DOI: 10.1039/d1ra00328c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
146 Hernández-fontes P, Lozano O, García-rivas G. Nanomaterials aimed toward the cardiac mitochondria: from therapeutics to nanosafety. Mitochondrial Dysfunction and Nanotherapeutics 2021. [DOI: 10.1016/b978-0-323-85666-9.00002-4] [Reference Citation Analysis]
147 Chintamaneni PK, Krishnamurthy PT, Sathyamoorthy N. Nanocarriers for theranostic applications. Nanocarriers for the Delivery of Combination Drugs 2021. [DOI: 10.1016/b978-0-12-820779-6.00003-7] [Reference Citation Analysis]
148 Emir Diltemiz S, Tavafoghi M, de Barros NR, Kanada M, Heinämäki J, Contag C, Seidlits SK, Ashammakhi N. Use of artificial cells as drug carriers. Mater Chem Front 2021;5:6672-92. [DOI: 10.1039/d1qm00717c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
149 Pang S, Soon ML, Shameli K, Janarthanan P, Teow S. Delivery of Drug Payloads to Organs and Organ-Systems. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-61021-0_11] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
150 Guo QR, Zhang LL, Liu JF, Li Z, Li JJ, Zhou WM, Wang H, Li JQ, Liu DY, Yu XY, Zhang JY. Multifunctional microfluidic chip for cancer diagnosis and treatment. Nanotheranostics 2021;5:73-89. [PMID: 33391976 DOI: 10.7150/ntno.49614] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
151 Haque S, Norbert CC, Patra CR. Nanomedicine: future therapy for brain cancers. Nano Drug Delivery Strategies for the Treatment of Cancers 2021. [DOI: 10.1016/b978-0-12-819793-6.00003-5] [Reference Citation Analysis]
152 Cuestas ML, Devoto TB, Toscanini MA, Limeres MJ, Islán GA, Castro GR. Nanoparticle Formulations and Delivery Strategies for Sustained Drug Release in the Lungs. Modeling and Control of Drug Delivery Systems 2021. [DOI: 10.1016/b978-0-12-821185-4.00002-6] [Reference Citation Analysis]
153 Zheng X, Zhao X, Han Z, Chen K. Enhancer of zeste homolog 2 participates in the process of atherosclerosis by modulating microRNA-139-5p methylation and signal transducer and activator of transcription 1 expression. IUBMB Life 2021;73:238-51. [PMID: 33331071 DOI: 10.1002/iub.2423] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
154 Dhanasekaran S, Venugopal D, Al-Dayan N, Ravinayagam V, Mohammed AA. Emerging insights into mitochondria-specific targeting and drug delivering strategies: Recent milestones and therapeutic implications. Saudi J Biol Sci 2020;27:3581-92. [PMID: 33304169 DOI: 10.1016/j.sjbs.2020.07.030] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
155 Khan AR, Liu Y, Yang H, Yang X, Liu S, Ji J, Zhai G. Chondroitin sulfate-based redox-responsive nanoparticles for melanoma-targeted drug delivery. Journal of Drug Delivery Science and Technology 2020;60:102033. [DOI: 10.1016/j.jddst.2020.102033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
156 Guastaferro M, Baldino L, Cardea S, Reverchon E. Supercritical assisted electrospray/spinning to produce PVP+quercetin microparticles and microfibers. Journal of the Taiwan Institute of Chemical Engineers 2020;117:278-86. [DOI: 10.1016/j.jtice.2020.12.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
157 Aminu N, Bello I, Umar NM, Tanko N, Aminu A, Audu MM. The influence of nanoparticulate drug delivery systems in drug therapy. Journal of Drug Delivery Science and Technology 2020;60:101961. [DOI: 10.1016/j.jddst.2020.101961] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
158 Li Y, Liu L, Ji W, Peng H, Zhao R, Zhang X. Strategies and materials of "SMART" non-viral vectors: Overcoming the barriers for brain gene therapy. Nano Today 2020;35:101006. [DOI: 10.1016/j.nantod.2020.101006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
159 Resende G, Dutra GVS, Neta MSB, Araújo OA, Chaves SB, Machado F. Well Defined Poly(Methyl Methacrylate)-Fe3O4/Poly(Vinyl Pivalate) Core-Shell Superparamagnetic Nanoparticles: Design and Evaluation of In Vitro Cytotoxicity Activity Against Cancer Cells. Polymers (Basel) 2020;12:E2868. [PMID: 33266092 DOI: 10.3390/polym12122868] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
160 Su W, Wang R, Qian C, Li X, Tong Q, Jiao T, Leal JOP. Research Progress Review of Preparation and Applications of Fluorescent Hydrogels. Journal of Chemistry 2020;2020:1-17. [DOI: 10.1155/2020/8246429] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
161 Han X, Sun M, Chen B, Saiding Q, Zhang J, Song H, Deng L, Wang P, Gong W, Cui W. Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact Mater 2021;6:1639-52. [PMID: 33313444 DOI: 10.1016/j.bioactmat.2020.11.019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 14.0] [Reference Citation Analysis]
162 Cardoso VMDO, Moreira BJ, Comparetti EJ, Sampaio I, Ferreira LMB, Lins PMP, Zucolotto V. Is Nanotechnology Helping in the Fight Against COVID-19? Front Nanotechnol 2020;2:588915. [DOI: 10.3389/fnano.2020.588915] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
163 Gulen B, Demircivi P. Synthesis and characterization of montmorillonite/ciprofloxacin/TiO2 porous structure for controlled drug release of ciprofloxacin tablet with oral administration. Applied Clay Science 2020;197:105768. [DOI: 10.1016/j.clay.2020.105768] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
164 Mishra RK, Ahmad A, Kumar A, Vyawahare A, Raza SS, Khan R. Lipid-based nanocarrier-mediated targeted delivery of celecoxib attenuate severity of ulcerative colitis. Materials Science and Engineering: C 2020;116:111103. [DOI: 10.1016/j.msec.2020.111103] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
165 Rajan A, Sahu NK. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. J Nanopart Res 2020;22. [DOI: 10.1007/s11051-020-05045-9] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 16.0] [Reference Citation Analysis]
166 Hamamichi S, Fukuhara T, Hattori N. Immunotoxin Screening System: A Rapid and Direct Approach to Obtain Functional Antibodies with Internalization Capacities. Toxins (Basel) 2020;12:E658. [PMID: 33076544 DOI: 10.3390/toxins12100658] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
167 Sohrabi N, Alihosseini A, Pirouzfar V, Pedram MZ. Analysis of Dynamics Targeting CNT-Based Drug Delivery through Lung Cancer Cells: Design, Simulation, and Computational Approach. Membranes (Basel) 2020;10:E283. [PMID: 33066362 DOI: 10.3390/membranes10100283] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
168 Sharma S, Pukale SS, Sahel DK, Agarwal DS, Dalela M, Mohanty S, Sakhuja R, Mittal A, Chitkara D. Folate-Targeted Cholesterol-Grafted Lipo-Polymeric Nanoparticles for Chemotherapeutic Agent Delivery. AAPS PharmSciTech 2020;21:280. [PMID: 33037506 DOI: 10.1208/s12249-020-01812-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
169 Nho R. Pathological effects of nano-sized particles on the respiratory system. Nanomedicine: Nanotechnology, Biology and Medicine 2020;29:102242. [DOI: 10.1016/j.nano.2020.102242] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
170 Nigro A, Frattaruolo L, Fava M, De Napoli I, Greco M, Comandè A, De Santo M, Pellegrino M, Ricci E, Giordano F, Perrotta I, Leggio A, Pasqua L, Sisci D, Cappello AR, Morelli C. Bortezomib-Loaded Mesoporous Silica Nanoparticles Selectively Alter Metabolism and Induce Death in Multiple Myeloma Cells. Cancers (Basel) 2020;12:E2709. [PMID: 32967380 DOI: 10.3390/cancers12092709] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
171 El-khawaga AM, Farrag AA, Elsayed MA, El-sayyad GS, El-batal AI. Antimicrobial and Photocatalytic Degradation Activities of Chitosan-coated Magnetite Nanocomposite. J Clust Sci 2021;32:1107-19. [DOI: 10.1007/s10876-020-01869-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
172 Li Z, Luo G, Hu W, Hua J, Geng S, Chu PK, Zhang J, Wang H, Yu X. Mediated Drug Release from Nanovehicles by Black Phosphorus Quantum Dots for Efficient Therapy of Chronic Obstructive Pulmonary Disease. Angew Chem 2020;132:20749-57. [DOI: 10.1002/ange.202008379] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
173 Li Z, Luo G, Hu WP, Hua JL, Geng S, Chu PK, Zhang J, Wang H, Yu XF. Mediated Drug Release from Nanovehicles by Black Phosphorus Quantum Dots for Efficient Therapy of Chronic Obstructive Pulmonary Disease. Angew Chem Int Ed Engl 2020;59:20568-76. [PMID: 32666703 DOI: 10.1002/anie.202008379] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 14.5] [Reference Citation Analysis]
174 Khaledian M, Nourbakhsh MS, Saber R, Hashemzadeh H, Darvishi MH. Preparation and Evaluation of Doxorubicin-Loaded PLA-PEG-FA Copolymer Containing Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Cancer Treatment: Combination Therapy with Hyperthermia and Chemotherapy. Int J Nanomedicine 2020;15:6167-82. [PMID: 32922000 DOI: 10.2147/IJN.S261638] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
175 Sandhiya V, Ubaidulla U. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. Futur J Pharm Sci 2020;6. [DOI: 10.1186/s43094-020-00050-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
176 Acharya D, Satapathy S, Somu P, Parida UK, Mishra G. Apoptotic Effect and Anticancer Activity of Biosynthesized Silver Nanoparticles from Marine Algae Chaetomorpha linum Extract Against Human Colon Cancer Cell HCT-116. Biol Trace Elem Res 2021;199:1812-22. [PMID: 32743762 DOI: 10.1007/s12011-020-02304-7] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 17.0] [Reference Citation Analysis]
177 Long D, Xiao B, Merlin D. Genetically modified silk fibroin nanoparticles for drug delivery: preparation strategies and application prospects. Nanomedicine 2020;15:1739-42. [DOI: 10.2217/nnm-2020-0182] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
178 Raj S, Kumar D. Biochemical Toxicology: Heavy Metals and Nanomaterials. Biochemical Toxicology - Heavy Metals and Nanomaterials 2020. [DOI: 10.5772/intechopen.90928] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
179 Rathnayake K, Patel U, Pham C, Mcalpin A, Budisalich T, Jayawardena SN. Targeted Delivery of Antibiotic Therapy to Inhibit Pseudomonas aeruginosa Using Lipid-Coated Mesoporous Silica Core–Shell Nanoassembly. ACS Appl Bio Mater 2020;3:6708-21. [DOI: 10.1021/acsabm.0c00622] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
180 Fu D, Shi Y, Liu JB, Wu TM, Jia CY, Yang HQ, Zhang DD, Yang XL, Wang HM, Ma YS. Targeting Long Non-coding RNA to Therapeutically Regulate Gene Expression in Cancer. Mol Ther Nucleic Acids 2020;21:712-24. [PMID: 32771923 DOI: 10.1016/j.omtn.2020.07.005] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 16.0] [Reference Citation Analysis]
181 Yue L, Jin W, Chi S, Yang T, Lei Z, Zhu H, Zhao Y. pH‐responsive chitosan/sulfobutyl ether‐β‐cyclodextrin supramolecular nanoparticles for controlled release of sodium ferulate. Polym Eng Sci 2020;60:2403-13. [DOI: 10.1002/pen.25479] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
182 Pedroso-Santana S, Lamazares Arcia E, Fleitas-Salazar N, Gancino Guevara M, Mansilla R, Gómez-Gaete C, Altamirano C, Fernandez K, Ruiz A, Toledo Alonso JR. Polymeric nanoencapsulation of alpha interferon increases drug bioavailability and induces a sustained antiviral response in vivo. Mater Sci Eng C Mater Biol Appl 2020;116:111260. [PMID: 32806331 DOI: 10.1016/j.msec.2020.111260] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
183 Garcia-Chica J, D Paraiso WK, Tanabe S, Serra D, Herrero L, Casals N, Garcia J, Ariza X, Quader S, Rodriguez-Rodriguez R. An overview of nanomedicines for neuron targeting. Nanomedicine (Lond) 2020;15:1617-36. [PMID: 32618490 DOI: 10.2217/nnm-2020-0088] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
184 Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics 2020;12:E616. [PMID: 32630625 DOI: 10.3390/pharmaceutics12070616] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
185 Luther DC, Huang R, Jeon T, Zhang X, Lee YW, Nagaraj H, Rotello VM. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev 2020;156:188-213. [PMID: 32610061 DOI: 10.1016/j.addr.2020.06.020] [Cited by in Crossref: 82] [Cited by in F6Publishing: 70] [Article Influence: 41.0] [Reference Citation Analysis]
186 Javid A, Ghani MJ, Shahzad S, Rezaei-Zarchi S. Antineoplastic drug-loaded polymer-modified magnetite nanoparticles: Comparative analysis of EPR-mediated drug delivery. Cell Biol Int 2020;44:2042-52. [PMID: 32584486 DOI: 10.1002/cbin.11413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
187 Medhi H, Khumukcham SS, Manavathi B, Paik P. Effective in vitro delivery of paclitaxel by nanocargo of mesoporous polycaprolactone against triple negative breast cancer cells by minimalizing drug dose. RSC Adv 2020;10:24095-107. [PMID: 35517325 DOI: 10.1039/d0ra04505e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
188 Mukherjee S, Madamsetty VS, Bhattacharya D, Roy Chowdhury S, Paul MK, Mukherjee A. Recent Advancements of Nanomedicine in Neurodegenerative Disorders Theranostics. Adv Funct Mater 2020;30:2003054. [DOI: 10.1002/adfm.202003054] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 22.5] [Reference Citation Analysis]
189 Meza-Rios A, Navarro-Partida J, Armendariz-Borunda J, Santos A. Therapies Based on Nanoparticles for Eye Drug Delivery. Ophthalmol Ther 2020;9:1-14. [PMID: 32383107 DOI: 10.1007/s40123-020-00257-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
190 Bakina OV, Svarovskaya NV, Miller AA, Lozhkomoev AS, Avgustinovich AV, Dobrodeev АY, Spirina LV, Afanasyev SG. Synergistic effect of antitumor activity of doxorubicin and bicomponent nanostructures based on aluminum oxide. Sib onkol ž 2020;19:82-9. [DOI: 10.21294/1814-4861-2020-19-2-82-89] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
191 Huang Q, Zhang J, Zhang Y, Timashev P, Ma X, Liang XJ. Adaptive changes induced by noble-metal nanostructures in vitro and in vivo. Theranostics 2020;10:5649-70. [PMID: 32483410 DOI: 10.7150/thno.42569] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
192 Zaborova OV. Determination of Kinetic Parameters of Salt Release from Solid Anionic Fliposomes. Russ J Gen Chem 2020;90:762-766. [DOI: 10.1134/s1070363220040349] [Reference Citation Analysis]
193 Su S, Kang PM. Systemic Review of Biodegradable Nanomaterials in Nanomedicine. Nanomaterials (Basel) 2020;10:E656. [PMID: 32244653 DOI: 10.3390/nano10040656] [Cited by in Crossref: 95] [Cited by in F6Publishing: 102] [Article Influence: 47.5] [Reference Citation Analysis]
194 Liao X, Yang X, Deng H, Hao Y, Mao L, Zhang R, Liao W, Yuan M. Injectable Hydrogel-Based Nanocomposites for Cardiovascular Diseases. Front Bioeng Biotechnol 2020;8:251. [PMID: 32296694 DOI: 10.3389/fbioe.2020.00251] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
195 Das S, Lazenby RA, Yuan Z, White RJ, Park YC. Effect of Laser Irradiation on Reversibility and Drug Release of Light-Activatable Drug-Encapsulated Liposomes. Langmuir 2020;36:3573-82. [PMID: 32188250 DOI: 10.1021/acs.langmuir.0c00215] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
196 Li CW, Li LL, Chen S, Zhang JX, Lu WL. Antioxidant Nanotherapies for the Treatment of Inflammatory Diseases. Front Bioeng Biotechnol 2020;8:200. [PMID: 32258013 DOI: 10.3389/fbioe.2020.00200] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 17.5] [Reference Citation Analysis]
197 Kriebel-gasparro A. Update on Treatments for Cognitive Decline in Alzheimer’s Disease. The Journal for Nurse Practitioners 2020;16:181-185. [DOI: 10.1016/j.nurpra.2019.12.016] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
198 Öztürk AA, Namlı İ, Güleç K, Kıyan HT. Diclofenac sodium loaded PLGA nanoparticles for inflammatory diseases with high anti-inflammatory properties at low dose: Formulation, characterization and in vivo HET-CAM analysis. Microvasc Res 2020;130:103991. [PMID: 32105668 DOI: 10.1016/j.mvr.2020.103991] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
199 Jamaledin R, Di Natale C, Onesto V, Taraghdari ZB, Zare EN, Makvandi P, Vecchione R, Netti PA. Progress in Microneedle-Mediated Protein Delivery. J Clin Med 2020;9:E542. [PMID: 32079212 DOI: 10.3390/jcm9020542] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 28.5] [Reference Citation Analysis]
200 Essa D, Kondiah PPD, Choonara YE, Pillay V. The Design of Poly(lactide-co-glycolide) Nanocarriers for Medical Applications. Front Bioeng Biotechnol 2020;8:48. [PMID: 32117928 DOI: 10.3389/fbioe.2020.00048] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 31.0] [Reference Citation Analysis]
201 Houshmand M, Garello F, Circosta P, Stefania R, Aime S, Saglio G, Giachino C. Nanocarriers as Magic Bullets in the Treatment of Leukemia. Nanomaterials (Basel) 2020;10:E276. [PMID: 32041219 DOI: 10.3390/nano10020276] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
202 Staroń A, Długosz O, Pulit-Prociak J, Banach M. Analysis of the Exposure of Organisms to the Action of Nanomaterials. Materials (Basel) 2020;13:E349. [PMID: 31940903 DOI: 10.3390/ma13020349] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
203 Ibrahim Bekraki A. Liposomes-and niosomes-based drug delivery systems for tuberculosis treatment. Nanotechnology Based Approaches for Tuberculosis Treatment 2020. [DOI: 10.1016/b978-0-12-819811-7.00007-2] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
204 Bueno J. In Vitro Nanotoxicity: Toward the Development of Safe and Effective Treatments. Nanotechnology in the Life Sciences 2020. [DOI: 10.1007/978-3-030-43855-5_4] [Reference Citation Analysis]
205 Bueno J. ADMETox: Bringing Nanotechnology Closer to Lipinski’s Rule of Five. Nanotechnology in the Life Sciences 2020. [DOI: 10.1007/978-3-030-43855-5_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
206 Steinbach OC. An industry update: the latest developments in therapeutic delivery covering August 2019. Therapeutic Delivery 2020;11:805-808. [DOI: 10.4155/tde-2019-0089] [Reference Citation Analysis]
207 Rewatkar P, Kumeria T, Popat A. Size, shape and surface charge considerations of orally delivered nanomedicines. Nanotechnology for Oral Drug Delivery. Elsevier; 2020. pp. 143-76. [DOI: 10.1016/b978-0-12-818038-9.00005-3] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
208 Bixenmann L, Stickdorn J, Nuhn L. Amphiphilic poly(esteracetal)s as dual pH- and enzyme-responsive micellar immunodrug delivery systems. Polym Chem 2020;11:2441-56. [DOI: 10.1039/c9py01716j] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
209 Dungdung R, Bayal M, Valliyott L, Unniyampurath U, Nair SS, Pilankatta R. A slow, efficient and safe nanoplatform of tailored ZnS QD-mycophenolic acid conjugates for in vitro drug delivery against dengue virus 2 genome replication. Nanoscale Adv 2020;2:5777-5789. [DOI: 10.1039/d0na00725k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
210 Sun Y, Liang Y, Hao N, Fu X, He B, Han S, Cao J, Ma Q, Xu W, Sun Y. Novel polymeric micelles as enzyme-sensitive nuclear-targeted dual-functional drug delivery vehicles for enhanced 9-nitro-20( S )-camptothecin delivery and antitumor efficacy. Nanoscale 2020;12:5380-96. [DOI: 10.1039/c9nr10574c] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 16.5] [Reference Citation Analysis]
211 Sevastre A, Horescu C, Carina Baloi S, Cioc CE, Vatu BI, Tuta C, Artene SA, Danciulescu MM, Tudorache S, Dricu A. Benefits of Nanomedicine for Therapeutic Intervention in Malignant Diseases. Coatings 2019;9:628. [DOI: 10.3390/coatings9100628] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]