BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Song YH, Yoon J, Lee SH. The role of neuropeptide somatostatin in the brain and its application in treating neurological disorders. Exp Mol Med 2021;53:328-38. [PMID: 33742131 DOI: 10.1038/s12276-021-00580-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Cai X, Qiu L, Wang C, Yang H, Zhou Z, Mao M, Zhu Y, Wen Y, Cai W, Zhu W, Sun J. Hippocampal Inhibitory Synapsis Deficits Induced by α5-Containing GABAA Receptors Mediate Chronic Neuropathic Pain-Related Cognitive Impairment. Mol Neurobiol 2022. [PMID: 35849280 DOI: 10.1007/s12035-022-02955-8] [Reference Citation Analysis]
2 Han J, Yoon J, Shin J, Nam E, Qian T, Li Y, Park K, Lee SH, Lim MH. Conformational and functional changes of the native neuropeptide somatostatin occur in the presence of copper and amyloid-β. Nat Chem 2022. [PMID: 35817963 DOI: 10.1038/s41557-022-00984-3] [Reference Citation Analysis]
3 Muqaku B, Oeckl P. Peptidomic Approaches and Observations in Neurodegenerative Diseases. IJMS 2022;23:7332. [DOI: 10.3390/ijms23137332] [Reference Citation Analysis]
4 Consens ME, Chen Y, Menon V, Wang Y, Schneider JA, De Jager PL, Bennett DA, Tripathy SJ, Felsky D. Bulk and Single-Nucleus Transcriptomics Highlight Intra-Telencephalic and Somatostatin Neurons in Alzheimer's Disease. Front Mol Neurosci 2022;15:903175. [PMID: 35754708 DOI: 10.3389/fnmol.2022.903175] [Reference Citation Analysis]
5 Casello SM, Flores RJ, Yarur HE, Wang H, Awanyai M, Arenivar MA, Jaime-lara RB, Bravo-rivera H, Tejeda HA. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front Neural Circuits 2022;16:796443. [DOI: 10.3389/fncir.2022.796443] [Reference Citation Analysis]
6 Banovac I, Sedmak D, Esclapez M, Petanjek Z. The Distinct Characteristics of Somatostatin Neurons in the Human Brain. Mol Neurobiol 2022. [PMID: 35665897 DOI: 10.1007/s12035-022-02892-6] [Reference Citation Analysis]
7 Hema Sree GNS, Marise VLP, Rajalekshmi SG, Burri RR, Krishna Murthy TP. Articulating Target-Mining Techniques to Disinter Alzheimer's Specific Targets for Drug Repurposing. Computer Methods and Programs in Biomedicine 2022. [DOI: 10.1016/j.cmpb.2022.106931] [Reference Citation Analysis]
8 Devasani K, Yao Y. Expression and functions of adenylyl cyclases in the CNS. Fluids Barriers CNS 2022;19. [DOI: 10.1186/s12987-022-00322-2] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Liguz-lecznar M, Dobrzanski G, Kossut M. Somatostatin and Somatostatin-Containing Interneurons—From Plasticity to Pathology. Biomolecules 2022;12:312. [DOI: 10.3390/biom12020312] [Reference Citation Analysis]
10 Hayman J, Finsterer J. Charles Darwin’s Mitochondrial Disorder: Possible Neuroendocrine Involvement. Cureus. [DOI: 10.7759/cureus.20689] [Reference Citation Analysis]
11 Raven F, Aton SJ. The Engram's Dark Horse: How Interneurons Regulate State-Dependent Memory Processing and Plasticity. Front Neural Circuits 2021;15:750541. [PMID: 34588960 DOI: 10.3389/fncir.2021.750541] [Reference Citation Analysis]
12 Gonzalez-Rodriguez M, Astillero-Lopez V, Villanueva-Anguita P, Paya-Rodriguez ME, Flores-Cuadrado A, Villar-Conde S, Ubeda-Banon I, Martinez-Marcos A, Saiz-Sanchez D. Somatostatin and Astroglial Involvement in the Human Limbic System in Alzheimer's Disease. Int J Mol Sci 2021;22:8434. [PMID: 34445147 DOI: 10.3390/ijms22168434] [Reference Citation Analysis]
13 Schober J, Polina J, Walters F, Scott N, Lodholz E, Crider A, Sandoval K, Witt K. NNC 26-9100 increases Aβ1-42 phagocytosis, inhibits nitric oxide production and decreases calcium in BV2 microglia cells. PLoS One 2021;16:e0254242. [PMID: 34237100 DOI: 10.1371/journal.pone.0254242] [Reference Citation Analysis]