BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Méndez-Blanco C, Fondevila F, García-Palomo A, González-Gallego J, Mauriz JL. Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors. Exp Mol Med 2018;50:1-9. [PMID: 30315182 DOI: 10.1038/s12276-018-0159-1] [Cited by in Crossref: 144] [Cited by in F6Publishing: 158] [Article Influence: 36.0] [Reference Citation Analysis]
Number Citing Articles
1 Peng T, Xu T, Liu X. Research progress of the engagement of inorganic nanomaterials in cancer immunotherapy. Drug Deliv 2022;29:1914-32. [PMID: 35748543 DOI: 10.1080/10717544.2022.2086940] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Fernández-palanca P, Payo-serafín T, San-miguel B, Méndez-blanco C, Tuñón MJ, González-gallego J, Mauriz JL. Hepatocellular carcinoma cells loss lenvatinib efficacy in vitro through autophagy and hypoxia response-derived neuropilin-1 degradation. Acta Pharmacol Sin 2022. [DOI: 10.1038/s41401-022-01021-2] [Reference Citation Analysis]
3 Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacological Research 2022. [DOI: 10.1016/j.phrs.2022.106535] [Reference Citation Analysis]
4 Li J, Li X, Guo Q. Drug Resistance in Cancers: A Free Pass for Bullying. Cells 2022;11:3383. [DOI: 10.3390/cells11213383] [Reference Citation Analysis]
5 Li JF, Zheng XR, Zhang HY, Shen CM, Shen GX, Jiang JW. Effects of Sensitized Sorafenib with a Paeoniflorin and Geniposide Mixture on Liver Cancer via the NF-κB-HIF-2α-SerpinB3 Pathway. Evid Based Complement Alternat Med 2022;2022:1911311. [PMID: 36285158 DOI: 10.1155/2022/1911311] [Reference Citation Analysis]
6 Zhang H, Wang T, Liu H, Han Y, Zheng Q, Xu Q, Bao B, Xing W, Li Z. Boost therapy of hepatocellular carcinoma by amplifying vicious cycle between mitochondrial oxidative stress and endoplasmic reticulum stress via biodegradable ultrasmall nanoparticles and old drug. Nano Today 2022;46:101601. [DOI: 10.1016/j.nantod.2022.101601] [Reference Citation Analysis]
7 Liu K, Wu J, Xu Y, Li D, Huang S, Mao Y. . OTT 2022;Volume 15:1079-94. [DOI: 10.2147/ott.s383685] [Reference Citation Analysis]
8 Qiang M, Cai P, Ao M, Li X, Chen Z, Yu L. Polysaccharides from Chinese materia medica: Perspective towards cancer management. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.10.139] [Reference Citation Analysis]
9 Bhuyan S, Pal B, Pathak L, Saikia PJ, Mitra S, Gayan S, Mokhtari RB, Li H, Ramana CV, Baishya D, Das B. Targeting hypoxia-induced tumor stemness by activating pathogen-induced stem cell niche defense. Front Immunol 2022;13:933329. [DOI: 10.3389/fimmu.2022.933329] [Reference Citation Analysis]
10 Jang H, Ham J, Song J, Song G, Lim W. Alpinumisoflavone Impairs Mitochondrial Respiration via Oxidative Stress and MAPK/PI3K Regulation in Hepatocellular Carcinoma Cells. Antioxidants 2022;11:1929. [DOI: 10.3390/antiox11101929] [Reference Citation Analysis]
11 Zhao J, Lin E, Cai C, Zhang M, Li D, Cai S, Zeng G, Yin Z, Wang B, Li P, Hong X, Chen J, Zou B, Li J. Combined Treatment of Tanshinone I and Epirubicin Revealed Enhanced Inhibition of Hepatocellular Carcinoma by Targeting PI3K/AKT/HIF-1α. DDDT 2022;Volume 16:3197-3213. [DOI: 10.2147/dddt.s360691] [Reference Citation Analysis]
12 Liu Z, Zhang D, Lin X, Sun J, Abuduwaili W, Zhang G, Xu R, Wang F, Yu X, Shi X, Deng B, Dong L, Weng S, Zhu J, Shen X, Liu T. Nalidixic acid potentiates the antitumor activity in sorafenib-resistant hepatocellular carcinoma via the tumor immune microenvironment analysis. Front Pharmacol 2022;13:952482. [DOI: 10.3389/fphar.2022.952482] [Reference Citation Analysis]
13 Cai G, Zhu J, Ning D, Li G, Zhang Y, Xiong Y, Liang J, Yu C, Chen X, Liang H, Ding Z. A Novel hepatocellular carcinoma specific hypoxic related signature for predicting prognosis and therapeutic responses. Front Immunol 2022;13:997316. [DOI: 10.3389/fimmu.2022.997316] [Reference Citation Analysis]
14 Gnocchi D, Kurzyk A, Mintrone A, Lentini G, Sabbà C, Mazzocca A. Inhibition of LPAR6 overcomes sorafenib resistance by switching glycolysis into oxidative phosphorylation in hepatocellular carcinoma. Biochimie 2022:S0300-9084(22)00192-4. [PMID: 35952946 DOI: 10.1016/j.biochi.2022.07.016] [Reference Citation Analysis]
15 Feng MY, Chan LL, Chan SL. Drug Treatment for Advanced Hepatocellular Carcinoma: First-Line and Beyond. Curr Oncol 2022;29:5489-507. [PMID: 36005172 DOI: 10.3390/curroncol29080434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Kim M, Cho Y, Kim E, Choe J, Park J, Lee J, Lee J, Moon S, Kim Y, Kim S, Choi E. Cellular Prion Protein Is Closely Associated with Early Recurrence and Poor Survival in Patients with Hepatocellular Carcinoma. Diagnostics 2022;12:1635. [DOI: 10.3390/diagnostics12071635] [Reference Citation Analysis]
17 Qin B, Zeng Z, Xu J, Shangwen J, Ye ZJ, Wang S, Wu Y, Peng G, Wang Q, Gu W, Tang Y. Emodin inhibits invasion and migration of hepatocellular carcinoma cells via regulating autophagy-mediated degradation of snail and β-catenin. BMC Cancer 2022;22:671. [PMID: 35715752 DOI: 10.1186/s12885-022-09684-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Liu T, Tang J, Li X, Lin Y, Yang Y, Ma K, Hui Z, Ma H, Qin Y, Lei H, Yang Y. The Key Network of mRNAs and miRNAs Regulated by HIF1A in Hypoxic Hepatocellular Carcinoma Cells. Front Genet 2022;13:857507. [DOI: 10.3389/fgene.2022.857507] [Reference Citation Analysis]
19 Yu S, Li Z, Tu L, Pu Y, Yan D, Wang X, Zheng X, Yu J. Uricase sensitizes hepatocellular carcinoma cells to 5-fluorouracil through uricase-uric acid-UMP synthase axis. J Physiol Biochem 2022. [PMID: 35674867 DOI: 10.1007/s13105-022-00894-5] [Reference Citation Analysis]
20 Chen S, Zhu G, Xing X, Wan J, Cai J, Du J, Song L, Dai Z, Zhou J. LncRNA USP2-AS1 Promotes Hepatocellular Carcinoma Growth by Enhancing YBX1-Mediated HIF1α Protein Translation Under Hypoxia. Front Oncol 2022;12:882372. [DOI: 10.3389/fonc.2022.882372] [Reference Citation Analysis]
21 Li Z, Bu J, Zhu X, Zhou H, Ren K, Chu PK, Li L, Hu X, Ding X. Anti-tumor immunity and ferroptosis of hepatocellular carcinoma are enhanced by combined therapy of sorafenib and delivering modified GO-based PD-L1 siRNAs. Biomaterials Advances 2022;136:212761. [DOI: 10.1016/j.bioadv.2022.212761] [Reference Citation Analysis]
22 Ye H, Wu K, Liu Y, Zhu Y, Luo H, Zou W. Zinc oxide nanoparticle attenuates chemotherapy resistance by inducing cell stemness progression of colorectal cancer via miR-1321/HIF-2α axis. Arabian Journal of Chemistry 2022. [DOI: 10.1016/j.arabjc.2022.103938] [Reference Citation Analysis]
23 Jiang L, Li H, Zhao D, Li W. A Prognostic Model for Patients with Hepatocellular Carcinoma Based on Hypoxia-Related Long Noncoding RNAs. Journal of Nanomaterials 2022;2022:1-10. [DOI: 10.1155/2022/4642477] [Reference Citation Analysis]
24 Li D, Yao Y, Rao Y, Huang X, Wei L, You Z, Zheng G, Hou X, Su Y, Varghese Z, Moorhead JF, Chen Y, Ruan XZ. Cholesterol sensor SCAP contributes to sorafenib resistance by regulating autophagy in hepatocellular carcinoma. J Exp Clin Cancer Res 2022;41:116. [PMID: 35354475 DOI: 10.1186/s13046-022-02306-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Sas Z, Cendrowicz E, Weinhäuser I, Rygiel TP. Tumor Microenvironment of Hepatocellular Carcinoma: Challenges and Opportunities for New Treatment Options. Int J Mol Sci 2022;23:3778. [PMID: 35409139 DOI: 10.3390/ijms23073778] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
26 Gudkov A, Shirokorad V, Kashintsev K, Sokov D, Nikitin D, Anisenko A, Borisov N, Sekacheva M, Gaifullin N, Garazha A, Suntsova M, Koroleva E, Buzdin A, Sorokin M. Gene Expression-Based Signature Can Predict Sorafenib Response in Kidney Cancer. Front Mol Biosci 2022;9:753318. [DOI: 10.3389/fmolb.2022.753318] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Park Y, Han Y, Kim D, Cho S, Kim W, Hwang H, Lee HW, Han DH, Kim KS, Yun M, Lee M. Impact of Exogenous Treatment with Histidine on Hepatocellular Carcinoma Cells. Cancers 2022;14:1205. [DOI: 10.3390/cancers14051205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Li S, Chen L. Exosomes in Pathogenesis, Diagnosis, and Treatment of Hepatocellular Carcinoma. Front Oncol 2022;12:793432. [PMID: 35155236 DOI: 10.3389/fonc.2022.793432] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Hou ZL, Han FY, Lou LL, Zhao WY, Huang XX, Yao GD, Song SJ. The nature compound dehydrocrenatidine exerts potent antihepatocellular carcinoma by destroying mitochondrial complexes in vitro and in vivo. Phytother Res 2022. [PMID: 35112410 DOI: 10.1002/ptr.7398] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 He Y, Wang X, Lu W, Zhang D, Huang L, Luo Y, Xiong L, Li H, Zhang P, Li Q, Liang S. PGK1 contributes to tumorigenesis and sorafenib resistance of renal clear cell carcinoma via activating CXCR4/ERK signaling pathway and accelerating glycolysis. Cell Death Dis 2022;13:118. [DOI: 10.1038/s41419-022-04576-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
31 Guo Y, Wu G, Yi J, Yang Q, Jiang W, Lin S, Yang X, Cai X, Mao L. Anti-Hepatocellular Carcinoma Effect and Molecular Mechanism of the Estrogen Signaling Pathway. Front Oncol 2021;11:763539. [PMID: 35096574 DOI: 10.3389/fonc.2021.763539] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Pang Y, Lin Y, Wang X, Wang J, Liu Q, Ding N, Huang L, Xiang Q, Fang J, Tan G, Lyu J, Wang Z. Inhibition of abnormally activated HIF-1α-GLUT1/3-glycolysis pathway enhances the sensitivity of hepatocellular carcinoma to 5-caffeoylquinic acid and its derivatives. European Journal of Pharmacology 2022. [DOI: 10.1016/j.ejphar.2022.174844] [Reference Citation Analysis]
33 Lee H, Choi JY, Joung J, Joh J, Kim JM, Hyun SH. Metabolism-Associated Gene Signatures for FDG Avidity on PET/CT and Prognostic Validation in Hepatocellular Carcinoma. Front Oncol 2022;12:845900. [DOI: 10.3389/fonc.2022.845900] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Sun J, Zheng X, Wang B, Cai Y, Zheng L, Hu L, Lu X, Xie S, Zhang X, Liu H, Ye L. LncRNA LIMT (LINC01089) contributes to sorafenib chemoresistance via regulation of miR-665 and epithelial to mesenchymal transition in hepatocellular carcinoma cells. Acta Biochim Biophys Sin (Shanghai) 2022;54:261-70. [PMID: 35130616 DOI: 10.3724/abbs.2021019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
35 Ke L, Shen J, Feng J, Chen J, Shen S, Li S, Kuang M, Liang L, Lu C, Li D, He Q, Peng B, Hua Y. Somatic Mutation Profiles Revealed by Next Generation Sequencing (NGS) in 39 Chinese Hepatocellular Carcinoma Patients. Front Mol Biosci 2022;8:800679. [DOI: 10.3389/fmolb.2021.800679] [Reference Citation Analysis]
36 Chen Y, Shang H, Wang C, Zeng J, Zhang S, Wu B, Cheng W. RNA-Seq Explores the Mechanism of Oxygen-Boosted Sonodynamic Therapy Based on All-in-One Nanobubbles to Enhance Ferroptosis for the Treatment of HCC. Int J Nanomedicine 2022;17:105-23. [PMID: 35027829 DOI: 10.2147/IJN.S343361] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
37 Icard P, Simula L, Wu Z, Berzan D, Sogni P, Dohan A, Dautry R, Coquerel A, Lincet H, Loi M, Fuks D. Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma? Drug Resist Updat 2021;:100790. [PMID: 34924279 DOI: 10.1016/j.drup.2021.100790] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Kazmi I, Al-Abbasi FA, Afzal M, Altayb HN, Nadeem MS, Gupta G. Formulation and Evaluation of Kaempferol Loaded Nanoparticles against Experimentally Induced Hepatocellular Carcinoma: In Vitro and In Vivo Studies. Pharmaceutics 2021;13:2086. [PMID: 34959368 DOI: 10.3390/pharmaceutics13122086] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Shi T, Iwama H, Fujita K, Kobara H, Nishiyama N, Fujihara S, Goda Y, Yoneyama H, Morishita A, Tani J, Yamada M, Nakahara M, Takuma K, Masaki T. Evaluating the Effect of Lenvatinib on Sorafenib-Resistant Hepatocellular Carcinoma Cells. Int J Mol Sci 2021;22:13071. [PMID: 34884875 DOI: 10.3390/ijms222313071] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
40 Castven D, Czauderna C, Becker D, Pereira S, Schmitt J, Weinmann A, Shah V, Hajduk J, Keggenhoff F, Binder H, Keck T, Heilmann-Heimbach S, Wörns MA, Thorgeirsson SS, Breuhahn K, Galle PR, Marquardt JU. Acquired Resistance to Antiangiogenic Therapies in Hepatocellular Carcinoma Is Mediated by Yes-Associated Protein 1 Activation and Transient Expansion of Stem-Like Cancer Cells. Hepatol Commun 2021. [PMID: 34817932 DOI: 10.1002/hep4.1869] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
41 Pu J, Li W, Wang A, Zhang Y, Qin Z, Xu Z, Wang J, Lu Y, Tang Q, Wei H. Long non-coding RNA HOMER3-AS1 drives hepatocellular carcinoma progression via modulating the behaviors of both tumor cells and macrophages. Cell Death Dis 2021;12:1103. [PMID: 34815380 DOI: 10.1038/s41419-021-04309-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Deng Z, Teng YJ, Zhou Q, Ouyang ZG, Hu YX, Long HP, Hu MJ, Mei S, Lin FX, Dai XJ, Zhang BY, Feng T, Tian XF. Shuyu pills inhibit immune escape and enhance chemosensitization in hepatocellular carcinoma. World J Gastrointest Oncol 2021; 13(11): 1725-1740 [PMID: 34853646 DOI: 10.4251/wjgo.v13.i11.1725] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Chen D, Feng Z, Zhou M, Ren Z, Zhang F, Li Y. Bioinformatic Evidence Reveals that Cell Cycle Correlated Genes Drive the Communication between Tumor Cells and the Tumor Microenvironment and Impact the Outcomes of Hepatocellular Carcinoma. Biomed Res Int 2021;2021:4092635. [PMID: 34746301 DOI: 10.1155/2021/4092635] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Sükei T, Palma E, Urbani L. Interplay between Cellular and Non-Cellular Components of the Tumour Microenvironment in Hepatocellular Carcinoma. Cancers (Basel) 2021;13:5586. [PMID: 34771746 DOI: 10.3390/cancers13215586] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
45 Huang R, Zhang L, Jin J, Zhou Y, Zhang H, Lv C, Lu D, Wu Y, Zhang H, Liu S, Chen H, Luan X, Zhang W. Bruceine D inhibits HIF-1α-mediated glucose metabolism in hepatocellular carcinoma by blocking ICAT/β-catenin interaction. Acta Pharm Sin B 2021;11:3481-92. [PMID: 34900531 DOI: 10.1016/j.apsb.2021.05.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
46 Ju M, Jiang L, Wei Q, Yu L, Chen L, Wang Y, Hu B, Qian P, Zhang M, Zhou C, Li Z, Wei M, Zhao L, Han J. A Immune-Related Signature Associated with TME Can Serve as a Potential Biomarker for Survival and Sorafenib Resistance in Liver Cancer. Onco Targets Ther 2021;14:5065-83. [PMID: 34707365 DOI: 10.2147/OTT.S326784] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
47 Fondevila F, Méndez-Blanco C, Fernández-Palanca P, Payo-Serafín T, van Pelt J, Verslype C, González-Gallego J, Mauriz JL. Autophagy-Related Chemoprotection against Sorafenib in Human Hepatocarcinoma: Role of FOXO3 Upregulation and Modulation by Regorafenib. Int J Mol Sci 2021;22:11770. [PMID: 34769197 DOI: 10.3390/ijms222111770] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Zhang Y, Liu Z, Ji K, Li X, Wang C, Ren Z, Liu Y, Chen X, Han X, Meng L, Li L, Li Z. Clinical Application Value of Circulating Cell-free DNA in Hepatocellular Carcinoma. Front Mol Biosci 2021;8:736330. [PMID: 34660697 DOI: 10.3389/fmolb.2021.736330] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
49 Foglia B, Sutti S, Cannito S, Rosso C, Maggiora M, Autelli R, Novo E, Bocca C, Villano G, Ramavath NN, Younes R, Tusa I, Rovida E, Pontisso P, Bugianesi E, Albano E, Parola M. Hepatocyte-Specific Deletion of HIF2α Prevents NASH-Related Liver Carcinogenesis by Decreasing Cancer Cell Proliferation. Cell Mol Gastroenterol Hepatol 2021:S2352-345X(21)00216-2. [PMID: 34655812 DOI: 10.1016/j.jcmgh.2021.10.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
50 Ivan M, Fishel ML, Tudoran OM, Pollok KE, Wu X, Smith PJ. Hypoxia signaling: Challenges and opportunities for cancer therapy. Semin Cancer Biol 2021:S1044-579X(21)00252-2. [PMID: 34628029 DOI: 10.1016/j.semcancer.2021.10.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
51 Hirao A, Sato Y, Tanaka H, Nishida K, Tomonari T, Hirata M, Bando M, Kida Y, Tanaka T, Kawaguchi T, Wada H, Taniguchi T, Okamoto K, Miyamoto H, Muguruma N, Tanahashi T, Takayama T. MiR-125b-5p Is Involved in Sorafenib Resistance through Ataxin-1-Mediated Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Cancers (Basel) 2021;13:4917. [PMID: 34638401 DOI: 10.3390/cancers13194917] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
52 Song Y, Gao P, Ding H, Xu G, Hu Y, Tong Y, Xin W, Zhang L, Wu M, Fang L. Underlying mechanism of sorafenib resistance in hepatocellular carcinoma: a bioinformatics study based on validated resistance-related genes. J Gastrointest Oncol 2021;12:1895-904. [PMID: 34532137 DOI: 10.21037/jgo-21-377] [Reference Citation Analysis]
53 Zhou M, Zhang G, Hu J, Zhu Y, Lan H, Shen X, Lv Y, Huang L. Rutin attenuates Sorafenib-induced Chemoresistance and Autophagy in Hepatocellular Carcinoma by regulating BANCR/miRNA-590-5P/OLR1 Axis. Int J Biol Sci 2021;17:3595-607. [PMID: 34512168 DOI: 10.7150/ijbs.62471] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
54 Li Z, Chen Q, Zhang W, Si G, Li J, Jiao D, Han X. Efficacy and Safety of the Arsenic Trioxide/Lipiodol Emulsion in the Transcatheter Arterial Chemoembolization Combined with Apatinib in the Treatment of Advanced Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2021;2021:5565793. [PMID: 34458205 DOI: 10.1155/2021/5565793] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
55 Li YT, Wu HL, Liu CJ. Molecular Mechanisms and Animal Models of HBV-Related Hepatocellular Carcinoma: With Emphasis on Metastatic Tumor Antigen 1. Int J Mol Sci 2021;22:9380. [PMID: 34502289 DOI: 10.3390/ijms22179380] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
56 Gao X, Jiang Y, Xu Q, Liu F, Pang X, Wang M, Li Q, Li Z. 4-Hydroxyderricin Promotes Apoptosis and Cell Cycle Arrest through Regulating PI3K/AKT/mTOR Pathway in Hepatocellular Cells. Foods 2021;10:2036. [PMID: 34574146 DOI: 10.3390/foods10092036] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
57 Qing X, Xu W, Zong J, Du X, Peng H, Zhang Y. Emerging treatment modalities for systemic therapy in hepatocellular carcinoma. Biomark Res 2021;9:64. [PMID: 34419152 DOI: 10.1186/s40364-021-00319-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
58 Lv C, Wang S, Lin L, Wang C, Zeng K, Meng Y, Sun G, Wei S, Liu Y, Zhao Y. USP14 maintains HIF1-α stabilization via its deubiquitination activity in hepatocellular carcinoma. Cell Death Dis 2021;12:803. [PMID: 34420039 DOI: 10.1038/s41419-021-04089-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
59 Lim J, Choi H, Ahn J, Jeon NL. 3D High‐Content Culturing and Drug Screening Platform to Study Vascularized Hepatocellular Carcinoma in Hypoxic Condition. Adv NanoBio Res 2021;1:2100078. [DOI: 10.1002/anbr.202100078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Yin R, Liu S. SHARPIN regulates the development of clear cell renal cell carcinoma by promoting von Hippel-Lindau protein ubiquitination and degradation. Cancer Sci 2021. [PMID: 34339558 DOI: 10.1111/cas.15096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
61 Li TT, Mou J, Pan YJ, Huo FC, Du WQ, Liang J, Wang Y, Zhang LS, Pei DS. MicroRNA-138-1-3p sensitizes sorafenib to hepatocellular carcinoma by targeting PAK5 mediated β-catenin/ABCB1 signaling pathway. J Biomed Sci 2021;28:56. [PMID: 34340705 DOI: 10.1186/s12929-021-00752-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
62 Mu H, Yu G, Li H, Wang M, Cui Y, Zhang T, Song T, Liu C. Mild chronic hypoxia-induced HIF-2α interacts with c-MYC through competition with HIF-1α to induce hepatocellular carcinoma cell proliferation. Cell Oncol (Dordr) 2021. [PMID: 34339013 DOI: 10.1007/s13402-021-00625-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
63 Ngo MT, Peng SW, Kuo YC, Lin CY, Wu MH, Chuang CH, Kao CX, Jeng HY, Lin GW, Ling TY, Chang TS, Huang YH. A Yes-Associated Protein (YAP) and Insulin-Like Growth Factor 1 Receptor (IGF-1R) Signaling Loop Is Involved in Sorafenib Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2021;13:3812. [PMID: 34359714 DOI: 10.3390/cancers13153812] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
64 Hu X, Zhu H, Shen Y, Zhang X, He X, Xu X. The Role of Non-Coding RNAs in the Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021;11:696705. [PMID: 34367979 DOI: 10.3389/fonc.2021.696705] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
65 Dahiya M, Dureja H. Sorafenib for hepatocellular carcinoma: potential molecular targets and resistance mechanisms. J Chemother 2021;:1-16. [PMID: 34291704 DOI: 10.1080/1120009X.2021.1955202] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Gao R, Buechel D, Kalathur RKR, Morini MF, Coto-Llerena M, Ercan C, Piscuoglio S, Chen Q, Blumer T, Wang X, Dazert E, Heim MH, Hall MN, Tang F, Christofori G. USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis. Oncogenesis 2021;10:52. [PMID: 34272356 DOI: 10.1038/s41389-021-00338-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
67 Yang Q, Gao L, Huang X, Weng J, Chen Y, Lin S, Yin Q. Sorafenib prevents the proliferation and induces the apoptosis of liver cancer cells by regulating autophagy and hypoxia-inducible factor-1. Exp Ther Med 2021;22:980. [PMID: 34345262 DOI: 10.3892/etm.2021.10412] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
68 Yang S, Yang S, Zhang H, Hua H, Kong Q, Wang J, Jiang Y. Targeting Na+ /K+ -ATPase by berbamine and ouabain synergizes with sorafenib to inhibit hepatocellular carcinoma. Br J Pharmacol 2021. [PMID: 34233013 DOI: 10.1111/bph.15616] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
69 Barbetta A, Goldbeck C, Lim A, Martin SP, Kahn JA, Sheikh MR, Emamaullee J. Treatment and outcomes of hepatocellular carcinoma in patients with Sickle cell disease: a population-based study in the U.S. HPB (Oxford) 2021:S1365-182X(21)00602-X. [PMID: 34294525 DOI: 10.1016/j.hpb.2021.06.420] [Reference Citation Analysis]
70 Chen Y, Wu J, Deng Y, Wu Y, Wang X, Li AS, Wong LY, Fu X, Yu Z, Liang C. Ginsenoside Rg3 in combination with artesunate overcomes sorafenib resistance in hepatoma cell and mouse models. Journal of Ginseng Research 2021. [DOI: 10.1016/j.jgr.2021.07.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
71 Zhang LY, Zhang JG, Yang X, Cai MH, Zhang CW, Hu ZM. Targeting Tumor Immunosuppressive Microenvironment for the Prevention of Hepatic Cancer: Applications of Traditional Chinese Medicines in Targeted Delivery. Curr Top Med Chem 2020;20:2789-800. [PMID: 33076809 DOI: 10.2174/1568026620666201019111524] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
72 Lim H, Ramjeesingh R, Liu D, Tam VC, Knox JJ, Card PB, Meyers BM. Optimizing Survival and the Changing Landscape of Targeted Therapy for Intermediate and Advanced Hepatocellular Carcinoma: A Systematic Review. J Natl Cancer Inst 2021;113:123-36. [PMID: 32898239 DOI: 10.1093/jnci/djaa119] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
73 He Y, Luo Y, Huang L, Zhang D, Wang X, Ji J, Liang S. New frontiers against sorafenib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Pharmacol Res 2021;170:105732. [PMID: 34139345 DOI: 10.1016/j.phrs.2021.105732] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 17.0] [Reference Citation Analysis]
74 Shrestha R, Bridle KR, Cao L, Crawford DHG, Jayachandran A. Dual Targeting of Sorafenib-Resistant HCC-Derived Cancer Stem Cells. Curr Oncol 2021;28:2150-72. [PMID: 34208001 DOI: 10.3390/curroncol28030200] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
75 Zeng Z, Shi Z, Liu Y, Zhao J, Lu Q, Guo J, Liu X, Huang D, Xu Q. HIF-1α-activated TM4SF1-AS1 promotes the proliferation, migration, and invasion of hepatocellular carcinoma cells by enhancing TM4SF1 expression. Biochem Biophys Res Commun 2021;566:80-6. [PMID: 34118595 DOI: 10.1016/j.bbrc.2021.06.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
76 Shen M, Zhang R, Jia W, Zhu Z, Zhao X, Zhao L, Huang G, Liu J. Nuclear scaffold protein p54nrb/NONO facilitates the hypoxia-enhanced progression of hepatocellular carcinoma. Oncogene 2021;40:4167-83. [PMID: 34079086 DOI: 10.1038/s41388-021-01848-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
77 Chianese A, Santella B, Ambrosino A, Stelitano D, Rinaldi L, Galdiero M, Zannella C, Franci G. Oncolytic Viruses in Combination Therapeutic Approaches with Epigenetic Modulators: Past, Present, and Future Perspectives. Cancers (Basel) 2021;13:2761. [PMID: 34199429 DOI: 10.3390/cancers13112761] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
78 Tian W, Li J, Wang Z, Zhang T, Han Y, Liu Y, Chu W, Liu Y, Yang B. HYD-PEP06 suppresses hepatocellular carcinoma metastasis, epithelial-mesenchymal transition and cancer stem cell-like properties by inhibiting PI3K/AKT and WNT/β-catenin signaling activation. Acta Pharm Sin B 2021;11:1592-606. [PMID: 34221870 DOI: 10.1016/j.apsb.2021.03.040] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
79 Cabanos HF, Hata AN. Emerging Insights into Targeted Therapy-Tolerant Persister Cells in Cancer. Cancers (Basel) 2021;13:2666. [PMID: 34071428 DOI: 10.3390/cancers13112666] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
80 Gnocchi D, Castellaneta F, Cesari G, Fiore G, Sabbà C, Mazzocca A. Treatment of liver cancer cells with ethyl acetate extract of Crithmum maritimum permits reducing sorafenib dose and toxicity maintaining its efficacy. J Pharm Pharmacol 2021:rgab070. [PMID: 34014301 DOI: 10.1093/jpp/rgab070] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
81 Son Y, Shin NR, Kim SH, Park SC, Lee HJ. Fibrinogen-Like Protein 1 Modulates Sorafenib Resistance in Human Hepatocellular Carcinoma Cells. Int J Mol Sci 2021;22:5330. [PMID: 34069373 DOI: 10.3390/ijms22105330] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
82 Xu J, Ji L, Ruan Y, Wan Z, Lin Z, Xia S, Tao L, Zheng J, Cai L, Wang Y, Liang X, Cai X. UBQLN1 mediates sorafenib resistance through regulating mitochondrial biogenesis and ROS homeostasis by targeting PGC1β in hepatocellular carcinoma. Signal Transduct Target Ther 2021;6:190. [PMID: 34001851 DOI: 10.1038/s41392-021-00594-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
83 Pan Y, Hu GY, Jiang S, Xia SJ, Maher H, Lin ZJ, Mao QJ, Zhao J, Cai LX, Xu YH, Xu JJ, Cai XJ. Development of an Aerobic Glycolysis Index for Predicting the Sorafenib Sensitivity and Prognosis of Hepatocellular Carcinoma. Front Oncol 2021;11:637971. [PMID: 34094917 DOI: 10.3389/fonc.2021.637971] [Reference Citation Analysis]
84 Xu R, Zhang Y, Li A, Ma Y, Cai W, Song L, Xie Y, Zhou S, Cao W, Tang X. LY‑294002 enhances the chemosensitivity of liver cancer to oxaliplatin by blocking the PI3K/AKT/HIF‑1α pathway. Mol Med Rep 2021;24:508. [PMID: 33982772 DOI: 10.3892/mmr.2021.12147] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
85 Fatma H, Siddique HR. Pluripotency inducing Yamanaka factors: role in stemness and chemoresistance of liver cancer. Expert Rev Anticancer Ther 2021;21:853-64. [PMID: 33832395 DOI: 10.1080/14737140.2021.1915137] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
86 Gallage S, García-beccaria M, Szydlowska M, Rahbari M, Mohr R, Tacke F, Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. Med 2021;2:505-52. [DOI: 10.1016/j.medj.2021.03.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
87 Cai J, Hu M, Chen Z, Ling Z. The roles and mechanisms of hypoxia in liver fibrosis. J Transl Med 2021;19:186. [PMID: 33933107 DOI: 10.1186/s12967-021-02854-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
88 Xu X, Ding Y, Pan T, Gao F, Huang X, Sun Q. CT-Guided 125I Brachytherapy in the Treatment of Hepatocellular Carcinoma Refractory to Conventional Transarterial Chemoembolization: A Pilot Study. Cancer Manag Res 2021;13:3317-26. [PMID: 33883943 DOI: 10.2147/CMAR.S305422] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
89 Cignarella A, Fadini GP, Bolego C, Trevisi L, Boscaro C, Sanga V, Seccia TM, Rosato A, Rossi GP, Barton M. Clinical Efficacy and Safety of Angiogenesis Inhibitors: Sex Differences and Current Challenges. Cardiovasc Res 2021:cvab096. [PMID: 33739385 DOI: 10.1093/cvr/cvab096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
90 Zhang Q, Qiao L, Liu Q, Kong X, Hu J, Hu W, Wu Z, Li M, Liu L. Hypoxia associated multi-omics molecular landscape of tumor tissue in patients with hepatocellular carcinoma. Aging (Albany NY) 2021;13:6525-53. [PMID: 33690171 DOI: 10.18632/aging.202723] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
91 Kakarala KK, Jamil K. Identification of novel allosteric binding sites and multi-targeted allosteric inhibitors of receptor and non-receptor tyrosine kinases using a computational approach. J Biomol Struct Dyn 2021;:1-22. [PMID: 33682622 DOI: 10.1080/07391102.2021.1891140] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
92 Yuen VW, Wong CC. Hypoxia-inducible factors and innate immunity in liver cancer. J Clin Invest 2020;130:5052-62. [PMID: 32750043 DOI: 10.1172/JCI137553] [Cited by in Crossref: 34] [Cited by in F6Publishing: 41] [Article Influence: 34.0] [Reference Citation Analysis]
93 Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 2021;6:62. [PMID: 33589595 DOI: 10.1038/s41392-020-00430-1] [Cited by in Crossref: 77] [Cited by in F6Publishing: 82] [Article Influence: 77.0] [Reference Citation Analysis]
94 Méndez-Blanco C, Fernández-Palanca P, Fondevila F, González-Gallego J, Mauriz JL. Prognostic and clinicopathological significance of hypoxia-inducible factors 1α and 2α in hepatocellular carcinoma: a systematic review with meta-analysis. Ther Adv Med Oncol 2021;13:1758835920987071. [PMID: 33613697 DOI: 10.1177/1758835920987071] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
95 Ma Y, Xu R, Liu X, Zhang Y, Song L, Cai S, Zhou S, Xie Y, Li A, Cao W, Tang X. LY3214996 relieves acquired resistance to sorafenib in hepatocellular carcinoma cells. Int J Med Sci 2021;18:1456-64. [PMID: 33628103 DOI: 10.7150/ijms.51256] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
96 Liu Z, Liu L, Lu T, Wang L, Li Z, Jiao D, Han X. Hypoxia Molecular Characterization in Hepatocellular Carcinoma Identifies One Risk Signature and Two Nomograms for Clinical Management.J Oncol. 2021;2021:6664386. [PMID: 33552157 DOI: 10.1155/2021/6664386] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
97 Fernández-Palanca P, Méndez-Blanco C, Fondevila F, Tuñón MJ, Reiter RJ, Mauriz JL, González-Gallego J. Melatonin as an Antitumor Agent against Liver Cancer: An Updated Systematic Review. Antioxidants (Basel) 2021;10:103. [PMID: 33445767 DOI: 10.3390/antiox10010103] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
98 Zhao F, Feng G, Zhu J, Su Z, Guo R, Liu J, Zhang H, Zhai Y. 3-Methyladenine-enhanced susceptibility to sorafenib in hepatocellular carcinoma cells by inhibiting autophagy. Anticancer Drugs 2021;32:386-93. [PMID: 33395067 DOI: 10.1097/CAD.0000000000001032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
99 Huang Y, Ge W, Zhou J, Gao B, Qian X, Wang W. The Role of Tumor Associated Macrophages in Hepatocellular Carcinoma. J Cancer 2021;12:1284-94. [PMID: 33531974 DOI: 10.7150/jca.51346] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 21.0] [Reference Citation Analysis]
100 Boulhaoua M, Pasinszki T, Torvisco A, Oláh-szabó R, Bősze S, Csámpai A. Synthesis, structure and in vitro antiproliferative effects of alkyne-linked 1,2,4-thiadiazole hybrids including erlotinib- and ferrocene-containing derivatives. RSC Adv 2021;11:28685-28697. [DOI: 10.1039/d1ra05095h] [Reference Citation Analysis]
101 Yang C, Gao Y, Fan Y, Cao L, Li J, Ge Y, Tu W, Liu Y, Cao X, Shi X. Dual-mode endogenous and exogenous sensitization of tumor radiotherapy through antifouling dendrimer-entrapped gold nanoparticles. Theranostics 2021;11:1721-31. [PMID: 33408777 DOI: 10.7150/thno.54930] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
102 Yılmaz Y, Batur T, Korhan P, Öztürk M, Atabey N. Targeting c-Met and AXL Crosstalk for the Treatment of Hepatocellular Carcinoma. Liver Cancer in the Middle East 2021. [DOI: 10.1007/978-3-030-78737-0_21] [Reference Citation Analysis]
103 Wu L, Zhou J, Zhou W, Huang XF, Chen Q, Wang W, Zhai L, Li S, Tang Z. Sorafenib blocks the activation of the HIF-2α/VEGFA/EphA2 pathway, and inhibits the rapid growth of residual liver cancer following high-intensity focused ultrasound therapy in vivo. Pathol Res Pract 2021;220:153270. [PMID: 33640712 DOI: 10.1016/j.prp.2020.153270] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
104 Liu L, Zhao J, Peng Y, Yang M, Zhang L, Jin X. miR-let-7a-5p Inhibits Invasion and Migration of Hepatoma Cells by Regulating BZW2 Expression. Onco Targets Ther 2020;13:12269-79. [PMID: 33273832 DOI: 10.2147/OTT.S278954] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
105 Liang C, Dong Z, Cai X, Shen J, Xu Y, Zhang M, Li H, Yu W, Chen W. Hypoxia induces sorafenib resistance mediated by autophagy via activating FOXO3a in hepatocellular carcinoma. Cell Death Dis 2020;11:1017. [PMID: 33250518 DOI: 10.1038/s41419-020-03233-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 11.5] [Reference Citation Analysis]
106 Venniyoor A. Synergism between anti-angiogenic and immune checkpoint inhibitor drugs: A hypothesis. Med Hypotheses 2021;146:110399. [PMID: 33239232 DOI: 10.1016/j.mehy.2020.110399] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
107 Zhu Q, Ren H, Li X, Qian B, Fan S, Hu F, Xu L, Zhai B. Silencing KIF14 reverses acquired resistance to sorafenib in hepatocellular carcinoma. Aging (Albany NY) 2020;12:22975-3003. [PMID: 33203790 DOI: 10.18632/aging.104028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
108 Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol 2021;15:217-33. [PMID: 33131349 DOI: 10.1080/17474124.2021.1842732] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
109 Xie X, Shen W, Zhou Y, Ma L, Xu D, Ding J, He L, Shen B, Zhou C. Characterization of a polysaccharide from Eupolyphaga sinensis walker and its effective antitumor activity via lymphocyte activation. International Journal of Biological Macromolecules 2020;162:31-42. [DOI: 10.1016/j.ijbiomac.2020.06.120] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
110 Guo L, Zheng J, Luo J, Zhang Z, Shao G. Targeting Yes1 Associated Transcriptional Regulator Inhibits Hepatocellular Carcinoma Progression and Improves Sensitivity to Sorafenib: An in vitro and in vivo Study. Onco Targets Ther 2020;13:11071-87. [PMID: 33149619 DOI: 10.2147/OTT.S249412] [Reference Citation Analysis]
111 Zhang Z, Tan X, Luo J, Yao H, Si Z, Tong JS. The miR-30a-5p/CLCF1 axis regulates sorafenib resistance and aerobic glycolysis in hepatocellular carcinoma. Cell Death Dis 2020;11:902. [PMID: 33097691 DOI: 10.1038/s41419-020-03123-3] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
112 Xia SW, Wang ZM, Sun SM, Su Y, Li ZH, Shao JJ, Tan SZ, Chen AP, Wang SJ, Zhang ZL, Zhang F, Zheng SZ. Endoplasmic reticulum stress and protein degradation in chronic liver disease. Pharmacol Res 2020;161:105218. [PMID: 33007418 DOI: 10.1016/j.phrs.2020.105218] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 14.0] [Reference Citation Analysis]
113 He H, Chen T, Mo H, Chen S, Liu Q, Guo C. Hypoxia-inducible long noncoding RNA NPSR1-AS1 promotes the proliferation and glycolysis of hepatocellular carcinoma cells by regulating the MAPK/ERK pathway. Biochem Biophys Res Commun 2020;533:886-92. [PMID: 33008585 DOI: 10.1016/j.bbrc.2020.09.076] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
114 Chang CC, Dinh TK, Lee YA, Wang FN, Sung YC, Yu PL, Chiu SC, Shih YC, Wu CY, Huang YD, Wang J, Lu TT, Wan D, Chen Y. Nanoparticle Delivery of MnO2 and Antiangiogenic Therapy to Overcome Hypoxia-Driven Tumor Escape and Suppress Hepatocellular Carcinoma. ACS Appl Mater Interfaces 2020;12:44407-19. [PMID: 32865389 DOI: 10.1021/acsami.0c08473] [Cited by in Crossref: 35] [Cited by in F6Publishing: 41] [Article Influence: 17.5] [Reference Citation Analysis]
115 Niu ZS, Wang WH, Dong XN, Tian LML. Role of long noncoding RNA-mediated competing endogenous RNA regulatory network in hepatocellular carcinoma. World J Gastroenterol 2020; 26(29): 4240-4260 [PMID: 32848331 DOI: 10.3748/wjg.v26.i29.4240] [Cited by in CrossRef: 19] [Cited by in F6Publishing: 24] [Article Influence: 9.5] [Reference Citation Analysis]
116 Crezee T, Rabold K, de Jong L, Jaeger M, Netea-Maier RT. Metabolic programming of tumor associated macrophages in the context of cancer treatment. Ann Transl Med 2020;8:1028. [PMID: 32953828 DOI: 10.21037/atm-20-1114] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
117 Karbownik A, Miedziaszczyk M, Grabowski T, Stanisławiak-Rudowicz J, Jaźwiec R, Wolc A, Grześkowiak E, Szałek E. In vivo assessment of potential for UGT-inhibition-based drug-drug interaction between sorafenib and tapentadol. Biomed Pharmacother 2020;130:110530. [PMID: 32712531 DOI: 10.1016/j.biopha.2020.110530] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
118 Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W, Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res 2020;39:126. [PMID: 32631382 DOI: 10.1186/s13046-020-01629-4] [Cited by in Crossref: 104] [Cited by in F6Publishing: 115] [Article Influence: 52.0] [Reference Citation Analysis]
119 Ling S, Shan Q, Zhan Q, Ye Q, Liu P, Xu S, He X, Ma J, Xiang J, Jiang G, Wen X, Feng Z, Wu Y, Feng T, Xu L, Chen K, Zhang X, Wei R, Zhang C, Cen B, Xie H, Song P, Liu J, Zheng S, Xu X. USP22 promotes hypoxia-induced hepatocellular carcinoma stemness by a HIF1α/USP22 positive feedback loop upon TP53 inactivation. Gut 2020;69:1322-34. [PMID: 31776228 DOI: 10.1136/gutjnl-2019-319616] [Cited by in Crossref: 58] [Cited by in F6Publishing: 66] [Article Influence: 29.0] [Reference Citation Analysis]
120 Marin JJG, Macias RIR, Monte MJ, Romero MR, Asensio M, Sanchez-Martin A, Cives-Losada C, Temprano AG, Espinosa-Escudero R, Reviejo M, Bohorquez LH, Briz O. Molecular Bases of Drug Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2020;12:E1663. [PMID: 32585893 DOI: 10.3390/cancers12061663] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 29.5] [Reference Citation Analysis]
121 Mossenta M, Busato D, Dal Bo M, Toffoli G. Glucose Metabolism and Oxidative Stress in Hepatocellular Carcinoma: Role and Possible Implications in Novel Therapeutic Strategies. Cancers (Basel) 2020;12:E1668. [PMID: 32585931 DOI: 10.3390/cancers12061668] [Cited by in Crossref: 29] [Cited by in F6Publishing: 35] [Article Influence: 14.5] [Reference Citation Analysis]
122 Liao YJ, Hsu SM, Chien CY, Wang YH, Hsu MH, Suk FM. Treatment with a New Barbituric Acid Derivative Exerts Antiproliferative and Antimigratory Effects against Sorafenib Resistance in Hepatocellular Carcinoma. Molecules 2020;25:E2856. [PMID: 32575795 DOI: 10.3390/molecules25122856] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
123 Malale K, Fu J, Qiu L, Zhan K, Gan X, Mei Z. Hypoxia-Induced Aquaporin-3 Changes Hepatocellular Carcinoma Cell Sensitivity to Sorafenib by Activating the PI3K/Akt Signaling Pathway. Cancer Manag Res 2020;12:4321-33. [PMID: 32606928 DOI: 10.2147/CMAR.S243918] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
124 Niu Y, Tang G, Wu X, Wu C. LncRNA NEAT1 modulates sorafenib resistance in hepatocellular carcinoma through regulating the miR-149-5p/AKT1 axis. Saudi J Gastroenterol 2020. [PMID: 32461380 DOI: 10.4103/sjg.SJG_4_20] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
125 Fan G, Wei X, Xu X. Is the era of sorafenib over? A review of the literature. Ther Adv Med Oncol 2020;12:1758835920927602. [PMID: 32518599 DOI: 10.1177/1758835920927602] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
126 Lin H, Zhang R, Wu W, Lei L. Comprehensive network analysis of the molecular mechanisms associated with sorafenib resistance in hepatocellular carcinoma. Cancer Genet 2020;245:27-34. [PMID: 32559715 DOI: 10.1016/j.cancergen.2020.04.076] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
127 Bian Y, Guo D. Targeted Therapy for Hepatocellular Carcinoma: Co-Delivery of Sorafenib and Curcumin Using Lactosylated pH-Responsive Nanoparticles. Drug Des Devel Ther 2020;14:647-59. [PMID: 32109990 DOI: 10.2147/DDDT.S238955] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
128 Jiang Y, Yao B, Chen T, Mo H, Chen S, Liu Q, Sun Y. BICD1 functions as a prognostic biomarker and promotes hepatocellular carcinoma progression. Pathol Res Pract 2020;216:152858. [PMID: 32088084 DOI: 10.1016/j.prp.2020.152858] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
129 Abdel-Mohsen HT, Abdullaziz MA, Kerdawy AME, Ragab FAF, Flanagan KJ, Mahmoud AEE, Ali MM, Diwani HIE, Senge MO. Targeting Receptor Tyrosine Kinase VEGFR-2 in Hepatocellular Cancer: Rational Design, Synthesis and Biological Evaluation of 1,2-Disubstituted Benzimidazoles. Molecules 2020;25:E770. [PMID: 32053964 DOI: 10.3390/molecules25040770] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
130 Attia YM, Ewida H, Ahmed MS. Successful stories of drug repurposing for cancer therapy in hepatocellular carcinoma. Drug Repurposing in Cancer Therapy 2020. [DOI: 10.1016/b978-0-12-819668-7.00008-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
131 Distefano JK, Sukowati C. Long Noncoding RNAs as Drivers of Acquired Chemoresistance in Hepatocellular Carcinoma. RNA Technologies 2020. [DOI: 10.1007/978-3-030-44743-4_8] [Reference Citation Analysis]
132 Méndez-Blanco C, Fondevila F, Fernández-Palanca P, García-Palomo A, Pelt JV, Verslype C, González-Gallego J, Mauriz JL. Stabilization of Hypoxia-Inducible Factors and BNIP3 Promoter Methylation Contribute to Acquired Sorafenib Resistance in Human Hepatocarcinoma Cells. Cancers (Basel) 2019;11:E1984. [PMID: 31835431 DOI: 10.3390/cancers11121984] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
133 Zhang WC. microRNAs Tune Oxidative Stress in Cancer Therapeutic Tolerance and Resistance. Int J Mol Sci 2019;20:E6094. [PMID: 31816897 DOI: 10.3390/ijms20236094] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
134 Hong W, Hu Y, Fan Z, Gao R, Yang R, Bi J, Hou J. In silico identification of EP400 and TIA1 as critical transcription factors involved in human hepatocellular carcinoma relapse. Oncol Lett 2020;19:952-64. [PMID: 31897208 DOI: 10.3892/ol.2019.11171] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
135 Fernández-Palanca P, Fondevila F, Méndez-Blanco C, Tuñón MJ, González-Gallego J, Mauriz JL. Antitumor Effects of Quercetin in Hepatocarcinoma In Vitro and In Vivo Models: A Systematic Review. Nutrients 2019;11:E2875. [PMID: 31775362 DOI: 10.3390/nu11122875] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
136 Ai L, Xu Z, Yang B, He Q, Luo P. Sorafenib-associated hand-foot skin reaction: practical advice on diagnosis, mechanism, prevention, and management. Expert Rev Clin Pharmacol 2019;12:1121-7. [PMID: 31679411 DOI: 10.1080/17512433.2019.1689122] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
137 Lai Y, Feng B, Abudoureyimu M, Zhi Y, Zhou H, Wang T, Chu X, Chen P, Wang R. Non-coding RNAs: Emerging Regulators of Sorafenib Resistance in Hepatocellular Carcinoma. Front Oncol 2019;9:1156. [PMID: 31750247 DOI: 10.3389/fonc.2019.01156] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
138 Qiu Z, Shen L, Chen S, Qi H, Cao F, Xie L, Fan W. Efficacy Of Apatinib In Transcatheter Arterial Chemoembolization (TACE) Refractory Intermediate And Advanced-Stage Hepatocellular carcinoma:A Propensity Score Matching Analysis. Cancer Manag Res 2019;11:9321-30. [PMID: 31802950 DOI: 10.2147/CMAR.S223271] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
139 Elsayed MM, Mostafa ME, Alaaeldin E, Sarhan HA, Shaykoon MS, Allam S, Ahmed AR, Elsadek BE. Design And Characterisation Of Novel Sorafenib-Loaded Carbon Nanotubes With Distinct Tumour-Suppressive Activity In Hepatocellular Carcinoma. Int J Nanomedicine 2019;14:8445-67. [PMID: 31754301 DOI: 10.2147/IJN.S223920] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
140 Coliat P, Ramolu L, Jégu J, Gaiddon C, Jung AC, Pencreach E. Constitutive or Induced HIF-2 Addiction is Involved in Resistance to Anti-EGFR Treatment and Radiation Therapy in HNSCC. Cancers (Basel) 2019;11:E1607. [PMID: 31640284 DOI: 10.3390/cancers11101607] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
141 Duan B, Huang C, Bai J, Zhang YL, Wang X, Yang J, Li J; Department of Medical Oncology, Shaanxi Provincial People’s Hospital, China, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University, China, Department of Medical Oncology, Shaanxi Provincial People’s Hospital, China, Department of Neurology, Shaanxi Provincial People’s Hospital, China, Department of Medical Oncology, Shaanxi Provincial People’s Hospital, China, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University, China, Department of National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital, Xi’an Jiaotong University, China. Multidrug Resistance in Hepatocellular Carcinoma. In: Tirnitz-parker JE, editor. Hepatocellular Carcinoma. Codon Publications; 2019. pp. 141-58. [DOI: 10.15586/hepatocellularcarcinoma.2019.ch8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
142 Fondevila F, Méndez-Blanco C, Fernández-Palanca P, González-Gallego J, Mauriz JL. Anti-tumoral activity of single and combined regorafenib treatments in preclinical models of liver and gastrointestinal cancers. Exp Mol Med 2019;51:1-15. [PMID: 31551425 DOI: 10.1038/s12276-019-0308-1] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 12.0] [Reference Citation Analysis]
143 El-Gazzar MG, El-Hazek RM, Zaher NH, El-Ghazaly MA. Design and synthesis of novel pyridazinoquinazoline derivatives as potent VEGFR-2 inhibitors: In vitro and in vivo study. Bioorg Chem 2019;92:103251. [PMID: 31525526 DOI: 10.1016/j.bioorg.2019.103251] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
144 Wang J, Wei H, Huang Y, Chen D, Zeng G, Lian Y, Huang Y. The combination of lonafarnib and sorafenib induces cyclin D1 degradation via ATG3-mediated autophagic flux in hepatocellular carcinoma cells. Aging (Albany NY) 2019;11:5769-85. [PMID: 31409760 DOI: 10.18632/aging.102165] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
145 Bozdag M, Ferraroni M, Ward C, Carta F, Bua S, Angeli A, Langdon SP, Kunkler IH, Al-Tamimi AS, Supuran CT. Carbonic anhydrase inhibitors based on sorafenib scaffold: Design, synthesis, crystallographic investigation and effects on primary breast cancer cells. Eur J Med Chem 2019;182:111600. [PMID: 31419777 DOI: 10.1016/j.ejmech.2019.111600] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
146 Feng J, Wu L, Ji J, Chen K, Yu Q, Zhang J, Chen J, Mao Y, Wang F, Dai W, Xu L, Wu J, Guo C. PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma. J Exp Clin Cancer Res 2019;38:204. [PMID: 31101057 DOI: 10.1186/s13046-019-1194-z] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 12.7] [Reference Citation Analysis]
147 Huot JR, Essex AL, Gutierrez M, Barreto R, Wang M, Waning DL, Plotkin LI, Bonetto A. Chronic Treatment with Multi-Kinase Inhibitors Causes Differential Toxicities on Skeletal and Cardiac Muscles. Cancers (Basel) 2019;11:E571. [PMID: 31018508 DOI: 10.3390/cancers11040571] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
148 Eilenberger C, Rothbauer M, Ehmoser EK, Ertl P, Küpcü S. Effect of Spheroidal Age on Sorafenib Diffusivity and Toxicity in a 3D HepG2 Spheroid Model. Sci Rep 2019;9:4863. [PMID: 30890741 DOI: 10.1038/s41598-019-41273-3] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 11.3] [Reference Citation Analysis]
149 Wei L, Lun Y, Zhou X, He S, Gao L, Liu Y, He Z, Li B, Wang C. Novel urokinase-plasminogen activator inhibitor SPINK13 inhibits growth and metastasis of hepatocellular carcinoma in vivo. Pharmacol Res 2019;143:73-85. [PMID: 30862605 DOI: 10.1016/j.phrs.2019.03.009] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]