BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 2009;7:526-36. [DOI: 10.1038/nrmicro2164] [Cited by in Crossref: 954] [Cited by in F6Publishing: 891] [Article Influence: 73.4] [Reference Citation Analysis]
Number Citing Articles
1 Li C, Harmanus C, Zhu D, Meng X, Wang S, Duan J, Liu S, Fu C, Zhou P, Liu R, Wu A, Kuijper EJ, Smits WK, Fu L, Sun X. Characterization of the virulence of a non-RT027, non-RT078 and binary toxin-positive Clostridium difficile strain associated with severe diarrhea. Emerg Microbes Infect 2018;7:211. [PMID: 30542069 DOI: 10.1038/s41426-018-0211-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
2 Viazis N, Pontas C, Karmiris K, Dimas I, Fragaki M, Paspatis G, Drygiannakis I, Koutroubakis IE, Moschovis D, Tzouvala M, Theocharis G, Tsolias C, Thomopoulos K, Zampeli E, Axiaris G, Michopoulos S, Belesiotou E, Banasa M, Maraki S, Kouskoumpekou F, Apostolopoulos G, Stamouli V, Prifti H, Mantzaris GJ. Prevalence of Clostridium difficile infection among hospitalized inflammatory bowel disease patients in Greece. Eur J Gastroenterol Hepatol 2019;31:773-6. [PMID: 30973416 DOI: 10.1097/MEG.0000000000001414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Guo S, Chen Y, Liu J, Zhang X, Liu Z, Zhou Z, Wei W. Low-density lipoprotein receptor-related protein 1 is a CROPs-associated receptor for Clostridioides difficile toxin B. Sci China Life Sci 2021. [PMID: 34279819 DOI: 10.1007/s11427-021-1943-9] [Reference Citation Analysis]
4 Rupnik M, Songer JG. Clostridium difficile: its potential as a source of foodborne disease. Adv Food Nutr Res 2010;60:53-66. [PMID: 20691953 DOI: 10.1016/S1043-4526(10)60003-4] [Cited by in Crossref: 49] [Cited by in F6Publishing: 17] [Article Influence: 4.9] [Reference Citation Analysis]
5 Ceccato A, Di Giannatale P, Nogas S, Torres A. Safety considerations of current drug treatment strategies for nosocomial pneumonia. Expert Opin Drug Saf 2021;20:181-90. [PMID: 33243022 DOI: 10.1080/14740338.2021.1857362] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Yee KL, Kleijn HJ, Zajic S, Dorr MB, Wrishko RE. A time-to-event analysis of the exposure-response relationship for bezlotoxumab concentrations and CDI recurrence. J Pharmacokinet Pharmacodyn 2020;47:121-30. [PMID: 32048107 DOI: 10.1007/s10928-019-09660-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Usui M, Suzuki K, Oka K, Miyamoto K, Takahashi M, Inamatsu T, Kamiya S, Tamura Y. Distribution and characterization of Clostridium difficile isolated from dogs in Japan. Anaerobe 2016;37:58-61. [PMID: 26456188 DOI: 10.1016/j.anaerobe.2015.10.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
8 Yuhashi K, Yagihara Y, Misawa Y, Sato T, Saito R, Okugawa S, Moriya K. Diagnosing Clostridium difficile-associated diarrhea using enzyme immunoassay: the clinical significance of toxin negativity in glutamate dehydrogenase-positive patients. Infect Drug Resist 2016;9:93-9. [PMID: 27313472 DOI: 10.2147/IDR.S105429] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
9 Gerding DN, Hecht DW, Louie T, Nord CE, Talbot GH, Cornely OA, Buitrago M, Best E, Sambol S, Osmolski JR, Kracker H, Locher HH, Charef P, Wilcox M. Susceptibility of Clostridium difficile isolates from a Phase 2 clinical trial of cadazolid and vancomycin in C. difficile infection. J Antimicrob Chemother 2016;71:213-9. [PMID: 26433782 DOI: 10.1093/jac/dkv300] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
10 Zamani AH, Razmyar J, Berger FK, Kalidari GA, Jamshidi A. Isolation and toxin gene detection of Clostridium (Clostridioides) difficile from traditional and commercial quail farms and packed quail meat for market supply - Short communication. Acta Vet Hung 2019;67:499-504. [PMID: 31842596 DOI: 10.1556/004.2019.049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Janezic S, Indra A, Rattei T, Weinmaier T, Rupnik M. Recombination drives evolution of the Clostridium difficile 16S-23S rRNA intergenic spacer region. PLoS One 2014;9:e106545. [PMID: 25222120 DOI: 10.1371/journal.pone.0106545] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
12 Toth M, Stewart NK, Smith C, Vakulenko SB. Intrinsic Class D β-Lactamases of Clostridium difficile. mBio 2018;9:e01803-18. [PMID: 30563905 DOI: 10.1128/mBio.01803-18] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
13 Dembek M, Stabler RA, Witney AA, Wren BW, Fairweather NF. Transcriptional analysis of temporal gene expression in germinating Clostridium difficile 630 endospores. PLoS One 2013;8:e64011. [PMID: 23691138 DOI: 10.1371/journal.pone.0064011] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 5.7] [Reference Citation Analysis]
14 Willing SE, Candela T, Shaw HA, Seager Z, Mesnage S, Fagan RP, Fairweather NF. Clostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII. Mol Microbiol 2015;96:596-608. [PMID: 25649385 DOI: 10.1111/mmi.12958] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 5.1] [Reference Citation Analysis]
15 Heinlen L, Ballard JD. Clostridium difficile infection. Am J Med Sci. 2010;340:247-252. [PMID: 20697257 DOI: 10.1097/maj.0b013e3181e939d8] [Cited by in Crossref: 89] [Cited by in F6Publishing: 39] [Article Influence: 7.4] [Reference Citation Analysis]
16 Pamer EG. Fecal microbiota transplantation: effectiveness, complexities, and lingering concerns. Mucosal Immunol. 2014;7:210-214. [PMID: 24399149 DOI: 10.1038/mi.2013.117] [Cited by in Crossref: 70] [Cited by in F6Publishing: 70] [Article Influence: 8.8] [Reference Citation Analysis]
17 Hotinger JA, Morris ST, May AE. The Case against Antibiotics and for Anti-Virulence Therapeutics. Microorganisms 2021;9:2049. [PMID: 34683370 DOI: 10.3390/microorganisms9102049] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Roy Chowdhury P, DeMaere M, Chapman T, Worden P, Charles IG, Darling AE, Djordjevic SP. Comparative genomic analysis of toxin-negative strains of Clostridium difficile from humans and animals with symptoms of gastrointestinal disease. BMC Microbiol 2016;16:41. [PMID: 26971047 DOI: 10.1186/s12866-016-0653-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
19 Lakshminarayanan B, Harris HMB, Coakley M, O'Sullivan Ó, Stanton C, Pruteanu M, Shanahan F, O'Toole PW, Ross RP, On Behalf Of The Eldermet Consortium. Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly Irish subjects. J Med Microbiol 2013;62:457-66. [PMID: 23222860 DOI: 10.1099/jmm.0.052258-0] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
20 Josephs-Spaulding J, Beeler E, Singh OV. Human microbiome versus food-borne pathogens: friend or foe. Appl Microbiol Biotechnol 2016;100:4845-63. [PMID: 27102132 DOI: 10.1007/s00253-016-7523-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
21 Bomers MK, Menke FP, Savage RS, Vandenbroucke-Grauls CM, van Agtmael MA, Covington JA, Smulders YM. Rapid, accurate, and on-site detection of C. difficile in stool samples. Am J Gastroenterol 2015;110:588-94. [PMID: 25823766 DOI: 10.1038/ajg.2015.90] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
22 McAllister KN, Bouillaut L, Kahn JN, Self WT, Sorg JA. Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis. Sci Rep 2017;7:14672. [PMID: 29116155 DOI: 10.1038/s41598-017-15236-5] [Cited by in Crossref: 43] [Cited by in F6Publishing: 31] [Article Influence: 8.6] [Reference Citation Analysis]
23 Qiu Y, Zhai C, Chen L, Liu X, Yeo J. Current Insights on the Diverse Structures and Functions in Bacterial Collagen-like Proteins. ACS Biomater Sci Eng 2021. [PMID: 33871954 DOI: 10.1021/acsbiomaterials.1c00018] [Reference Citation Analysis]
24 Paredes-Sabja D, Cofre-Araneda G, Brito-Silva C, Pizarro-Guajardo M, Sarker MR. Clostridium difficile spore-macrophage interactions: spore survival. PLoS One 2012;7:e43635. [PMID: 22952726 DOI: 10.1371/journal.pone.0043635] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 4.1] [Reference Citation Analysis]
25 Rousseau C, Lemée L, Le Monnier A, Poilane I, Pons JL, Collignon A. Prevalence and diversity of Clostridium difficile strains in infants. J Med Microbiol 2011;60:1112-8. [PMID: 21393454 DOI: 10.1099/jmm.0.029736-0] [Cited by in Crossref: 64] [Cited by in F6Publishing: 51] [Article Influence: 5.8] [Reference Citation Analysis]
26 Gateau C, Deboscker S, Couturier J, Vogel T, Schmitt E, Muller J, Ménard C, Turcan B, Zaidi RS, Youssouf A, Lavigne T, Barbut F. Local outbreak of Clostridioides difficile PCR-Ribotype 018 investigated by multi locus variable number tandem repeat analysis, whole genome multi locus sequence typing and core genome single nucleotide polymorphism typing. Anaerobe 2019;60:102087. [DOI: 10.1016/j.anaerobe.2019.102087] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
27 Wei C, Wen-En L, Yang-Ming L, Shan L, Yi-Ming Z. Diagnostic accuracy of loop-mediated isothermal amplification in detection of Clostridium difficile in stool samples: a meta-analysis. Arch Med Sci 2015;11:927-36. [PMID: 26528332 DOI: 10.5114/aoms.2015.54846] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
28 Krutova M, Matejkova J, Nyc O. C. difficile ribotype 027 or 176? Folia Microbiol (Praha) 2014;59:523-6. [PMID: 24970104 DOI: 10.1007/s12223-014-0323-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
29 Frädrich C, Beer LA, Gerhard R. Reactive Oxygen Species as Additional Determinants for Cytotoxicity of Clostridium difficile Toxins A and B. Toxins (Basel) 2016;8:E25. [PMID: 26797634 DOI: 10.3390/toxins8010025] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
30 Citron DM, Tyrrell KL, Merriam CV, Goldstein EJ. Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria. Antimicrob Agents Chemother 2012;56:2493-503. [PMID: 22290948 DOI: 10.1128/AAC.06305-11] [Cited by in Crossref: 43] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
31 Tsutsumi LS, Owusu YB, Hurdle JG, Sun D. Progress in the discovery of treatments for C. difficile infection: A clinical and medicinal chemistry review. Curr Top Med Chem 2014;14:152-75. [PMID: 24236721 DOI: 10.2174/1568026613666131113154753] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
32 Monteiro CRAV, do Carmo MS, Melo BO, Alves MS, Dos Santos CI, Monteiro SG, Bomfim MRQ, Fernandes ES, Monteiro-Neto V. In Vitro Antimicrobial Activity and Probiotic Potential of Bifidobacterium and Lactobacillus against Species of Clostridium. Nutrients 2019;11:E448. [PMID: 30795551 DOI: 10.3390/nu11020448] [Cited by in Crossref: 23] [Cited by in F6Publishing: 11] [Article Influence: 7.7] [Reference Citation Analysis]
33 Martínez-Meléndez A, Camacho-Ortiz A, Morfin-Otero R, Maldonado-Garza HJ, Villarreal-Treviño L, Garza-González E. Current knowledge on the laboratory diagnosis of Clostridium difficile infection. World J Gastroenterol 2017; 23(9): 1552-1567 [PMID: 28321156 DOI: 10.3748/wjg.v23.i9.1552] [Cited by in CrossRef: 32] [Cited by in F6Publishing: 22] [Article Influence: 6.4] [Reference Citation Analysis]
34 Wei Y, Zhu X, Zhang S, Tan X. Structural and functional insights into corrinoid iron-sulfur protein from human pathogen Clostridium difficile. J Inorg Biochem 2017;170:26-33. [PMID: 28214753 DOI: 10.1016/j.jinorgbio.2017.02.005] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
35 de Bruyn G, Saleh J, Workman D, Pollak R, Elinoff V, Fraser NJ, Lefebvre G, Martens M, Mills RE, Nathan R, Trevino M, van Cleeff M, Foglia G, Ozol-godfrey A, Patel DM, Pietrobon PJ, Gesser R. Defining the optimal formulation and schedule of a candidate toxoid vaccine against Clostridium difficile infection: A randomized Phase 2 clinical trial. Vaccine 2016;34:2170-8. [DOI: 10.1016/j.vaccine.2016.03.028] [Cited by in Crossref: 59] [Cited by in F6Publishing: 53] [Article Influence: 9.8] [Reference Citation Analysis]
36 Pereira FC, Saujet L, Tomé AR, Serrano M, Monot M, Couture-Tosi E, Martin-Verstraete I, Dupuy B, Henriques AO. The spore differentiation pathway in the enteric pathogen Clostridium difficile. PLoS Genet 2013;9:e1003782. [PMID: 24098139 DOI: 10.1371/journal.pgen.1003782] [Cited by in Crossref: 104] [Cited by in F6Publishing: 86] [Article Influence: 11.6] [Reference Citation Analysis]
37 Rousseau C, Poilane I, De Pontual L, Maherault AC, Le Monnier A, Collignon A. Clostridium difficile carriage in healthy infants in the community: a potential reservoir for pathogenic strains. Clin Infect Dis. 2012;55:1209-1215. [PMID: 22843784 DOI: 10.1093/cid/cis637] [Cited by in Crossref: 133] [Cited by in F6Publishing: 114] [Article Influence: 13.3] [Reference Citation Analysis]
38 Akiyama S, Yamada A, Komaki Y, Komaki F, Micic D, Sakuraba A. Efficacy and Safety of Monoclonal Antibodies Against Clostridioides difficile Toxins for Prevention of Recurrent Clostridioides difficile Infection: A Systematic Review and Meta-Analysis. J Clin Gastroenterol 2021;55:43-51. [PMID: 32053529 DOI: 10.1097/MCG.0000000000001330] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Calderón-Romero P, Castro-Córdova P, Reyes-Ramírez R, Milano-Céspedes M, Guerrero-Araya E, Pizarro-Guajardo M, Olguín-Araneda V, Gil F, Paredes-Sabja D. Clostridium difficile exosporium cysteine-rich proteins are essential for the morphogenesis of the exosporium layer, spore resistance, and affect C. difficile pathogenesis. PLoS Pathog 2018;14:e1007199. [PMID: 30089172 DOI: 10.1371/journal.ppat.1007199] [Cited by in Crossref: 36] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
40 Janoir C, Denève C, Bouttier S, Barbut F, Hoys S, Caleechum L, Chapetón-Montes D, Pereira FC, Henriques AO, Collignon A. Adaptive strategies and pathogenesis of Clostridium difficile from in vivo transcriptomics. Infect Immun. 2013;81:3757-3769. [PMID: 23897605 DOI: 10.1128/iai.00515-13] [Cited by in Crossref: 97] [Cited by in F6Publishing: 68] [Article Influence: 10.8] [Reference Citation Analysis]
41 Jafari NV, Kuehne SA, Bryant CE, Elawad M, Wren BW, Minton NP, Allan E, Bajaj-Elliott M. Clostridium difficile modulates host innate immunity via toxin-independent and dependent mechanism(s). PLoS One 2013;8:e69846. [PMID: 23922820 DOI: 10.1371/journal.pone.0069846] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 5.3] [Reference Citation Analysis]
42 Vuotto C, Moura I, Barbanti F, Donelli G, Spigaglia P. Subinhibitory concentrations of metronidazole increase biofilm formation in Clostridium difficile strains. Pathog Dis 2016;74:ftv114. [PMID: 26656887 DOI: 10.1093/femspd/ftv114] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 4.1] [Reference Citation Analysis]
43 Foschetti DA, Braga-Neto MB, Bolick D, Moore J, Alves LA, Martins CS, Bomfin LE, Santos A, Leitão R, Brito G, Warren CA. Clostridium difficile toxins or infection induce upregulation of adenosine receptors and IL-6 with early pro-inflammatory and late anti-inflammatory pattern. Braz J Med Biol Res 2020;53:e9877. [PMID: 32725081 DOI: 10.1590/1414-431x20209877] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Adams CM, Eckenroth BE, Putnam EE, Doublié S, Shen A. Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLoS Pathog 2013;9:e1003165. [PMID: 23408892 DOI: 10.1371/journal.ppat.1003165] [Cited by in Crossref: 80] [Cited by in F6Publishing: 70] [Article Influence: 8.9] [Reference Citation Analysis]
45 Jafari NV, Songane M, Stabler RA, Elawad M, Wren BW, Allan E, Bajaj-Elliott M. Host immunity to Clostridium difficile PCR ribotype 017 strains. Infect Immun 2014;82:4989-96. [PMID: 25225246 DOI: 10.1128/IAI.02605-14] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
46 Bouillaut L, McBride S, Sorg JA, Schmidt DJ, Suarez JM, Tzipori S, Mascio C, Chesnel L, Sonenshein AL. Effects of surotomycin on Clostridium difficile viability and toxin production in vitro. Antimicrob Agents Chemother 2015;59:4199-205. [PMID: 25941230 DOI: 10.1128/AAC.00275-15] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
47 Su YH, Rohani A, Warren CA, Swami NS. Tracking Inhibitory Alterations during Interstrain Clostridium difficile Interactions by Monitoring Cell Envelope Capacitance. ACS Infect Dis 2016;2:544-51. [PMID: 27547818 DOI: 10.1021/acsinfecdis.6b00050] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
48 Vinner GK, Vladisavljević GT, Clokie MRJ, Malik DJ. Microencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release. PLoS One 2017;12:e0186239. [PMID: 29023522 DOI: 10.1371/journal.pone.0186239] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 7.8] [Reference Citation Analysis]
49 Lyte M. The microbial organ in the gut as a driver of homeostasis and disease. Med Hypotheses 2010;74:634-8. [PMID: 19900764 DOI: 10.1016/j.mehy.2009.10.025] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 4.3] [Reference Citation Analysis]
50 Riedel T, Neumann-Schaal M, Wittmann J, Schober I, Hofmann JD, Lu CW, Dannheim A, Zimmermann O, Lochner M, Groß U, Overmann J. Characterization of Clostridioides difficile DSM 101085 with A-B-CDT+ Phenotype from a Late Recurrent Colonization. Genome Biol Evol 2020;12:566-77. [PMID: 32302381 DOI: 10.1093/gbe/evaa072] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Kochan TJ, Foley MH, Shoshiev MS, Somers MJ, Carlson PE, Hanna PC. Updates to Clostridium difficile Spore Germination. J Bacteriol 2018;200:e00218-18. [PMID: 29760211 DOI: 10.1128/JB.00218-18] [Cited by in Crossref: 27] [Cited by in F6Publishing: 11] [Article Influence: 6.8] [Reference Citation Analysis]
52 Pizarro-Guajardo M, Calderón-Romero P, Paredes-Sabja D. Ultrastructure Variability of the Exosporium Layer of Clostridium difficile Spores from Sporulating Cultures and Biofilms. Appl Environ Microbiol 2016;82:5892-8. [PMID: 27474709 DOI: 10.1128/AEM.01463-16] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
53 Simpson HL, Roberts CL, Thompson LM, Leiper CR, Gittens N, Trotter E, Duckworth CA, Papoutsopoulou S, Miyajima F, Roberts P, O'Kennedy N, Rhodes JM, Campbell BJ. Soluble Non-Starch Polysaccharides From Plantain (Musa x paradisiaca L.) Diminish Epithelial Impact of Clostridioides difficile. Front Pharmacol 2021;12:766293. [PMID: 34955836 DOI: 10.3389/fphar.2021.766293] [Reference Citation Analysis]
54 Cheng JW, Xiao M, Kudinha T, Xu ZP, Sun LY, Hou X, Zhang L, Fan X, Kong F, Xu YC. The Role of Glutamate Dehydrogenase (GDH) Testing Assay in the Diagnosis of Clostridium difficile Infections: A High Sensitive Screening Test and an Essential Step in the Proposed Laboratory Diagnosis Workflow for Developing Countries like China. PLoS One. 2015;10:e0144604. [PMID: 26659011 DOI: 10.1371/journal.pone.0144604] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
55 Makristathis A, Zeller I, Mitteregger D, Kundi M, Hirschl AM. Comprehensive evaluation of chemiluminescent immunoassays for the laboratory diagnosis of Clostridium difficile infection. Eur J Clin Microbiol Infect Dis 2017;36:1253-9. [PMID: 28181032 DOI: 10.1007/s10096-017-2916-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
56 Kang JD, Myers CJ, Harris SC, Kakiyama G, Lee IK, Yun BS, Matsuzaki K, Furukawa M, Min HK, Bajaj JS, Zhou H, Hylemon PB. Bile Acid 7α-Dehydroxylating Gut Bacteria Secrete Antibiotics that Inhibit Clostridium difficile: Role of Secondary Bile Acids. Cell Chem Biol 2019;26:27-34.e4. [PMID: 30482679 DOI: 10.1016/j.chembiol.2018.10.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
57 Isidro J, Menezes J, Serrano M, Borges V, Paixão P, Mimoso M, Martins F, Toscano C, Santos A, Henriques AO, Oleastro M. Genomic Study of a Clostridium difficile Multidrug Resistant Outbreak-Related Clone Reveals Novel Determinants of Resistance. Front Microbiol 2018;9:2994. [PMID: 30574133 DOI: 10.3389/fmicb.2018.02994] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
58 Rizzardi K, Åkerlund T, Norén T, Matussek A. Impact of ribotype on Clostridioides difficile diagnostics. Eur J Clin Microbiol Infect Dis 2020;39:847-53. [PMID: 31884555 DOI: 10.1007/s10096-019-03772-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
59 Passmore IJ, Letertre MPM, Preston MD, Bianconi I, Harrison MA, Nasher F, Kaur H, Hong HA, Baines SD, Cutting SM, Swann JR, Wren BW, Dawson LF. Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria. PLoS Pathog 2018;14:e1007191. [PMID: 30208103 DOI: 10.1371/journal.ppat.1007191] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 11.5] [Reference Citation Analysis]
60 Martínez-Meléndez A, Morfin-Otero R, Villarreal-Treviño L, Baines SD, Camacho-Ortíz A, Garza-González E. Molecular epidemiology of predominant and emerging Clostridioides difficile ribotypes. J Microbiol Methods 2020;175:105974. [PMID: 32531232 DOI: 10.1016/j.mimet.2020.105974] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
61 Cernat RC, Scott KP. Evaluation of novel assays to assess the influence of different iron sources on the growth of Clostridium difficile. Anaerobe 2012;18:298-304. [PMID: 22554901 DOI: 10.1016/j.anaerobe.2012.04.007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
62 Álvarez R, Ortega-Fuentes C, Queraltó C, Inostroza O, Díaz-Yáñez F, González R, Calderón IL, Fuentes JA, Paredes-Sabja D, Gil F. Evaluation of functionality of type II toxin-antitoxin systems of Clostridioides difficile R20291. Microbiol Res 2020;239:126539. [PMID: 32622285 DOI: 10.1016/j.micres.2020.126539] [Reference Citation Analysis]
63 Brouwer MS, Roberts AP, Mullany P, Allan E. In silico analysis of sequenced strains of Clostridium difficile reveals a related set of conjugative transposons carrying a variety of accessory genes. Mob Genet Elements 2012;2:8-12. [PMID: 22754747 DOI: 10.4161/mge.19297] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
64 Winter K, Xing L, Kassardjian A, Ward BJ. Vaccination against Clostridium difficile by Use of an Attenuated Salmonella enterica Serovar Typhimurium Vector (YS1646) Protects Mice from Lethal Challenge. Infect Immun 2019;87:e00089-19. [PMID: 31138615 DOI: 10.1128/IAI.00089-19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
65 Piewngam P, Otto M. Probiotics to prevent Staphylococcus aureus disease? Gut Microbes 2020;11:94-101. [PMID: 30913972 DOI: 10.1080/19490976.2019.1591137] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
66 Mattner J, Schmidt F, Siegmund B. Faecal microbiota transplantation-A clinical view. Int J Med Microbiol 2016;306:310-5. [PMID: 26924753 DOI: 10.1016/j.ijmm.2016.02.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
67 Riley TV, Kimura T. The Epidemiology of Clostridium difficile Infection in Japan: A Systematic Review. Infect Dis Ther 2018;7:39-70. [PMID: 29441500 DOI: 10.1007/s40121-018-0186-1] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
68 Ravi J, Fioravanti A. S-layers: The Proteinaceous Multifunctional Armors of Gram-Positive Pathogens. Front Microbiol 2021;12:663468. [PMID: 33889148 DOI: 10.3389/fmicb.2021.663468] [Reference Citation Analysis]
69 Taur Y, Pamer EG. Harnessing microbiota to kill a pathogen: Fixing the microbiota to treat Clostridium difficile infections. Nat Med 2014;20:246-7. [PMID: 24603796 DOI: 10.1038/nm.3492] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
70 Yaqoob P. Ageing, immunity and influenza: a role for probiotics? Proc Nutr Soc 2014;73:309-17. [PMID: 24300282 DOI: 10.1017/S0029665113003777] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
71 Lonsdale DO, Baker EH. Understanding and managing medication in elderly people. Best Pract Res Clin Obstet Gynaecol. 2013;27:767-788. [PMID: 23850054 DOI: 10.1016/j.bpobgyn.2013.06.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
72 Steele J, Chen K, Sun X, Zhang Y, Wang H, Tzipori S, Feng H. Systemic dissemination of Clostridium difficile toxins A and B is associated with severe, fatal disease in animal models. J Infect Dis 2012;205:384-91. [PMID: 22147798 DOI: 10.1093/infdis/jir748] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 5.4] [Reference Citation Analysis]
73 Yang Z, Huang Q, Qin J, Zhang X, Jian Y, Lv H, Liu Q, Li M. Molecular Epidemiology and Risk Factors of Clostridium difficile ST81 Infection in a Teaching Hospital in Eastern China. Front Cell Infect Microbiol 2020;10:578098. [PMID: 33425775 DOI: 10.3389/fcimb.2020.578098] [Reference Citation Analysis]
74 Boseiwaqa LV, Foster NF, Thean SK, Squire MM, Riley TV, Carson KC. Comparison of ChromID C. difficile agar and cycloserine-cefoxitin-fructose agar for the recovery of Clostridium difficile. Pathology 2013;45:495-500. [DOI: 10.1097/pat.0b013e3283632680] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
75 Wang S, Wang Y, Cai Y, Kelly CP, Sun X. Novel Chimeric Protein Vaccines Against Clostridium difficile Infection. Front Immunol 2018;9:2440. [PMID: 30405630 DOI: 10.3389/fimmu.2018.02440] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
76 Roxas JL, Viswanathan VK. Modulation of Intestinal Paracellular Transport by Bacterial Pathogens. Compr Physiol 2018;8:823-42. [PMID: 29687905 DOI: 10.1002/cphy.c170034] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
77 Babakhanov AT, Dzhumabekov AT, Zhao AV, Kuandykov YK, Tanabayeva SB, Fakhradiyev IR, Nazarenko Y, Saliev TM. Impact of Appendectomy on Gut Microbiota. Surg Infect (Larchmt) 2021;22:651-61. [PMID: 33523761 DOI: 10.1089/sur.2020.422] [Reference Citation Analysis]
78 Jiménez A, Araya R, Paniagua D, Camacho-mora Z, Du T, Golding G, Leandro-astorga G, Rodríguez C, Quesada-gómez C. Molecular epidemiology and antimicrobial resistance of Clostridium difficile in a national geriatric hospital in Costa Rica. Journal of Hospital Infection 2018;99:475-80. [DOI: 10.1016/j.jhin.2018.03.027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
79 Appaneal HJ, Caffrey AR, Beganovic M, Avramovic S, LaPlante KL. Predictors of Mortality Among a National Cohort of Veterans With Recurrent Clostridium difficile Infection. Open Forum Infect Dis 2018;5:ofy175. [PMID: 30327788 DOI: 10.1093/ofid/ofy175] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
80 Förster B, Chung PK, Crobach MJT, Kuijper EJ. Application of Antibody-Mediated Therapy for Treatment and Prevention of Clostridium difficile Infection. Front Microbiol 2018;9:1382. [PMID: 29988597 DOI: 10.3389/fmicb.2018.01382] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
81 Appaneal HJ, Caffrey AR, Beganovic M, Avramovic S, LaPlante KL. Predictors of Clostridioides difficile recurrence across a national cohort of veterans in outpatient, acute, and long-term care settings. Am J Health Syst Pharm 2019;76:581-90. [PMID: 31361830 DOI: 10.1093/ajhp/zxz032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
82 Shen A. Autoproteolytic activation of bacterial toxins. Toxins (Basel) 2010;2:963-77. [PMID: 22069620 DOI: 10.3390/toxins2050963] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
83 Shen A, Lupardus PJ, Gersch MM, Puri AW, Albrow VE, Garcia KC, Bogyo M. Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins. Nat Struct Mol Biol 2011;18:364-71. [PMID: 21317893 DOI: 10.1038/nsmb.1990] [Cited by in Crossref: 54] [Cited by in F6Publishing: 44] [Article Influence: 4.9] [Reference Citation Analysis]
84 Thirumala R, Ramaswamy M, Chawla S. Diagnosis and management of infectious complications in critically ill patients with cancer. Crit Care Clin 2010;26:59-91. [PMID: 19944276 DOI: 10.1016/j.ccc.2009.09.007] [Cited by in Crossref: 50] [Cited by in F6Publishing: 39] [Article Influence: 4.2] [Reference Citation Analysis]
85 Dawood A, Zuberi A, Shi W. Plant-based β -mannanase supplemented diet modulates the gut microbiota and up-regulates the expression of immunity and digestion-related genes in Cyprinus carpio. Journal of Applied Animal Research 2022;50:21-30. [DOI: 10.1080/09712119.2021.2018327] [Reference Citation Analysis]
86 Schmidt DJ, Beamer G, Tremblay JM, Steele JA, Kim HB, Wang Y, Debatis M, Sun X, Kashentseva EA, Dmitriev IP, Curiel DT, Shoemaker CB, Tzipori S. A Tetraspecific VHH-Based Neutralizing Antibody Modifies Disease Outcome in Three Animal Models of Clostridium difficile Infection. Clin Vaccine Immunol 2016;23:774-84. [PMID: 27413067 DOI: 10.1128/CVI.00730-15] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
87 Nagao-Kitamoto H, Kitamoto S, Kuffa P, Kamada N. Pathogenic role of the gut microbiota in gastrointestinal diseases. Intest Res. 2016;14:127-138. [PMID: 27175113 DOI: 10.5217/ir.2016.14.2.127] [Cited by in Crossref: 72] [Cited by in F6Publishing: 61] [Article Influence: 12.0] [Reference Citation Analysis]
88 Corbett D, Wise A, Birchall S, Warn P, Baines SD, Crowther G, Freeman J, Chilton CH, Vernon J, Wilcox MH, Vickers RJ. In vitro susceptibility of Clostridium difficile to SMT19969 and comparators, as well as the killing kinetics and post-antibiotic effects of SMT19969 and comparators against C. difficile. J Antimicrob Chemother 2015;70:1751-6. [PMID: 25652750 DOI: 10.1093/jac/dkv006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
89 Karyal C, Hughes J, Kelly ML, Luckett JC, Kaye PV, Cockayne A, Minton NP, Griffin R. Colonisation Factor CD0873, an Attractive Oral Vaccine Candidate against Clostridioides difficile. Microorganisms 2021;9:306. [PMID: 33540694 DOI: 10.3390/microorganisms9020306] [Reference Citation Analysis]
90 Zhao S, Ghose-Paul C, Zhang K, Tzipori S, Sun X. Immune-based treatment and prevention of Clostridium difficile infection. Hum Vaccin Immunother. 2014;10:3522-3530. [PMID: 25668664 DOI: 10.4161/21645515.2014.980193] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
91 Simeon RA, Zeng Y, Chonira V, Aguirre AM, Lasagna M, Baloh M, Sorg JA, Tommos C, Chen Z. Protease-stable DARPins as promising oral therapeutics. Protein Eng Des Sel 2021;34:gzab028. [PMID: 34882774 DOI: 10.1093/protein/gzab028] [Reference Citation Analysis]
92 Liu D, Zeng L, Yan Z, Jia J, Gao J, Wei Y. The mechanisms and safety of probiotics against toxigenic clostridium difficile. Expert Rev Anti Infect Ther 2020;18:967-75. [PMID: 32520637 DOI: 10.1080/14787210.2020.1778464] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
93 Jalanka J, Mattila E, Jouhten H, Hartman J, de Vos WM, Arkkila P, Satokari R. Long-term effects on luminal and mucosal microbiota and commonly acquired taxa in faecal microbiota transplantation for recurrent Clostridium difficile infection. BMC Med. 2016;14:155. [PMID: 27724956 DOI: 10.1186/s12916-016-0698-z] [Cited by in Crossref: 63] [Cited by in F6Publishing: 54] [Article Influence: 10.5] [Reference Citation Analysis]
94 Péchiné S, Hennequin C, Boursier C, Hoys S, Collignon A. Immunization using GroEL decreases Clostridium difficile intestinal colonization. PLoS One 2013;8:e81112. [PMID: 24303034 DOI: 10.1371/journal.pone.0081112] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
95 Zaver HB, Moktan VP, Harper EP, Bali A, Nasir A, Foulks C, Kuhlman J, Green M, Algan GA, Parth HC, Wu-Ballis M, DiCicco S, Smith BT, Owen RN, Mai LS, Spiros SL, Griffis J, Ramsey Walker DT, Hata DJ, Oring JM, Powers HR, Bosch W. Reduction in Health Care Facility-Onset Clostridioides difficile Infection: A Quality Improvement Initiative. Mayo Clin Proc Innov Qual Outcomes 2021;5:1066-74. [PMID: 34820598 DOI: 10.1016/j.mayocpiqo.2021.09.004] [Reference Citation Analysis]
96 Ye GY, Li N, Chen YB, Lv T, Shen P, Gu SL, Fang YH, Li LJ. Clostridium difficile carriage in healthy pregnant women in China. Anaerobe 2016;37:54-7. [PMID: 26633756 DOI: 10.1016/j.anaerobe.2015.11.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
97 Hikone M, Ainoda Y, Tago S, Fujita T, Hirai Y, Takeuchi K, Totsuka K. Risk factors for recurrent hospital-acquired Clostridium difficile infection in a Japanese university hospital. Clin Exp Gastroenterol 2015;8:191-6. [PMID: 26203270 DOI: 10.2147/CEG.S85007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.1] [Reference Citation Analysis]
98 Kalakuntla AS, Nalakonda G, Nalakonda K, Pidikiti CV, Aasim SA. Probiotics and Clostridium Difficile: A Review of Dysbiosis and the Rehabilitation of Gut Microbiota. Cureus 2019;11:e5063. [PMID: 31516774 DOI: 10.7759/cureus.5063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
99 Archbald-Pannone LR, McMurry TL, Guerrant RL, Warren CA. Delirium and other clinical factors with Clostridium difficile infection that predict mortality in hospitalized patients. Am J Infect Control 2015;43:690-3. [PMID: 25920706 DOI: 10.1016/j.ajic.2015.03.017] [Cited by in F6Publishing: 14] [Reference Citation Analysis]
100 Swick MC, Koehler TM, Driks A. Surviving Between Hosts: Sporulation and Transmission. In: Kudva IT, Cornick NA, Plummer PJ, Zhang Q, Nicholson TL, Bannantine JP, Bellaire BH, editors. Virulence Mechanisms of Bacterial Pathogens. Washington: ASM Press; 2016. pp. 567-91. [DOI: 10.1128/9781555819286.ch20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
101 Lachowicz D, Pituch H, Wultańska D, Kuijper E, Obuch-Woszczatyński P. Surveillance of antimicrobial susceptibilities reveals high proportions of multidrug resistance in toxigenic Clostridium difficile strains in different areas of Poland. Anaerobe 2020;62:102167. [PMID: 32109736 DOI: 10.1016/j.anaerobe.2020.102167] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Squire MM, Riley TV. Clostridium difficile infection in humans and piglets: a 'One Health' opportunity. Curr Top Microbiol Immunol 2013;365:299-314. [PMID: 22695920 DOI: 10.1007/82_2012_237] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 1.3] [Reference Citation Analysis]
103 Eckert C, Jones G, Barbut F. Diagnosis of Clostridium difficile infection: the molecular approach. Future Microbiol. 2013;8:1587-1598. [PMID: 24266358 DOI: 10.2217/fmb.13.129] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
104 Džunková M, Moya A, Vázquez-Castellanos JF, Artacho A, Chen X, Kelly C, D'Auria G. Active and Secretory IgA-Coated Bacterial Fractions Elucidate Dysbiosis in Clostridium difficile Infection. mSphere 2016;1:e00101-16. [PMID: 27303742 DOI: 10.1128/mSphere.00101-16] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
105 Barbut F, Bouée S, Longepierre L, Goldberg M, Bensoussan C, Levy-bachelot L. Excess mortality between 2007 and 2014 among patients with Clostridium difficile infection: a French health insurance database analysis. Journal of Hospital Infection 2018;98:21-8. [DOI: 10.1016/j.jhin.2017.07.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
106 Taori SK, Hall V, Poxton IR. Changes in antibiotic susceptibility and ribotypes in Clostridium difficile isolates from southern Scotland, 1979–2004. Journal of Medical Microbiology 2010;59:338-44. [DOI: 10.1099/jmm.0.014829-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 1.8] [Reference Citation Analysis]
107 Scaiola A, Leibundgut M, Boehringer D, Caspers P, Bur D, Locher HH, Rueedi G, Ritz D. Structural basis of translation inhibition by cadazolid, a novel quinoxolidinone antibiotic. Sci Rep 2019;9:5634. [PMID: 30948752 DOI: 10.1038/s41598-019-42155-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
108 Dapa T, Unnikrishnan M. Biofilm formation by Clostridium difficile. Gut Microbes 2013;4:397-402. [PMID: 23892245 DOI: 10.4161/gmic.25862] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 5.2] [Reference Citation Analysis]
109 Primavilla S, Farneti S, Petruzzelli A, Drigo I, Scuota S. Contamination of hospital food with Clostridium difficile in Central Italy. Anaerobe 2019;55:8-10. [DOI: 10.1016/j.anaerobe.2018.10.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
110 Guzman L, Qiu F, Kalil AC, Mercer DF, Langnas A, Florescu DF. Risk factors for Clostridium difficile infection in intestinal transplant recipients during the first year post-transplant. Transpl Infect Dis 2018;20:e12858. [PMID: 29427406 DOI: 10.1111/tid.12858] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
111 Ting LS, Praestgaard J, Grunenberg N, Yang JC, Leeds JA, Pertel P. A first-in-human, randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study to assess the safety and tolerability of LFF571 in healthy volunteers. Antimicrob Agents Chemother 2012;56:5946-51. [PMID: 22964250 DOI: 10.1128/AAC.00867-12] [Cited by in Crossref: 23] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
112 Lucas C, Barnich N, Nguyen HTT. Microbiota, Inflammation and Colorectal Cancer. Int J Mol Sci 2017;18:E1310. [PMID: 28632155 DOI: 10.3390/ijms18061310] [Cited by in Crossref: 73] [Cited by in F6Publishing: 77] [Article Influence: 14.6] [Reference Citation Analysis]
113 Vargo CA, Bauer KA, Mangino JE, Johnston JE, Goff DA. An Antimicrobial Stewardship Program's Real-World Experience with Fidaxomicin for Treatment of Clostridium difficile Infection: A Case Series. Pharmacotherapy 2014;34:901-9. [DOI: 10.1002/phar.1451] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
114 Ochsner UA, Katilius E, Janjic N. Detection of Clostridium difficile toxins A, B and binary toxin with slow off-rate modified aptamers. Diagn Microbiol Infect Dis 2013;76:278-85. [PMID: 23680240 DOI: 10.1016/j.diagmicrobio.2013.03.029] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
115 Rahmoun LA, Azrad M, Peretz A. Antibiotic Resistance and Biofilm Production Capacity in Clostridioides difficile. Front Cell Infect Microbiol 2021;11:683464. [PMID: 34422678 DOI: 10.3389/fcimb.2021.683464] [Reference Citation Analysis]
116 Chiang SR, Lai CC, Ho CH, Chen CM, Chao CM, Wang JJ, Cheng KC. Prolonged Mechanical Ventilation Assistance Interacts Synergistically with Carbapenem for Clostridium difficile Infection in Critically Ill Patients. J Clin Med 2018;7:E224. [PMID: 30127264 DOI: 10.3390/jcm7080224] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
117 Maharshak N, Barzilay I, Zinger H, Hod K, Dotan I. Clostridium difficile infection in hospitalized patients with inflammatory bowel disease: Prevalence, risk factors, and prognosis. Medicine (Baltimore) 2018;97:e9772. [PMID: 29384868 DOI: 10.1097/MD.0000000000009772] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
118 Kint N, Alves Feliciano C, Martins MC, Morvan C, Fernandes SF, Folgosa F, Dupuy B, Texeira M, Martin-Verstraete I. How the Anaerobic Enteropathogen Clostridioides difficile Tolerates Low O2 Tensions. mBio 2020;11:e01559-20. [PMID: 32900801 DOI: 10.1128/mBio.01559-20] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
119 Hernandez LD, Racine F, Xiao L, DiNunzio E, Hairston N, Sheth PR, Murgolo NJ, Therien AG. Broad coverage of genetically diverse strains of Clostridium difficile by actoxumab and bezlotoxumab predicted by in vitro neutralization and epitope modeling. Antimicrob Agents Chemother 2015;59:1052-60. [PMID: 25451052 DOI: 10.1128/AAC.04433-14] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
120 Fühner V, Heine PA, Helmsing S, Goy S, Heidepriem J, Loeffler FF, Dübel S, Gerhard R, Hust M. Development of Neutralizing and Non-neutralizing Antibodies Targeting Known and Novel Epitopes of TcdB of Clostridioides difficile. Front Microbiol 2018;9:2908. [PMID: 30574127 DOI: 10.3389/fmicb.2018.02908] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
121 Pavlidis P, Powell N, Vincent RP, Ehrlich D, Bjarnason I, Hayee B. Systematic review: bile acids and intestinal inflammation-luminal aggressors or regulators of mucosal defence? Aliment Pharmacol Ther. 2015;42:802-817. [PMID: 26223936 DOI: 10.1111/apt.13333] [Cited by in Crossref: 61] [Cited by in F6Publishing: 55] [Article Influence: 8.7] [Reference Citation Analysis]
122 Yoon YK, Kwon KT, Jeong SJ, Moon C, Kim B, Kiem S, Kim HS, Heo E, Kim SW; Korean Society for Antimicrobial Therapy., Korean Society of Infectious Diseases., Korean Society of Health-System Pharmacist. Guidelines on Implementing Antimicrobial Stewardship Programs in Korea. Infect Chemother 2021;53:617-59. [PMID: 34623784 DOI: 10.3947/ic.2021.0098] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
123 Brouwer MS, Roberts AP, Hussain H, Williams RJ, Allan E, Mullany P. Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers. Nat Commun. 2013;4:2601. [PMID: 24131955 DOI: 10.1038/ncomms3601] [Cited by in Crossref: 100] [Cited by in F6Publishing: 98] [Article Influence: 12.5] [Reference Citation Analysis]
124 Janssen I, Cooper P, Gunka K, Rupnik M, Wetzel D, Zimmermann O, Groß U. High prevalence of nontoxigenic Clostridium difficile isolated from hospitalized and non-hospitalized individuals in rural Ghana. Int J Med Microbiol 2016;306:652-6. [PMID: 27693000 DOI: 10.1016/j.ijmm.2016.09.004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
125 Neumann-Schaal M, Metzendorf NG, Troitzsch D, Nuss AM, Hofmann JD, Beckstette M, Dersch P, Otto A, Sievers S. Tracking gene expression and oxidative damage of O2-stressed Clostridioides difficile by a multi-omics approach. Anaerobe 2018;53:94-107. [PMID: 29859941 DOI: 10.1016/j.anaerobe.2018.05.018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
126 Lim SC, Knight DR, Moono P, Foster NF, Riley TV. Clostridium difficile in soil conditioners, mulches and garden mixes with evidence of a clonal relationship with historical food and clinical isolates. Environ Microbiol Rep 2020;12:672-80. [PMID: 32975368 DOI: 10.1111/1758-2229.12889] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
127 Mackin KE, Elliott B, Kotsanas D, Howden BP, Carter GP, Korman TM, Riley TV, Rood JI, Jenkin GA, Lyras D. Molecular characterization and antimicrobial susceptibilities of Clostridium difficile clinical isolates from Victoria, Australia. Anaerobe 2015;34:80-3. [PMID: 25944720 DOI: 10.1016/j.anaerobe.2015.05.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
128 Li S, Shi L, Yang Z, Feng H. Cytotoxicity of Clostridium difficile toxin B does not require cysteine protease-mediated autocleavage and release of the glucosyltransferase domain into the host cell cytosol. Pathog Dis 2013;67:11-8. [PMID: 23620115 DOI: 10.1111/2049-632X.12016] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 3.1] [Reference Citation Analysis]
129 Taniguchi H, Tanisawa K, Sun X, Kubo T, Hoshino Y, Hosokawa M, Takeyama H, Higuchi M. Effects of short-term endurance exercise on gut microbiota in elderly men. Physiol Rep. 2018;6:e13935. [PMID: 30536648 DOI: 10.14814/phy2.13935] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
130 Wu X, Hurdle JG. The Clostridium difficile proline racemase is not essential for early logarithmic growth and infection. Can J Microbiol 2014;60:251-4. [PMID: 24693984 DOI: 10.1139/cjm-2013-0903] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
131 Ðapa T, Leuzzi R, Ng YK, Baban ST, Adamo R, Kuehne SA, Scarselli M, Minton NP, Serruto D, Unnikrishnan M. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 2013;195:545-55. [PMID: 23175653 DOI: 10.1128/JB.01980-12] [Cited by in Crossref: 161] [Cited by in F6Publishing: 98] [Article Influence: 16.1] [Reference Citation Analysis]
132 Vong L, Yeung CW, Pinnell LJ, Sherman PM. Adherent-invasive Escherichia coli Exacerbates Antibiotic-associated Intestinal Dysbiosis and Neutrophil Extracellular Trap Activation: . Inflammatory Bowel Diseases 2016;22:42-54. [DOI: 10.1097/mib.0000000000000591] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
133 Kubota H, Sakai T, Gawad A, Makino H, Akiyama T, Ishikawa E, Oishi K. Development of TaqMan-based quantitative PCR for sensitive and selective detection of toxigenic Clostridium difficile in human stools. PLoS One 2014;9:e111684. [PMID: 25360662 DOI: 10.1371/journal.pone.0111684] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
134 Spigaglia P, Barketi-Klai A, Collignon A, Mastrantonio P, Barbanti F, Rupnik M, Janezic S, Kansau I. Surface-layer (S-layer) of human and animal Clostridium difficile strains and their behaviour in adherence to epithelial cells and intestinal colonization. J Med Microbiol 2013;62:1386-93. [PMID: 23518658 DOI: 10.1099/jmm.0.056556-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
135 Putsathit P, Maneerattanaporn M, Piewngam P, Kiratisin P, Riley TV. Prevalence and molecular epidemiology of Clostridium difficile infection in Thailand. New Microbes New Infect 2017;15:27-32. [PMID: 28119780 DOI: 10.1016/j.nmni.2016.10.004] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
136 Berger FK, Rasheed SS, Araj GF, Mahfouz R, Rimmani HH, Karaoui WR, Sharara AI, Dbaibo G, Becker SL, von Müller L, Bischoff M, Matar GM, Gärtner B. Molecular characterization, toxin detection and resistance testing of human clinical Clostridium difficile isolates from Lebanon. Int J Med Microbiol 2018;308:358-63. [PMID: 29478838 DOI: 10.1016/j.ijmm.2018.01.004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
137 Candel-pérez C, Ros-berruezo G, Martínez-graciá C. A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiology 2019;77:118-29. [DOI: 10.1016/j.fm.2018.08.012] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 8.7] [Reference Citation Analysis]
138 Pizarro-Guajardo M, Calderón-Romero P, Romero-Rodríguez A, Paredes-Sabja D. Characterization of Exosporium Layer Variability of Clostridioides difficile Spores in the Epidemically Relevant Strain R20291. Front Microbiol 2020;11:1345. [PMID: 32714296 DOI: 10.3389/fmicb.2020.01345] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
139 Yu K, Bi N, Xiong C, Cai S, Long Z, Guo Z, Gu G. Synthesis of Defined and Functionalized Glycans of Lipoteichoic Acid: A Cell Surface Polysaccharide from Clostridium difficile. Org Lett 2017;19:3123-6. [PMID: 28548838 DOI: 10.1021/acs.orglett.7b01242] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
140 Qu H, Jiang Z. Clostridium difficile infection in diabetes. Diabetes Research and Clinical Practice 2014;105:285-94. [DOI: 10.1016/j.diabres.2014.06.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
141 O'Neill AM, Gallo RL. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome 2018;6:177. [PMID: 30285861 DOI: 10.1186/s40168-018-0558-5] [Cited by in Crossref: 74] [Cited by in F6Publishing: 54] [Article Influence: 18.5] [Reference Citation Analysis]
142 Fimlaid KA, Jensen O, Donnelly ML, Siegrist MS, Shen A. Regulation of Clostridium difficile Spore Formation by the SpoIIQ and SpoIIIA Proteins. PLoS Genet 2015;11:e1005562. [PMID: 26465937 DOI: 10.1371/journal.pgen.1005562] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 5.6] [Reference Citation Analysis]
143 Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe. 2011;10:311-323. [PMID: 22018232 DOI: 10.1016/j.chom.2011.10.004] [Cited by in Crossref: 313] [Cited by in F6Publishing: 291] [Article Influence: 31.3] [Reference Citation Analysis]
144 Kleger A, Schnell J, Essig A, Wagner M, Bommer M, Seufferlein T, Härter G. Fecal transplant in refractory Clostridium difficile colitis. Dtsch Arztebl Int. 2013;110:108-115. [PMID: 23468820 DOI: 10.3238/arztebl.2013.0108] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 0.2] [Reference Citation Analysis]
145 Huitzil S, Sandoval-Motta S, Frank A, Aldana M. Modeling the Role of the Microbiome in Evolution. Front Physiol 2018;9:1836. [PMID: 30618841 DOI: 10.3389/fphys.2018.01836] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
146 Beran V, Chmelar D, Vobejdova J, Konigova A, Nemec J, Tvrdik J. Sensitivity to antibiotics of Clostridium difficile toxigenic nosocomial strains. Folia Microbiol (Praha) 2014;59:209-15. [PMID: 24114414 DOI: 10.1007/s12223-013-0283-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
147 Meessen-Pinard M, Sekulovic O, Fortier LC. Evidence of in vivo prophage induction during Clostridium difficile infection. Appl Environ Microbiol 2012;78:7662-70. [PMID: 22923402 DOI: 10.1128/AEM.02275-12] [Cited by in Crossref: 62] [Cited by in F6Publishing: 39] [Article Influence: 6.2] [Reference Citation Analysis]
148 Jabbari S, Cartman ST, King JR. Mathematical modelling reveals properties of TcdC required for it to be a negative regulator of toxin production in Clostridium difficile. J Math Biol 2015;70:773-804. [PMID: 24687436 DOI: 10.1007/s00285-014-0780-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
149 Dannheim H, Will SE, Schomburg D, Neumann-Schaal M. Clostridioides difficile 630Δerm in silico and in vivo - quantitative growth and extensive polysaccharide secretion. FEBS Open Bio 2017;7:602-15. [PMID: 28396843 DOI: 10.1002/2211-5463.12208] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
150 Lee NY, Huang YT, Hsueh PR, Ko WC. Clostridium difficile bacteremia, Taiwan. Emerg Infect Dis 2010;16:1204-10. [PMID: 20678312 DOI: 10.3201/eid1608.100064] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
151 Brabb T, Newsome D, Burich A, Hanes M. Infectious Diseases. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Elsevier; 2012. pp. 637-83. [DOI: 10.1016/b978-0-12-380920-9.00023-7] [Cited by in Crossref: 4] [Article Influence: 0.4] [Reference Citation Analysis]
152 Bauer MP, Notermans DW, van Benthem BH, Brazier JS, Wilcox MH, Rupnik M, Monnet DL, van Dissel JT, Kuijper EJ. Clostridium difficile infection in Europe: a hospital-based survey. The Lancet 2011;377:63-73. [DOI: 10.1016/s0140-6736(10)61266-4] [Cited by in Crossref: 741] [Cited by in F6Publishing: 300] [Article Influence: 67.4] [Reference Citation Analysis]
153 Permpoonpattana P, Hong HA, Phetcharaburanin J, Huang JM, Cook J, Fairweather NF, Cutting SM. Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile strains producing toxins A and B. Infect Immun. 2011;79:2295-2302. [PMID: 21482682 DOI: 10.1128/IAI.00130-11] [Cited by in Crossref: 76] [Cited by in F6Publishing: 46] [Article Influence: 6.9] [Reference Citation Analysis]
154 Barra-Carrasco J, Paredes-Sabja D. Clostridium difficile spores: a major threat to the hospital environment. Future Microbiol. 2014;9:475-486. [PMID: 24810347 DOI: 10.2217/fmb.14.2] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
155 Dobson A, Cotter PD, Ross RP, Hill C. Bacteriocin production: a probiotic trait? Appl Environ Microbiol 2012;78:1-6. [PMID: 22038602 DOI: 10.1128/AEM.05576-11] [Cited by in Crossref: 324] [Cited by in F6Publishing: 146] [Article Influence: 29.5] [Reference Citation Analysis]
156 Shields K, Araujo-Castillo RV, Theethira TG, Alonso CD, Kelly CP. Recurrent Clostridium difficile infection: From colonization to cure. Anaerobe 2015;34:59-73. [PMID: 25930686 DOI: 10.1016/j.anaerobe.2015.04.012] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 7.7] [Reference Citation Analysis]
157 Shen A. Clostridium difficile toxins: mediators of inflammation. J Innate Immun 2012;4:149-58. [PMID: 22237401 DOI: 10.1159/000332946] [Cited by in Crossref: 104] [Cited by in F6Publishing: 89] [Article Influence: 10.4] [Reference Citation Analysis]
158 Ke S, Pollock NR, Wang XW, Chen X, Daugherty K, Lin Q, Xu H, Garey KW, Gonzales-Luna AJ, Kelly CP, Liu YY. Integrating gut microbiome and host immune markers to understand the pathogenesis of Clostridioides difficile infection. Gut Microbes 2021;13:1-18. [PMID: 34132169 DOI: 10.1080/19490976.2021.1935186] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
159 Wenzler E, Mulugeta SG, Danziger LH. The Antimicrobial Stewardship Approach to Combating Clostridium Difficile. Antibiotics (Basel) 2015;4:198-215. [PMID: 27025621 DOI: 10.3390/antibiotics4020198] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
160 Ternan NG, Moore ND, Smyth D, McDougall GJ, Allwood JW, Verrall S, Gill CIR, Dooley JSG, McMullan G. Increased sporulation underpins adaptation of Clostridium difficile strain 630 to a biologically-relevant faecal environment, with implications for pathogenicity. Sci Rep 2018;8:16691. [PMID: 30420658 DOI: 10.1038/s41598-018-35050-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
161 Abt MC, Buffie CG, Sušac B, Becattini S, Carter RA, Leiner I, Keith JW, Artis D, Osborne LC, Pamer EG. TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus. Sci Transl Med 2016;8:327ra25. [PMID: 26912904 DOI: 10.1126/scitranslmed.aad6663] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 9.0] [Reference Citation Analysis]
162 Escobar-cortés K, Barra-carrasco J, Paredes-sabja D. Proteases and sonication specifically remove the exosporium layer of spores of Clostridium difficile strain 630. Journal of Microbiological Methods 2013;93:25-31. [DOI: 10.1016/j.mimet.2013.01.016] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 4.2] [Reference Citation Analysis]
163 Rodrigues R, Barber GE, Ananthakrishnan AN. A Comprehensive Study of Costs Associated With Recurrent Clostridium difficile Infection. Infect Control Hosp Epidemiol 2017;38:196-202. [PMID: 27817758 DOI: 10.1017/ice.2016.246] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
164 Servin AL. Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges. Clin Microbiol Rev 2014;27:823-69. [PMID: 25278576 DOI: 10.1128/CMR.00036-14] [Cited by in Crossref: 40] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
165 Bandelj P, Logar K, Usenik AM, Vengust M, Ocepek M. An improved qPCR protocol for rapid detection and quantification of Clostridium difficile in cattle feces. FEMS Microbiol Lett 2013;341:115-21. [DOI: 10.1111/1574-6968.12102] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
166 Stenz L, Francois P, Whiteson K, Wolz C, Linder P, Schrenzel J. The CodY pleiotropic repressor controls virulence in gram-positive pathogens. FEMS Immunol Med Microbiol. 2011;62:123-139. [PMID: 21539625 DOI: 10.1111/j.1574-695x.2011.00812.x] [Cited by in Crossref: 70] [Cited by in F6Publishing: 57] [Article Influence: 6.4] [Reference Citation Analysis]
167 Kumar M, Adhikari S, Hurdle JG. Action of nitroheterocyclic drugs against Clostridium difficile. Int J Antimicrob Agents 2014;44:314-9. [PMID: 25129314 DOI: 10.1016/j.ijantimicag.2014.05.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
168 Malik DJ, Shaw CM, Shama G, Clokie MRJ, Rielly CD. An Investigation into the Inactivation Kinetics of Hydrogen Peroxide Vapor Against Clostridium difficile Endospores. Chemical Engineering Communications 2016;203:1615-24. [DOI: 10.1080/00986445.2016.1223058] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
169 Dingle TC, Mulvey GL, Armstrong GD. Mutagenic analysis of the Clostridium difficile flagellar proteins, FliC and FliD, and their contribution to virulence in hamsters. Infect Immun 2011;79:4061-7. [PMID: 21788384 DOI: 10.1128/IAI.05305-11] [Cited by in Crossref: 83] [Cited by in F6Publishing: 57] [Article Influence: 7.5] [Reference Citation Analysis]
170 Chaudhary AK, Na D, Lee EY. Rapid and high-throughput construction of microbial cell-factories with regulatory noncoding RNAs. Biotechnol Adv 2015;33:914-30. [PMID: 26027891 DOI: 10.1016/j.biotechadv.2015.05.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
171 Feazel LM, Malhotra A, Perencevich EN, Kaboli P, Diekema DJ, Schweizer ML. Effect of antibiotic stewardship programmes on Clostridium difficile incidence: a systematic review and meta-analysis. J Antimicrob Chemother 2014;69:1748-54. [PMID: 24633207 DOI: 10.1093/jac/dku046] [Cited by in Crossref: 179] [Cited by in F6Publishing: 152] [Article Influence: 22.4] [Reference Citation Analysis]
172 Swick MC, Koehler TM, Driks A. Surviving Between Hosts: Sporulation and Transmission. Microbiol Spectr 2016;4. [PMID: 27726794 DOI: 10.1128/microbiolspec.VMBF-0029-2015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
173 Pizarro-Guajardo M, Ravanal MC, Paez MD, Callegari E, Paredes-Sabja D. Identification of Clostridium difficile Immunoreactive Spore Proteins of the Epidemic Strain R20291. Proteomics Clin Appl 2018;12:e1700182. [PMID: 29573213 DOI: 10.1002/prca.201700182] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
174 Monaghan TM. New perspectives in Clostridium difficile disease pathogenesis. Infect Dis Clin North Am. 2015;29:1-11. [PMID: 25573674 DOI: 10.1016/j.idc.2014.11.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
175 Aubry A, Zou W, Vinogradov E, Williams D, Chen W, Harris G, Zhou H, Schur MJ, Gilbert M, Douce GR, Logan SM. In vitro Production and Immunogenicity of a Clostridium Difficile Spore-Specific BclA3 Glycopeptide Conjugate Vaccine. Vaccines (Basel) 2020;8:E73. [PMID: 32046000 DOI: 10.3390/vaccines8010073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
176 Zhu Z, Schnell L, Müller B, Müller M, Papatheodorou P, Barth H. The Antibiotic Bacitracin Protects Human Intestinal Epithelial Cells and Stem Cell-Derived Intestinal Organoids from Clostridium difficile Toxin TcdB. Stem Cells Int 2019;2019:4149762. [PMID: 31467562 DOI: 10.1155/2019/4149762] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
177 Abt MC, Lewis BB, Caballero S, Xiong H, Carter RA, Sušac B, Ling L, Leiner I, Pamer EG. Innate Immune Defenses Mediated by Two ILC Subsets Are Critical for Protection against Acute Clostridium difficile Infection. Cell Host Microbe 2015;18:27-37. [PMID: 26159718 DOI: 10.1016/j.chom.2015.06.011] [Cited by in Crossref: 162] [Cited by in F6Publishing: 155] [Article Influence: 27.0] [Reference Citation Analysis]
178 Carvalho P, Barbosa J, Teixeira P. Are meats indeed sold in Portugal without Clostridioides difficile?. Acta Alimentaria 2019;48:391-5. [DOI: 10.1556/066.2019.48.3.15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
179 Chen P, Tao L, Wang T, Zhang J, He A, Lam KH, Liu Z, He X, Perry K, Dong M, Jin R. Structural basis for recognition of frizzled proteins by Clostridium difficile toxin B. Science 2018;360:664-9. [PMID: 29748286 DOI: 10.1126/science.aar1999] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 11.5] [Reference Citation Analysis]
180 Barbut F, Ramé L, Petit A, Suzon L, de Chevigny A, Eckert C. Prévalence des infections à Clostridium difficile chez les patients hospitalisés avec une diarrhée : résultats d’une étude française prospective multicentrique. La Presse Médicale 2015;44:e75-83. [DOI: 10.1016/j.lpm.2014.09.021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
181 Nice EC. The Wonderful World of Poo: The Turdome and Beyond. Aust J Chem 2020;73:257. [DOI: 10.1071/ch19225] [Reference Citation Analysis]
182 Blanco N, Foxman B, Malani AN, Zhang M, Walk S, Rickard AH, Eisenberg MC. An in silico evaluation of treatment regimens for recurrent Clostridium difficile infection. PLoS One 2017;12:e0182815. [PMID: 28800598 DOI: 10.1371/journal.pone.0182815] [Reference Citation Analysis]
183 Kachrimanidou M, Sarmourli T, Skoura L, Metallidis S, Malisiovas N. Clostridium difficile infection: New insights into therapeutic options. Crit Rev Microbiol 2016;42:773-9. [PMID: 25955884 DOI: 10.3109/1040841X.2015.1027171] [Reference Citation Analysis]
184 Andrés-Lasheras S, Martín-Burriel I, Mainar-Jaime RC, Morales M, Kuijper E, Blanco JL, Chirino-Trejo M, Bolea R. Preliminary studies on isolates of Clostridium difficile from dogs and exotic pets. BMC Vet Res 2018;14:77. [PMID: 29523201 DOI: 10.1186/s12917-018-1402-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
185 Etienne-Mesmin L. [Clostridium difficile: the beauty and the beast]. Med Sci (Paris) 2017;33:825-8. [PMID: 28994370 DOI: 10.1051/medsci/20173310005] [Reference Citation Analysis]
186 Karmali S, Laffin M, de Gara C. CAGS Clinical Practice Committee report: the science of Clostridium difficile and surgery. Can J Surg 2013;56:367-71. [PMID: 24284142 DOI: 10.1503/cjs.018413] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
187 Álvarez-Hernández DA, González-Chávez AM, González-Hermosillo-Cornejo D, Franyuti-Kelly GA, Díaz-Girón-Gidi A, Vázquez-López R. Present and past perspectives on Clostridium difficile infection. Rev Gastroenterol Mex (Engl Ed) 2018;83:41-50. [PMID: 28684034 DOI: 10.1016/j.rgmx.2017.03.004] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
188 Peltier J, Shaw HA, Wren BW, Fairweather NF. Disparate subcellular location of putative sortase substrates in Clostridium difficile. Sci Rep 2017;7:9204. [PMID: 28835650 DOI: 10.1038/s41598-017-08322-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
189 Davies KA, Ashwin H, Longshaw CM, Burns DA, Davis GL, Wilcox MH; on behalf of the EUCLID study group. Diversity of Clostridium difficile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Eurosurveillance 2016;21. [DOI: 10.2807/1560-7917.es.2016.21.29.30294] [Cited by in Crossref: 95] [Cited by in F6Publishing: 42] [Article Influence: 15.8] [Reference Citation Analysis]
190 Ananthakrishnan AN, Guzman-Perez R, Gainer V, Cai T, Churchill S, Kohane I, Plenge RM, Murphy S. Predictors of severe outcomes associated with Clostridium difficile infection in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2012;35:789-795. [PMID: 22360370 DOI: 10.1111/j.1365-2036.2012.05022.x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 4.9] [Reference Citation Analysis]
191 Razim A, Pacyga K, Martirosian G, Szuba A, Gamian A, Myc A, Górska S. Mapping Epitopes of a Novel Peptidoglycan Cross-Linking Enzyme Cwp22 Recognized by Human Sera Obtained from Patients with Clostridioides difficile Infection and Cord Blood. Microorganisms 2019;7:E565. [PMID: 31739602 DOI: 10.3390/microorganisms7110565] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
192 Schwab EM, Wilkes J, Korgenski K, Hersh AL, Pavia AT, Stevens VW. Risk Factors for Recurrent Clostridium difficile Infection in Pediatric Inpatients. Hosp Pediatr 2016;6:339-44. [PMID: 27146969 DOI: 10.1542/hpeds.2015-0170] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
193 Asensio A, Di Bella S, Lo Vecchio A, Grau S, Hart WM, Isidoro B, Scotto R, Petrosillo N, Watt M, Nazir J. The impact of Clostridium difficile infection on resource use and costs in hospitals in Spain and Italy: a matched cohort study. Int J Infect Dis. 2015;36:31-38. [PMID: 26003403 DOI: 10.1016/j.ijid.2015.05.013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
194 Postigo R, Kim JH. Colonoscopic versus nasogastric fecal transplantation for the treatment of Clostridium difficile infection: a review and pooled analysis. Infection 2012;40:643-8. [PMID: 22847629 DOI: 10.1007/s15010-012-0307-9] [Cited by in Crossref: 76] [Cited by in F6Publishing: 65] [Article Influence: 7.6] [Reference Citation Analysis]
195 Shen A, Fimlaid KA, Pishdadian K. Inducing and Quantifying Clostridium difficile Spore Formation. Methods Mol Biol 2016;1476:129-42. [PMID: 27507338 DOI: 10.1007/978-1-4939-6361-4_10] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
196 Howerton A, Patra M, Abel-Santos E. A new strategy for the prevention of Clostridium difficile infection. J Infect Dis. 2013;207:1498-1504. [PMID: 23420906 DOI: 10.1093/infdis/jit068] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 6.0] [Reference Citation Analysis]
197 Dinh A, Bouchand F, Le Monnier A. Actualités épidémiologiques et thérapeutiques des infections à Clostridium difficile. La Revue de Médecine Interne 2015;36:596-602. [DOI: 10.1016/j.revmed.2015.02.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
198 Tam Dang TH, Fagan RP, Fairweather NF, Tate EW. Novel inhibitors of surface layer processing in Clostridium difficile. Bioorg Med Chem 2012;20:614-21. [PMID: 21752656 DOI: 10.1016/j.bmc.2011.06.042] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
199 Furuya-Kanamori L, Marquess J, Yakob L, Riley TV, Paterson DL, Foster NF, Huber CA, Clements AC. Asymptomatic Clostridium difficile colonization: epidemiology and clinical implications. BMC Infect Dis 2015;15:516. [PMID: 26573915 DOI: 10.1186/s12879-015-1258-4] [Cited by in Crossref: 114] [Cited by in F6Publishing: 84] [Article Influence: 16.3] [Reference Citation Analysis]
200 Liu M, Yin Q, Brennan JD, Li Y. Selection and characterization of DNA aptamers for detection of glutamate dehydrogenase from Clostridium difficile. Biochimie 2018;145:151-7. [PMID: 28882627 DOI: 10.1016/j.biochi.2017.08.015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
201 Cristina ML, Spagnolo AM, Sartini M, Panatto D, Perdelli F. Clostridium difficile infections: an emerging problem in healthcare facilities. Reviews in Medical Microbiology 2012;23:67-75. [DOI: 10.1097/mrm.0b013e3283573643] [Cited by in Crossref: 3] [Article Influence: 0.3] [Reference Citation Analysis]
202 Dubberke ER, Haslam DB, Lanzas C, Bobo LD, Burnham CA, Gröhn YT, Tarr PI. The ecology and pathobiology of Clostridium difficile infections: an interdisciplinary challenge. Zoonoses Public Health. 2011;58:4-20. [PMID: 21223531 DOI: 10.1111/j.1863-2378.2010.01352.x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 2.6] [Reference Citation Analysis]
203 Zhu X, Gu X, Zhang S, Liu Y, Huang ZX, Tan X. Efficient expression and purification of methyltransferase in acetyl-coenzyme a synthesis pathway of the human pathogen Clostridium difficile. Protein Expr Purif 2011;78:86-93. [PMID: 21324365 DOI: 10.1016/j.pep.2011.02.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
204 Louie TJ, Miller MA, Crook DW, Lentnek A, Bernard L, High KP, Shue YK, Gorbach SL. Effect of age on treatment outcomes in Clostridium difficile infection. J Am Geriatr Soc. 2013;61:222-230. [PMID: 23379974 DOI: 10.1111/jgs.12090] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 5.8] [Reference Citation Analysis]
205 Zhang Y, Zhang L, Yang L, Vong CI, Chan KF, Wu WKK, Kwong TNY, Lo NWS, Ip M, Wong SH, Sung JJY, Chiu PWY, Zhang L. Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection of C. diff toxins. Sci Adv 2019;5:eaau9650. [PMID: 30746470 DOI: 10.1126/sciadv.aau9650] [Cited by in Crossref: 68] [Cited by in F6Publishing: 49] [Article Influence: 22.7] [Reference Citation Analysis]
206 Saber T, Hawash YA, Ismail KA, Khalifa AS, Alsharif KF, Alghamdi SA, Saber T, Eed EM. Prevalence, toxin gene profile, genotypes and antibiotic susceptibility of Clostridium difficile in a tertiary care hospital in Taif, Saudi Arabia. Indian J Med Microbiol 2020;38:176-82. [PMID: 32883931 DOI: 10.4103/ijmm.IJMM_20_300] [Reference Citation Analysis]
207 Kamada N, Seo S, Chen GY, Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 2013;13:321-35. [DOI: 10.1038/nri3430] [Cited by in Crossref: 1073] [Cited by in F6Publishing: 1012] [Article Influence: 119.2] [Reference Citation Analysis]
208 Knetsch CW, Hensgens MPM, Harmanus C, van der Bijl MW, Savelkoul PHM, Kuijper EJ, Corver J, van Leeuwen HC. Genetic markers for Clostridium difficile lineages linked to hypervirulence. Microbiology (Reading) 2011;157:3113-23. [PMID: 21873406 DOI: 10.1099/mic.0.051953-0] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 3.8] [Reference Citation Analysis]
209 Le Monnier A, Zahar J, Barbut F. Update on Clostridium difficile infections. Médecine et Maladies Infectieuses 2014;44:354-65. [DOI: 10.1016/j.medmal.2014.04.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
210 Youngster I, Sauk J, Pindar C, Wilson RG, Kaplan JL, Smith MB, Alm EJ, Gevers D, Russell GH, Hohmann EL. Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin Infect Dis. 2014;58:1515-1522. [PMID: 24762631 DOI: 10.1093/cid/ciu135] [Cited by in Crossref: 295] [Cited by in F6Publishing: 243] [Article Influence: 36.9] [Reference Citation Analysis]
211 Oleastro M, Coelho M, Gião M, Coutinho S, Mota S, Santos A, Rodrigues J, Faria D. Outbreak of Clostridium difficile PCR ribotype 027--the recent experience of a regional hospital. BMC Infect Dis 2014;14:209. [PMID: 24739945 DOI: 10.1186/1471-2334-14-209] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
212 Neumann-Schaal M, Jahn D, Schmidt-Hohagen K. Metabolism the Difficile Way: The Key to the Success of the Pathogen Clostridioides difficile. Front Microbiol 2019;10:219. [PMID: 30828322 DOI: 10.3389/fmicb.2019.00219] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
213 Lay CL, Dridi L, Bergeron MG, Ouellette M, Fliss I. Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination. Journal of Medical Microbiology 2016;65:169-75. [DOI: 10.1099/jmm.0.000202] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 6.7] [Reference Citation Analysis]
214 Usui M, Nanbu Y, Oka K, Takahashi M, Inamatsu T, Asai T, Kamiya S, Tamura Y. Genetic relatedness between Japanese and European isolates of Clostridium difficile originating from piglets and their risk associated with human health. Front Microbiol 2014;5:513. [PMID: 25339943 DOI: 10.3389/fmicb.2014.00513] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
215 Cowardin CA, Buonomo EL, Saleh MM, Wilson MG, Burgess SL, Kuehne SA, Schwan C, Eichhoff AM, Koch-Nolte F, Lyras D, Aktories K, Minton NP, Petri WA Jr. The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia. Nat Microbiol 2016;1:16108. [PMID: 27573114 DOI: 10.1038/nmicrobiol.2016.108] [Cited by in Crossref: 89] [Cited by in F6Publishing: 83] [Article Influence: 14.8] [Reference Citation Analysis]
216 Barbut F, Galperine T, Vanhems P, Le Monnier A, Durand-Gasselin B, Canis F, Jeanbat V, Duburcq A, Alami S, Bensoussan C, Fagnani F. Quality of life and utility decrement associated with Clostridium difficile infection in a French hospital setting. Health Qual Life Outcomes 2019;17:6. [PMID: 30634997 DOI: 10.1186/s12955-019-1081-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
217 Méric G, Mageiros L, Pensar J, Laabei M, Yahara K, Pascoe B, Kittiwan N, Tadee P, Post V, Lamble S, Bowden R, Bray JE, Morgenstern M, Jolley KA, Maiden MCJ, Feil EJ, Didelot X, Miragaia M, de Lencastre H, Moriarty TF, Rohde H, Massey R, Mack D, Corander J, Sheppard SK. Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nat Commun 2018;9:5034. [PMID: 30487573 DOI: 10.1038/s41467-018-07368-7] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 13.3] [Reference Citation Analysis]
218 Konkel L. The environment within: exploring the role of the gut microbiome in health and disease. Environ Health Perspect. 2013;121:A276-A281. [PMID: 24004817 DOI: 10.1289/ehp.121-a276] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
219 Semenyuk EG, Laning ML, Foley J, Johnston PF, Knight KL, Gerding DN, Driks A. Spore formation and toxin production in Clostridium difficile biofilms. PLoS One 2014;9:e87757. [PMID: 24498186 DOI: 10.1371/journal.pone.0087757] [Cited by in Crossref: 63] [Cited by in F6Publishing: 55] [Article Influence: 7.9] [Reference Citation Analysis]
220 Zackular JP, Skaar EP. The role of zinc and nutritional immunity in Clostridium difficile infection. Gut Microbes 2018;9:469-76. [PMID: 29533126 DOI: 10.1080/19490976.2018.1448354] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
221 Stahlmann J, Schönberg M, Herrmann M, von Müller L. Detection of nosocomial Clostridium difficile infections with toxigenic strains despite negative toxin A and B testing on stool samples. Clin Microbiol Infect 2014;20:O590-2. [PMID: 24450741 DOI: 10.1111/1469-0691.12558] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
222 Stroke IL, Letourneau JJ, Miller TE, Xu Y, Pechik I, Savoly DR, Ma L, Sturzenbecker LJ, Sabalski J, Stein PD, Webb ML, Hilbert DW. Treatment of Clostridium difficile Infection with a Small-Molecule Inhibitor of Toxin UDP-Glucose Hydrolysis Activity. Antimicrob Agents Chemother 2018;62:e00107-18. [PMID: 29483125 DOI: 10.1128/AAC.00107-18] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
223 Chen YB, Gu SL, Wei ZQ, Shen P, Kong HS, Yang Q, Li LJ. Molecular epidemiology of Clostridium difficile in a tertiary hospital of China. J Med Microbiol 2014;63:562-9. [PMID: 24344206 DOI: 10.1099/jmm.0.068668-0] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 4.2] [Reference Citation Analysis]
224 Gomes KM, Duarte RS, de Freire Bastos MDC. Lantibiotics produced by Actinobacteria and their potential applications (a review). Microbiology (Reading) 2017;163:109-21. [PMID: 28270262 DOI: 10.1099/mic.0.000397] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 5.2] [Reference Citation Analysis]
225 de Bruyn G, Gordon DL, Steiner T, Tambyah P, Cosgrove C, Martens M, Bassily E, Chan ES, Patel D, Chen J, Torre-Cisneros J, Fernando De Magalhães Francesconi C, Gesser R, Jeanfreau R, Launay O, Laot T, Morfin-Otero R, Oviedo-Orta E, Park YS, Piazza FM, Rehm C, Rivas E, Self S, Gurunathan S. Safety, immunogenicity, and efficacy of a Clostridioides difficile toxoid vaccine candidate: a phase 3 multicentre, observer-blind, randomised, controlled trial. Lancet Infect Dis 2021;21:252-62. [PMID: 32946836 DOI: 10.1016/S1473-3099(20)30331-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
226 Lim S, Knight D, Riley T. Clostridium difficile and One Health. Clinical Microbiology and Infection 2020;26:857-63. [DOI: 10.1016/j.cmi.2019.10.023] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
227 Spigaglia P, Drigo I, Barbanti F, Mastrantonio P, Bano L, Bacchin C, Puiatti C, Tonon E, Berto G, Agnoletti F. Antibiotic resistance patterns and PCR-ribotyping of Clostridium difficile strains isolated from swine and dogs in Italy. Anaerobe 2015;31:42-6. [PMID: 25316022 DOI: 10.1016/j.anaerobe.2014.10.003] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
228 Vigsnaes LK, Ghyselinck J, Van den Abbeele P, McConnell B, Moens F, Marzorati M, Bajic D. 2'FL and LNnT Exert Antipathogenic Effects against C. difficile ATCC 9689 In Vitro, Coinciding with Increased Levels of Bifidobacteriaceae and/or Secondary Bile Acids. Pathogens 2021;10:927. [PMID: 34451391 DOI: 10.3390/pathogens10080927] [Reference Citation Analysis]
229 Cho SH, Chon JW, Seo KH, Kim YK, Kim JB, Bak YS, Jung WW, Kim CH, Choi JT. Characterization of Clostridium difficile Strains Isolated from Patients with C. difficile-associated Disease in Korea. Osong Public Health Res Perspect 2017;8:325-31. [PMID: 29164044 DOI: 10.24171/j.phrp.2017.8.5.06] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
230 Sievers S, Metzendorf NG, Dittmann S, Troitzsch D, Gast V, Tröger SM, Wolff C, Zühlke D, Hirschfeld C, Schlüter R, Riedel K. Differential View on the Bile Acid Stress Response of Clostridioides difficile. Front Microbiol 2019;10:258. [PMID: 30833939 DOI: 10.3389/fmicb.2019.00258] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
231 Phetcharaburanin J, Hong HA, Colenutt C, Bianconi I, Sempere L, Permpoonpattana P, Smith K, Dembek M, Tan S, Brisson MC, Brisson AR, Fairweather NF, Cutting SM. The spore-associated protein BclA1 affects the susceptibility of animals to colonization and infection by Clostridium difficile. Mol Microbiol 2014;92:1025-38. [PMID: 24720767 DOI: 10.1111/mmi.12611] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 4.1] [Reference Citation Analysis]
232 Petrof EO, Khoruts A. From stool transplants to next-generation microbiota therapeutics. Gastroenterology. 2014;146:1573-1582. [PMID: 24412527 DOI: 10.1053/j.gastro.2014.01.004] [Cited by in Crossref: 125] [Cited by in F6Publishing: 108] [Article Influence: 15.6] [Reference Citation Analysis]
233 Press A, Ku BS, McCullagh L, Rosen L, Richardson S, McGinn T. Developing a Clinical Prediction Rule for First Hospital-Onset Clostridium difficile Infections: A Retrospective Observational Study. Infect Control Hosp Epidemiol 2016;37:896-900. [PMID: 27123975 DOI: 10.1017/ice.2016.97] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
234 Nie YF, Hu J, Yan XH. Cross-talk between bile acids and intestinal microbiota in host metabolism and health. J Zhejiang Univ Sci B. 2015;16:436-446. [PMID: 26055905 DOI: 10.1631/jzus.b1400327] [Cited by in Crossref: 62] [Cited by in F6Publishing: 40] [Article Influence: 10.3] [Reference Citation Analysis]
235 Hamilton MJ, Weingarden AR, Unno T, Khoruts A, Sadowsky MJ. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes 2013;4:125-35. [PMID: 23333862 DOI: 10.4161/gmic.23571] [Cited by in Crossref: 206] [Cited by in F6Publishing: 190] [Article Influence: 22.9] [Reference Citation Analysis]
236 Stone NE, Nunnally AE, Jimenez V Jr, Cope EK, Sahl JW, Sheridan K, Hornstra HM, Vinocur J, Settles EW, Headley KC, Williamson CHD, Rideout JR, Bolyen E, Caporaso JG, Terriquez J, Monroy FP, Busch JD, Keim P, Wagner DM. Domestic canines do not display evidence of gut microbial dysbiosis in the presence of Clostridioides (Clostridium) difficile, despite cellular susceptibility to its toxins. Anaerobe 2019;58:53-72. [PMID: 30946985 DOI: 10.1016/j.anaerobe.2019.03.017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
237 Chai C, Lee K, Lee D, Lee S, Oh S. Non-selective and selective enrichment media for the recovery of Clostridium difficile from chopped beef. Journal of Microbiological Methods 2015;109:20-4. [DOI: 10.1016/j.mimet.2014.12.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
238 Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol. 2011;9:88-96. [PMID: 22183182 DOI: 10.1038/nrgastro.2011.244] [Cited by in Crossref: 367] [Cited by in F6Publishing: 333] [Article Influence: 33.4] [Reference Citation Analysis]
239 Banawas SS. Clostridium difficile Infections: A Global Overview of Drug Sensitivity and Resistance Mechanisms. Biomed Res Int 2018;2018:8414257. [PMID: 29682562 DOI: 10.1155/2018/8414257] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
240 He WJ, Yuan QS, Zhang YB, Guo MW, Gong AD, Zhang JB, Wu AB, Huang T, Qu B, Li HP, Liao YC. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment. Toxins (Basel) 2016;8:E277. [PMID: 27669304 DOI: 10.3390/toxins8100277] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
241 Sachdeva M, Leeds JA. Subinhibitory concentrations of LFF571 reduce toxin production by Clostridium difficile. Antimicrob Agents Chemother 2015;59:1252-7. [PMID: 25512411 DOI: 10.1128/AAC.04436-14] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
242 Wang L, Cao J, Li C, Zhang L. IL-27/IL-27 Receptor Signaling Provides Protection in Clostridium difficile-Induced Colitis. The Journal of Infectious Diseases 2018;217:198-207. [DOI: 10.1093/infdis/jix581] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
243 Alicino C, Giacobbe DR, Durando P, Bellina D, DI Bella AM, Paganino C, Del Bono V, Viscoli C, Icardi G, Orsi A. Increasing incidence of Clostridium difficile infections: results from a 5-year retrospective study in a large teaching hospital in the Italian region with the oldest population. Epidemiol Infect 2016;144:2517-26. [PMID: 27193828 DOI: 10.1017/S0950268816000935] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
244 Bloomfield LE, Riley TV. Epidemiology and Risk Factors for Community-Associated Clostridium difficile Infection: A Narrative Review. Infect Dis Ther 2016;5:231-51. [PMID: 27370914 DOI: 10.1007/s40121-016-0117-y] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 6.8] [Reference Citation Analysis]
245 Scaria J, Suzuki H, Ptak CP, Chen JW, Zhu Y, Guo XK, Chang YF. Comparative genomic and phenomic analysis of Clostridium difficile and Clostridium sordellii, two related pathogens with differing host tissue preference. BMC Genomics 2015;16:448. [PMID: 26059449 DOI: 10.1186/s12864-015-1663-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
246 Secco DA, Balassiano IT, Boente RF, Miranda KR, Brazier J, Hall V, Santos-filho JD, Lobo LA, Nouér SA, Domingues RMCP. Clostridium difficile infection among immunocompromised patients in Rio de Janeiro, Brazil and detection of moxifloxacin resistance in a ribotype 014 strain. Anaerobe 2014;28:85-9. [DOI: 10.1016/j.anaerobe.2014.05.013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
247 Valdés-Varela L, Alonso-Guervos M, García-Suárez O, Gueimonde M, Ruas-Madiedo P. Screening of Bifidobacteria and Lactobacilli Able to Antagonize the Cytotoxic Effect of Clostridium difficile upon Intestinal Epithelial HT29 Monolayer. Front Microbiol 2016;7:577. [PMID: 27148250 DOI: 10.3389/fmicb.2016.00577] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
248 Strong PC, Fulton KM, Aubry A, Foote S, Twine SM, Logan SM. Identification and characterization of glycoproteins on the spore surface of Clostridium difficile. J Bacteriol 2014;196:2627-37. [PMID: 24816601 DOI: 10.1128/JB.01469-14] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
249 Lipovsek S, Leitinger G, Rupnik M. Ultrastructure of Clostridium difficile colonies. Anaerobe 2013;24:66-70. [DOI: 10.1016/j.anaerobe.2013.09.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
250 Yang Z, Ramsey J, Hamza T, Zhang Y, Li S, Yfantis HG, Lee D, Hernandez LD, Seghezzi W, Furneisen JM, Davis NM, Therien AG, Feng H. Mechanisms of protection against Clostridium difficile infection by the monoclonal antitoxin antibodies actoxumab and bezlotoxumab. Infect Immun 2015;83:822-31. [PMID: 25486992 DOI: 10.1128/IAI.02897-14] [Cited by in Crossref: 63] [Cited by in F6Publishing: 33] [Article Influence: 7.9] [Reference Citation Analysis]
251 Kang CY, Huang IH, Chou CC, Wu TY, Chang JC, Hsiao YY, Cheng CH, Tsai WJ, Hsu KC, Wang S. Functional analysis of Clostridium difficile sortase B reveals key residues for catalytic activity and substrate specificity. J Biol Chem 2020;295:3734-45. [PMID: 32005667 DOI: 10.1074/jbc.RA119.011322] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
252 Collins LE, Lynch M, Marszalowska I, Kristek M, Rochfort K, O'connell M, Windle H, Kelleher D, Loscher CE. Surface layer proteins isolated from Clostridium difficile induce clearance responses in macrophages. Microbes and Infection 2014;16:391-400. [DOI: 10.1016/j.micinf.2014.02.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
253 Guillemin I, Marrel A, Lambert J, Beriot-mathiot A, Doucet C, Kazoglou O, Luxemburger C, Reygrobellet C, Arnould B. Patients’ Experience and Perception of Hospital-Treated Clostridium difficile Infections: a Qualitative Study. Patient 2014;7:97-105. [DOI: 10.1007/s40271-013-0043-y] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
254 Steinebrunner N, Stremmel W, Weiss KH. Ridinilazole-a novel antibiotic for treatment of Clostridium difficile infection. J Thorac Dis 2018;10:118-20. [PMID: 29600036 DOI: 10.21037/jtd.2017.12.117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
255 Vitucci JC, Pulse M, Tabor-Simecka L, Simecka J. Epidemic ribotypes of Clostridium (now Clostridioides) difficile are likely to be more virulent than non-epidemic ribotypes in animal models. BMC Microbiol 2020;20:27. [PMID: 32024477 DOI: 10.1186/s12866-020-1710-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
256 Edwards AN, Karim ST, Pascual RA, Jowhar LM, Anderson SE, McBride SM. Chemical and Stress Resistances of Clostridium difficile Spores and Vegetative Cells. Front Microbiol 2016;7:1698. [PMID: 27833595 DOI: 10.3389/fmicb.2016.01698] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 7.8] [Reference Citation Analysis]
257 Reveles KR, Lee GC, Boyd NK, Frei CR. The rise in Clostridium difficile infection incidence among hospitalized adults in the United States: 2001-2010. Am J Infect Control. 2014;42:1028-1032. [PMID: 25278388 DOI: 10.1016/j.ajic.2014.06.011] [Cited by in Crossref: 104] [Cited by in F6Publishing: 92] [Article Influence: 14.9] [Reference Citation Analysis]
258 Ratia K, Light SH, Antanasijevic A, Anderson WF, Caffrey M, Lavie A. Discovery of selective inhibitors of the Clostridium difficile dehydroquinate dehydratase. PLoS One 2014;9:e89356. [PMID: 24586713 DOI: 10.1371/journal.pone.0089356] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
259 Trifan A, Stoica O, Stanciu C, Cojocariu C, Singeap AM, Girleanu I, Miftode E. Clostridium difficile infection in patients with liver disease: a review. Eur J Clin Microbiol Infect Dis 2015;34:2313-24. [PMID: 26440041 DOI: 10.1007/s10096-015-2501-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
260 Swanson KA, Schmitt HJ, Jansen KU, Anderson AS. Adult vaccination. Hum Vaccin Immunother 2015;11:150-5. [PMID: 25483533 DOI: 10.4161/hv.35858] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
261 Carlson PE Jr, Kaiser AM, McColm SA, Bauer JM, Young VB, Aronoff DM, Hanna PC. Variation in germination of Clostridium difficile clinical isolates correlates to disease severity. Anaerobe 2015;33:64-70. [PMID: 25681667 DOI: 10.1016/j.anaerobe.2015.02.003] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 4.6] [Reference Citation Analysis]
262 Knight DR, Elliott B, Chang BJ, Perkins TT, Riley TV. Diversity and Evolution in the Genome of Clostridium difficile. Clin Microbiol Rev 2015;28:721-41. [PMID: 26085550 DOI: 10.1128/CMR.00127-14] [Cited by in Crossref: 146] [Cited by in F6Publishing: 84] [Article Influence: 20.9] [Reference Citation Analysis]
263 Karpiński P, Wultańska D, Piotrowski M, Brajerova M, Mikucka A, Pituch H, Krutova M. Motility and the genotype diversity of the flagellin genes fliC and fliD among Clostridioides difficile ribotypes. Anaerobe 2021;73:102476. [PMID: 34780914 DOI: 10.1016/j.anaerobe.2021.102476] [Reference Citation Analysis]
264 Chen YS, Chen IB, Pham G, Shao TY, Bangar H, Way SS, Haslam DB. IL-17-producing γδ T cells protect against Clostridium difficile infection. J Clin Invest 2020;130:2377-90. [PMID: 31990686 DOI: 10.1172/JCI127242] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
265 Jarchum I, Liu M, Lipuma L, Pamer EG. Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis. Infect Immun 2011;79:1498-503. [PMID: 21245274 DOI: 10.1128/IAI.01196-10] [Cited by in Crossref: 102] [Cited by in F6Publishing: 64] [Article Influence: 9.3] [Reference Citation Analysis]
266 Theuretzbacher U. Accelerating resistance, inadequate antibacterial drug pipelines and international responses. International Journal of Antimicrobial Agents 2012;39:295-9. [DOI: 10.1016/j.ijantimicag.2011.12.006] [Cited by in Crossref: 93] [Cited by in F6Publishing: 87] [Article Influence: 9.3] [Reference Citation Analysis]
267 Cheng JW, Yang QW, Xiao M, Yu SY, Zhou ML, Kudinha T, Kong F, Liao JW, Xu YC. High in vitro activity of fidaxomicin against Clostridium difficile isolates from a university teaching hospital in China. J Microbiol Immunol Infect 2018;51:411-6. [PMID: 28693926 DOI: 10.1016/j.jmii.2017.06.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
268 Mora-Uribe P, Miranda-Cárdenas C, Castro-Córdova P, Gil F, Calderón I, Fuentes JA, Rodas PI, Banawas S, Sarker MR, Paredes-Sabja D. Characterization of the Adherence of Clostridium difficile Spores: The Integrity of the Outermost Layer Affects Adherence Properties of Spores of the Epidemic Strain R20291 to Components of the Intestinal Mucosa. Front Cell Infect Microbiol 2016;6:99. [PMID: 27713865 DOI: 10.3389/fcimb.2016.00099] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
269 Iyer SS, Blumberg RS. Influence of the Gut Microbiome on Immune Development During Early Life. Physiology of the Gastrointestinal Tract. Elsevier; 2018. pp. 767-74. [DOI: 10.1016/b978-0-12-809954-4.00034-7] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
270 Mikamo H, Tateda K, Yanagihara K, Kusachi S, Takesue Y, Miki T, Oizumi Y, Gamo K, Hashimoto A, Toyoshima J, Kato K. Efficacy and safety of fidaxomicin for the treatment of Clostridioides (Clostridium) difficile infection in a randomized, double-blind, comparative Phase III study in Japan. J Infect Chemother 2018;24:744-52. [PMID: 29934056 DOI: 10.1016/j.jiac.2018.05.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
271 Geiger TL, Abt MC, Gasteiger G, Firth MA, O'Connor MH, Geary CD, O'Sullivan TE, van den Brink MR, Pamer EG, Hanash AM, Sun JC. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J Exp Med 2014;211:1723-31. [PMID: 25113970 DOI: 10.1084/jem.20140212] [Cited by in Crossref: 174] [Cited by in F6Publishing: 162] [Article Influence: 21.8] [Reference Citation Analysis]
272 Ananthakrishnan AN. Detecting and treating Clostridium difficile infections in patients with inflammatory bowel disease. Gastroenterol Clin North Am. 2012;41:339-353. [PMID: 22500522 DOI: 10.1016/j.gtc.2012.01.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
273 Rosales-Mendoza S, Cervantes-Rincón T, Romero-Maldonado A, Monreal-Escalante E, Nieto-Gómez R. Transgenic plants expressing a Clostridium difficile spore antigen as an approach to develop low-cost oral vaccines. Biotechnol Prog 2021;:e3141. [PMID: 33666366 DOI: 10.1002/btpr.3141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
274 Kirk JA, Banerji O, Fagan RP. Characteristics of the Clostridium difficile cell envelope and its importance in therapeutics. Microb Biotechnol 2017;10:76-90. [PMID: 27311697 DOI: 10.1111/1751-7915.12372] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
275 Giron MC, Mazzi U. Molecular imaging of microbiota-gut-brain axis: searching for the right targeted probe for the right target and disease. Nucl Med Biol 2021;92:72-7. [PMID: 33262001 DOI: 10.1016/j.nucmedbio.2020.11.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
276 Liévin-Le Moal V, Servin AL. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol Rev 2014;27:167-99. [PMID: 24696432 DOI: 10.1128/CMR.00080-13] [Cited by in Crossref: 177] [Cited by in F6Publishing: 89] [Article Influence: 29.5] [Reference Citation Analysis]
277 Sheth PM, Douchant K, Uyanwune Y, Larocque M, Anantharajah A, Borgundvaag E, Dales L, McCreight L, McNaught L, Moore C, Ragan K, McGeer A, Broukhanski G. Evidence of transmission of Clostridium difficile in asymptomatic patients following admission screening in a tertiary care hospital. PLoS One 2019;14:e0207138. [PMID: 30742636 DOI: 10.1371/journal.pone.0207138] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
278 Díaz-González F, Milano M, Olguin-Araneda V, Pizarro-Cerda J, Castro-Córdova P, Tzeng SC, Maier CS, Sarker MR, Paredes-Sabja D. Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores. J Proteomics 2015;123:1-13. [PMID: 25849250 DOI: 10.1016/j.jprot.2015.03.035] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 6.3] [Reference Citation Analysis]
279 Liu L, Zhou X, Li B, Cheng F, Cui H, Li J, Zhang J. In Vitro and In Vivo Activities, Absorption, Tissue Distribution, and Excretion of OBP-4, a Potential Anti-Clostridioides difficile Agent. Antimicrob Agents Chemother 2021;65:e00581-21. [PMID: 33820771 DOI: 10.1128/AAC.00581-21] [Reference Citation Analysis]
280 Ternan NG, Jain S, Srivastava M, McMullan G. Comparative transcriptional analysis of clinically relevant heat stress response in Clostridium difficile strain 630. PLoS One 2012;7:e42410. [PMID: 22860125 DOI: 10.1371/journal.pone.0042410] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
281 Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW, Lee KS, Sziranyi B, Vesely C, Decker T, Stocker R, Warth B, von Bergen M, Wagner M, Berry D. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun 2020;11:5104. [PMID: 33037214 DOI: 10.1038/s41467-020-18928-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 16.0] [Reference Citation Analysis]
282 Smits WK. Hype or hypervirulence: a reflection on problematic C. difficile strains. Virulence 2013;4:592-6. [PMID: 24060961 DOI: 10.4161/viru.26297] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
283 Islam J, Cheek E, Navani V, Rajkumar C, Cohen J, Llewelyn MJ. Influence of cohorting patients with Clostridium difficile infection on risk of symptomatic recurrence. J Hosp Infect 2013;85:17-21. [PMID: 23910403 DOI: 10.1016/j.jhin.2013.06.009] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
284 D'agostino RB, Collins SH, Pencina KM, Kean Y, Gorbach S. Risk Estimation for Recurrent Clostridium difficile Infection Based on Clinical Factors. Clinical Infectious Diseases 2014;58:1386-93. [DOI: 10.1093/cid/ciu107] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 5.5] [Reference Citation Analysis]
285 Vohra P, Poxton IR. Induction of cytokines in a macrophage cell line by proteins of Clostridium difficile. FEMS Immunol Med Microbiol 2012;65:96-104. [PMID: 22409477 DOI: 10.1111/j.1574-695X.2012.00952.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
286 Gutiérrez B, Domingo-Calap P. Phage Therapy in Gastrointestinal Diseases. Microorganisms 2020;8:E1420. [PMID: 32947790 DOI: 10.3390/microorganisms8091420] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
287 Abdel-glil MY, Thomas P, Schmoock G, Abou-el-azm K, Wieler LH, Neubauer H, Seyboldt C. Presence of Clostridium difficile in poultry and poultry meat in Egypt. Anaerobe 2018;51:21-5. [DOI: 10.1016/j.anaerobe.2018.03.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
288 Boudry P, Piattelli E, Drouineau E, Peltier J, Boutserin A, Lejars M, Hajnsdorf E, Monot M, Dupuy B, Martin-Verstraete I, Gautheret D, Toffano-Nioche C, Soutourina O. Identification of RNAs bound by Hfq reveals widespread RNA partners and a sporulation regulator in the human pathogen Clostridioides difficile. RNA Biol 2021;:1-22. [PMID: 33629931 DOI: 10.1080/15476286.2021.1882180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
289 Robinson KS, Mousnier A, Hemrajani C, Fairweather N, Berger CN, Frankel G. The enteropathogenic Escherichia coli effector NleH inhibits apoptosis induced by Clostridium difficile toxin B. Microbiology (Reading) 2010;156:1815-23. [PMID: 20223805 DOI: 10.1099/mic.0.037259-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 1.9] [Reference Citation Analysis]
290 Romeo L, Iori R, Rollin P, Bramanti P, Mazzon E. Isothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections. Molecules 2018;23:E624. [PMID: 29522501 DOI: 10.3390/molecules23030624] [Cited by in Crossref: 58] [Cited by in F6Publishing: 44] [Article Influence: 14.5] [Reference Citation Analysis]
291 Maikova A, Kreis V, Boutserin A, Severinov K, Soutourina O. Using an Endogenous CRISPR-Cas System for Genome Editing in the Human Pathogen Clostridium difficile. Appl Environ Microbiol 2019;85:e01416-19. [PMID: 31399410 DOI: 10.1128/AEM.01416-19] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 5.7] [Reference Citation Analysis]
292 Larocque M, Chénard T, Najmanovich R. A curated C. difficile strain 630 metabolic network: prediction of essential targets and inhibitors. BMC Syst Biol 2014;8:117. [PMID: 25315994 DOI: 10.1186/s12918-014-0117-z] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 4.1] [Reference Citation Analysis]
293 Rogers GB, Bruce KD. Challenges and opportunities for faecal microbiota transplantation therapy. Epidemiol Infect 2013;141:2235-42. [PMID: 23735045 DOI: 10.1017/S0950268813001362] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
294 Hussack G, Tanha J. An update on antibody-based immunotherapies for Clostridium difficile infection. Clin Exp Gastroenterol 2016;9:209-24. [PMID: 27536153 DOI: 10.2147/CEG.S84017] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
295 Hargreaves KR, Kropinski AM, Clokie MR. What does the talking?: quorum sensing signalling genes discovered in a bacteriophage genome. PLoS One 2014;9:e85131. [PMID: 24475037 DOI: 10.1371/journal.pone.0085131] [Cited by in Crossref: 71] [Cited by in F6Publishing: 57] [Article Influence: 8.9] [Reference Citation Analysis]
296 Wei Y, Yang F, Wu Q, Gao J, Liu W, Liu C, Guo X, Suwal S, Kou Y, Zhang B, Wang Y, Zheng K, Tang R. Protective Effects of Bifidobacterial Strains Against Toxigenic Clostridium difficile. Front Microbiol 2018;9:888. [PMID: 29867801 DOI: 10.3389/fmicb.2018.00888] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
297 de Gunzburg J, Ducher A, Modess C, Wegner D, Oswald S, Dressman J, Augustin V, Feger C, Andremont A, Weitschies W, Siegmund W. Targeted adsorption of molecules in the colon with the novel adsorbent-based Medicinal Product, DAV132: A proof of concept study in healthy subjects: The Journal of Clinical Pharmacology. The Journal of Clinical Pharmacology 2015;55:10-6. [DOI: 10.1002/jcph.359] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 4.6] [Reference Citation Analysis]
298 El-Hawiet A, Kitova EN, Kitov PI, Eugenio L, Ng KK, Mulvey GL, Dingle TC, Szpacenko A, Armstrong GD, Klassen JS. Binding of Clostridium difficile toxins to human milk oligosaccharides. Glycobiology 2011;21:1217-27. [PMID: 21610194 DOI: 10.1093/glycob/cwr055] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 3.3] [Reference Citation Analysis]
299 Hulscher ME, Grol RP, van der Meer JW. Antibiotic prescribing in hospitals: a social and behavioural scientific approach. Lancet Infect Dis 2010;10:167-75. [PMID: 20185095 DOI: 10.1016/S1473-3099(10)70027-X] [Cited by in Crossref: 192] [Cited by in F6Publishing: 84] [Article Influence: 16.0] [Reference Citation Analysis]
300 Etienne-Mesmin L, Chassaing B, Adekunle O, Mattei LM, Edwards AN, McBride SM, Bushman FD, Gewirtz AT. Genome Sequence of a Toxin-Positive Clostridium difficile Strain Isolated from Murine Feces. Genome Announc 2017;5:e00088-17. [PMID: 28385835 DOI: 10.1128/genomeA.00088-17] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
301 Pituch H, Obuch-Woszczatyński P, Lachowicz D, Kuthan R, Dzierżanowska-Fangrat K, Mikucka A, Jermakow K, Pituch-Zdanowska A, Davies K; Polish EUCLID C. difficile Study Group. Prevalence of Clostridium difficile infection in hospitalized patients with diarrhoea: Results of a Polish multicenter, prospective, biannual point-prevalence study. Adv Med Sci 2018;63:290-5. [PMID: 29665558 DOI: 10.1016/j.advms.2018.03.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
302 Karadsheh Z, Sule S. Fecal transplantation for the treatment of recurrent clostridium difficile infection. N Am J Med Sci. 2013;5:339-343. [PMID: 23923106 DOI: 10.4103/1947-2714.114163] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
303 Locher HH, Caspers P, Bruyère T, Schroeder S, Pfaff P, Knezevic A, Keck W, Ritz D. Investigations of the mode of action and resistance development of cadazolid, a new antibiotic for treatment of Clostridium difficile infections. Antimicrob Agents Chemother 2014;58:901-8. [PMID: 24277035 DOI: 10.1128/AAC.01831-13] [Cited by in Crossref: 53] [Cited by in F6Publishing: 27] [Article Influence: 5.9] [Reference Citation Analysis]
304 Hargreaves KR, Colvin HV, Patel KV, Clokie JJ, Clokie MR. Genetically diverse Clostridium difficile strains harboring abundant prophages in an estuarine environment. Appl Environ Microbiol 2013;79:6236-43. [PMID: 23913427 DOI: 10.1128/AEM.01849-13] [Cited by in Crossref: 33] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
305 Fortier LC. The Contribution of Bacteriophages to the Biology and Virulence of Pathogenic Clostridia. Adv Appl Microbiol 2017;101:169-200. [PMID: 29050666 DOI: 10.1016/bs.aambs.2017.05.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
306 Hargreaves KR, Clokie MR. Clostridium difficile phages: still difficult? Front Microbiol 2014;5:184. [PMID: 24808893 DOI: 10.3389/fmicb.2014.00184] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 8.6] [Reference Citation Analysis]
307 Koenigsknecht MJ, Theriot CM, Bergin IL, Schumacher CA, Schloss PD, Young VB. Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract. Infect Immun 2015;83:934-41. [PMID: 25534943 DOI: 10.1128/IAI.02768-14] [Cited by in Crossref: 93] [Cited by in F6Publishing: 70] [Article Influence: 11.6] [Reference Citation Analysis]
308 Dembek M, Barquist L, Boinett CJ, Cain AK, Mayho M, Lawley TD, Fairweather NF, Fagan RP. High-throughput analysis of gene essentiality and sporulation in Clostridium difficile. mBio 2015;6:e02383. [PMID: 25714712 DOI: 10.1128/mBio.02383-14] [Cited by in Crossref: 93] [Cited by in F6Publishing: 64] [Article Influence: 13.3] [Reference Citation Analysis]
309 Song L, Zhao M, Duffy DC, Hansen J, Shields K, Wungjiranirun M, Chen X, Xu H, Leffler DA, Sambol SP, Gerding DN, Kelly CP, Pollock NR. Development and Validation of Digital Enzyme-Linked Immunosorbent Assays for Ultrasensitive Detection and Quantification of Clostridium difficile Toxins in Stool. J Clin Microbiol 2015;53:3204-12. [PMID: 26202120 DOI: 10.1128/JCM.01334-15] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 4.9] [Reference Citation Analysis]
310 Taha AE. Raw Animal Meats as Potential Sources of Clostridium difficile in Al-Jouf, Saudi Arabia. Food Sci Anim Resour 2021;41:883-93. [PMID: 34632406 DOI: 10.5851/kosfa.2021.e44] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
311 Stevens V, Dumyati G, Brown J, Wijngaarden E. Differential risk of Clostridium difficile infection with proton pump inhibitor use by level of antibiotic exposure. Pharmacoepidemiol Drug Saf. 2011;20:1035-1042. [PMID: 21833992 DOI: 10.1002/pds.2198] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 3.6] [Reference Citation Analysis]
312 Ünal CM, Berges M, Smit N, Schiene-Fischer C, Priebe C, Strowig T, Jahn D, Steinert M. PrsA2 (CD630_35000) of Clostridioides difficile Is an Active Parvulin-Type PPIase and a Virulence Modulator. Front Microbiol 2018;9:2913. [PMID: 30564207 DOI: 10.3389/fmicb.2018.02913] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
313 Jayaratne PA, Monkman L, Broukhanski G, Pillai DR, Lee C. Real-time polymerase chain reaction method for detection of toxigenic Clostridium difficile from stools and presumptive identification of NAP1 clone. Diagnostic Microbiology and Infectious Disease 2013;75:121-3. [DOI: 10.1016/j.diagmicrobio.2012.10.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
314 Li R, Xiao D, Yang J, Sun S, Kaplan S, Li Z, Niu Y, Qiang C, Zhai Y, Wang X, Zhao X, Zhao B, Welker M, Pincus DH, Jin D, Kamboj M, Zheng G, Zhang G, Zhang J, Tang YW, Zhao J. Identification and Characterization of Clostridium difficile Sequence Type 37 Genotype by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol 2018;56:e01990-17. [PMID: 29467194 DOI: 10.1128/JCM.01990-17] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
315 Nassour I, Carchman EH, Simmons RL, Zuckerbraun BS. Novel management strategies in the treatment of severe Clostridium difficile infection. Adv Surg 2012;46:111-35. [PMID: 22873036 DOI: 10.1016/j.yasu.2012.03.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
316 Hudson LE, Anderson SE, Corbett AH, Lamb TJ. Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies. Clin Microbiol Rev. 2017;30:191-231. [PMID: 27856521 DOI: 10.1128/cmr.00049-16] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 7.6] [Reference Citation Analysis]
317 Lechner S, Yee M, Limketkai BN, Pham EA. Fecal Microbiota Transplantation for Chronic Liver Diseases: Current Understanding and Future Direction. Dig Dis Sci 2020;65:897-905. [PMID: 32020359 DOI: 10.1007/s10620-020-06100-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
318 Wyche TP, Alvarenga RFR, Piotrowski JS, Duster MN, Warrack SR, Cornilescu G, De Wolfe TJ, Hou Y, Braun DR, Ellis GA, Simpkins SW, Nelson J, Myers CL, Steele J, Mori H, Safdar N, Markley JL, Rajski SR, Bugni TS. Chemical Genomics, Structure Elucidation, and in Vivo Studies of the Marine-Derived Anticlostridial Ecteinamycin. ACS Chem Biol 2017;12:2287-95. [PMID: 28708379 DOI: 10.1021/acschembio.7b00388] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
319 Stuntz M, des Vignes F. Treating Clostridium difficile infections: Should fecal microbiota transplantation be reclassified from investigational drug to human tissue? Contemp Clin Trials Commun 2015;1:39-41. [PMID: 29736438 DOI: 10.1016/j.conctc.2015.11.001] [Reference Citation Analysis]
320 Du P, Cao B, Wang J, Li W, Jia H, Zhang W, Lu J, Li Z, Yu H, Chen C, Cheng Y. Sequence variation in tcdA and tcdB of Clostridium difficile: ST37 with truncated tcdA is a potential epidemic strain in China. J Clin Microbiol 2014;52:3264-70. [PMID: 24958798 DOI: 10.1128/JCM.03487-13] [Cited by in Crossref: 35] [Cited by in F6Publishing: 14] [Article Influence: 4.4] [Reference Citation Analysis]
321 Knetsch CW, Connor TR, Mutreja A, van Dorp SM, Sanders IM, Browne HP, Harris D, Lipman L, Keessen EC, Corver J, Kuijper EJ, Lawley TD. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro Surveill 2014;19:20954. [PMID: 25411691 DOI: 10.2807/1560-7917.es2014.19.45.20954] [Cited by in Crossref: 134] [Cited by in F6Publishing: 60] [Article Influence: 16.8] [Reference Citation Analysis]
322 Francino MP. Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances. Front Microbiol. 2016;6:1543. [PMID: 26793178 DOI: 10.3389/fmicb.2015.01543] [Cited by in Crossref: 242] [Cited by in F6Publishing: 267] [Article Influence: 40.3] [Reference Citation Analysis]
323 Lynch M, Walsh TA, Marszalowska I, Webb AE, Mac Aogain M, Rogers TR, Windle H, Kelleher D, O'Connell MJ, Loscher CE. Surface layer proteins from virulent Clostridium difficile ribotypes exhibit signatures of positive selection with consequences for innate immune response. BMC Evol Biol 2017;17:90. [PMID: 28335725 DOI: 10.1186/s12862-017-0937-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
324 Kouzegaran S, Ganjifard M, Tanha AS. DETECTION, RIBOTYPING AND ANTIMICROBIAL RESISTANCE PROPERTIES OF CLOSTRIDIUM DIFFICILE STRAINS ISOLATED FROM THE CASES OF DIARRHEA. Mater Sociomed 2016;28:324-8. [PMID: 27999477 DOI: 10.5455/msm.2016.28.324-328] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
325 Cheng JW, Xiao M, Kudinha T, Kong F, Xu ZP, Sun LY, Zhang L, Fan X, Xie XL, Xu YC. Molecular Epidemiology and Antimicrobial Susceptibility of Clostridium difficile Isolates from a University Teaching Hospital in China. Front Microbiol 2016;7:1621. [PMID: 27799923 DOI: 10.3389/fmicb.2016.01621] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
326 Deng K, Plaza-Garrido A, Torres JA, Paredes-Sabja D. Survival of Clostridium difficile spores at low temperatures. Food Microbiol 2015;46:218-21. [PMID: 25475288 DOI: 10.1016/j.fm.2014.07.022] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
327 Hernandez LD, Kroh HK, Hsieh E, Yang X, Beaumont M, Sheth PR, DiNunzio E, Rutherford SA, Ohi MD, Ermakov G, Xiao L, Secore S, Karczewski J, Racine F, Mayhood T, Fischer P, Sher X, Gupta P, Lacy DB, Therien AG. Epitopes and Mechanism of Action of the Clostridium difficile Toxin A-Neutralizing Antibody Actoxumab. J Mol Biol 2017;429:1030-44. [PMID: 28232034 DOI: 10.1016/j.jmb.2017.02.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
328 Hasegawa M, Yamazaki T, Kamada N, Tawaratsumida K, Kim Y, Núñez G, Inohara N. Nucleotide-Binding Oligomerization Domain 1 Mediates Recognition of Clostridium difficile and Induces Neutrophil Recruitment and Protection against the Pathogen. J I 2011;186:4872-80. [DOI: 10.4049/jimmunol.1003761] [Cited by in Crossref: 129] [Cited by in F6Publishing: 128] [Article Influence: 11.7] [Reference Citation Analysis]
329 Konreddy AK, Rani GU, Lee K, Choi Y. Recent Drug-Repurposing-Driven Advances in the Discovery of Novel Antibiotics. Curr Med Chem 2019;26:5363-88. [PMID: 29984648 DOI: 10.2174/0929867325666180706101404] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
330 Hong HA, Ferreira WT, Hosseini S, Anwar S, Hitri K, Wilkinson AJ, Vahjen W, Zentek J, Soloviev M, Cutting SM. The Spore Coat Protein CotE Facilitates Host Colonization by Clostridium difficile. J Infect Dis 2017;216:1452-9. [PMID: 28968845 DOI: 10.1093/infdis/jix488] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
331 Curry S. Clostridium difficile. Clin Lab Med. 2010;30:329-342. [PMID: 20513554 DOI: 10.1016/j.cll.2010.04.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
332 Rohlke F, Stollman N. Fecal microbiota transplantation in relapsing Clostridium difficile infection. Therap Adv Gastroenterol. 2012;5:403-420. [PMID: 23152734 DOI: 10.1177/1756283x12453637] [Cited by in Crossref: 119] [Cited by in F6Publishing: 60] [Article Influence: 11.9] [Reference Citation Analysis]
333 Bauer MP, van Dissel JT, Kuijper EJ. Clostridium difficile: controversies and approaches to management: . Current Opinion in Infectious Diseases 2009;22:517-24. [DOI: 10.1097/qco.0b013e32833229ce] [Cited by in Crossref: 38] [Cited by in F6Publishing: 15] [Article Influence: 2.9] [Reference Citation Analysis]
334 Buckley AM, Moura IB, Arai N, Spittal W, Clark E, Nishida Y, Harris HC, Bentley K, Davis G, Wang D, Mitra S, Higashiyama T, Wilcox MH. Trehalose-Induced Remodelling of the Human Microbiota Affects Clostridioides difficile Infection Outcome in an In Vitro Colonic Model: A Pilot Study. Front Cell Infect Microbiol 2021;11:670935. [PMID: 34277467 DOI: 10.3389/fcimb.2021.670935] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
335 Joyce NR, Mylonakis E, Mor V. Effect of Clostridium difficile Prevalence in Hospitals and Nursing Homes on Risk of Infection. J Am Geriatr Soc 2017;65:1527-34. [PMID: 28394408 DOI: 10.1111/jgs.14838] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
336 Haines CF, Moore RD, Bartlett JG, Sears CL, Cosgrove SE, Carroll K, Gebo KA. Clostridium difficile in a HIV-infected cohort: incidence, risk factors, and clinical outcomes. AIDS 2013;27:2799-807. [PMID: 23842125 DOI: 10.1097/01.aids.0000432450.37863.e9] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
337 Wilcox MH. Progress with a difficult infection. The Lancet Infectious Diseases 2012;12:256-7. [DOI: 10.1016/s1473-3099(12)70013-0] [Cited by in Crossref: 5] [Article Influence: 0.5] [Reference Citation Analysis]
338 Moorhead S, Maclean M, Coia JE, MacGregor SJ, Anderson JG. Synergistic efficacy of 405 nm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores. Anaerobe 2016;37:72-7. [PMID: 26708703 DOI: 10.1016/j.anaerobe.2015.12.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
339 Alonso CD, Kamboj M. Clostridium difficile Infection (CDI) in Solid Organ and Hematopoietic Stem Cell Transplant Recipients. Curr Infect Dis Rep 2014;16. [DOI: 10.1007/s11908-014-0414-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
340 Henriksson G, Bredberg J, Wullt M, Lyrenäs E, Hindorf U, Ohlsson B, Grip O. Humoral response to Clostridium difficile in inflammatory bowel disease, including correlation with immunomodulatory treatment. JGH Open 2019;3:154-8. [PMID: 31061891 DOI: 10.1002/jgh3.12122] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
341 Kelly CP. Can we identify patients at high risk of recurrent Clostridium difficile infection? Clin Microbiol Infect. 2012;18 Suppl 6:21-27. [PMID: 23121551 DOI: 10.1111/1469-0691.12046] [Cited by in Crossref: 176] [Cited by in F6Publishing: 163] [Article Influence: 19.6] [Reference Citation Analysis]
342 Ananthakrishnan AN, Binion DG. Impact of Clostridium difficile on inflammatory bowel disease. Expert Rev Gastroenterol Hepatol. 2010;4:589-600. [PMID: 20932144 DOI: 10.1586/egh.10.55] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.6] [Reference Citation Analysis]
343 Zidarič V, Kotnik Kevorkijan B, Oresic N, Janezic S, Rupnik M. Comparison of two commercial molecular tests for the detection of Clostridium difficile in the routine diagnostic laboratory. J Med Microbiol 2011;60:1131-6. [PMID: 21372187 DOI: 10.1099/jmm.0.030163-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
344 Bloomfield MG, Sherwin JC, Gkrania-Klotsas E. Risk factors for mortality in Clostridium difficile infection in the general hospital population: a systematic review. J Hosp Infect. 2012;82:1-12. [PMID: 22727824 DOI: 10.1016/j.jhin.2012.05.008] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 4.9] [Reference Citation Analysis]
345 Peng M, Biswas D. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition. Critical Reviews in Food Science and Nutrition 2016;57:3987-4002. [DOI: 10.1080/10408398.2016.1203286] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 5.7] [Reference Citation Analysis]
346 Hui W, Li T, Liu W, Zhou C, Gao F. Fecal microbiota transplantation for treatment of recurrent C. difficile infection: An updated randomized controlled trial meta-analysis. PLoS One. 2019;14:e0210016. [PMID: 30673716 DOI: 10.1371/journal.pone.0210016] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 15.7] [Reference Citation Analysis]
347 Peltier J, Hamiot A, Garneau JR, Boudry P, Maikova A, Hajnsdorf E, Fortier LC, Dupuy B, Soutourina O. Type I toxin-antitoxin systems contribute to the maintenance of mobile genetic elements in Clostridioides difficile. Commun Biol 2020;3:718. [PMID: 33247281 DOI: 10.1038/s42003-020-01448-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
348 Citron DM, Tyrrell KL, Merriam CV, Goldstein EJ. In vitro activities of CB-183,315, vancomycin, and metronidazole against 556 strains of Clostridium difficile, 445 other intestinal anaerobes, and 56 Enterobacteriaceae species. Antimicrob Agents Chemother 2012;56:1613-5. [PMID: 22183166 DOI: 10.1128/AAC.05655-11] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
349 Bandelj P, Knapič T, Rousseau J, Podgorelec M, Presetnik P, Vengust M, Scott Weese J. Clostridioides difficile in bat guano. Comp Immunol Microbiol Infect Dis 2019;65:144-7. [PMID: 31300105 DOI: 10.1016/j.cimid.2019.05.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
350 Buonomo EL, Petri WA Jr. The microbiota and immune response during Clostridium difficile infection. Anaerobe 2016;41:79-84. [PMID: 27212111 DOI: 10.1016/j.anaerobe.2016.05.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
351 Bomers MK, van Agtmael MA, Luik H, van Veen MC, Vandenbroucke-Grauls CM, Smulders YM. Using a dog’s superior olfactory sensitivity to identify Clostridium difficile in stools and patients: proof of principle study. BMJ. 2012;345:e7396. [PMID: 23241268 DOI: 10.1136/bmj.e7396] [Cited by in Crossref: 69] [Cited by in F6Publishing: 47] [Article Influence: 6.9] [Reference Citation Analysis]
352 Mullen KR, Yasuda K, Divers TJ, Weese JS. Equine faecal microbiota transplant: Current knowledge, proposed guidelines and future directions. Equine Vet Educ 2018;30:151-60. [PMID: 32313396 DOI: 10.1111/eve.12559] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
353 Obuch-Woszczatyński P, Lachowicz D, Schneider A, Mól A, Pawłowska J, Ożdżeńska-Milke E, Pruszczyk P, Wultańska D, Młynarczyk G, Harmanus C, Kuijper EJ, van Belkum A, Pituch H. Occurrence of Clostridium difficile PCR-ribotype 027 and it's closely related PCR-ribotype 176 in hospitals in Poland in 2008-2010. Anaerobe 2014;28:13-7. [PMID: 24799338 DOI: 10.1016/j.anaerobe.2014.04.007] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
354 Maikova A, Peltier J, Boudry P, Hajnsdorf E, Kint N, Monot M, Poquet I, Martin-Verstraete I, Dupuy B, Soutourina O. Discovery of new type I toxin-antitoxin systems adjacent to CRISPR arrays in Clostridium difficile. Nucleic Acids Res 2018;46:4733-51. [PMID: 29529286 DOI: 10.1093/nar/gky124] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
355 Stone NE, Sidak-Loftis LC, Sahl JW, Vazquez AJ, Wiggins KB, Gillece JD, Hicks ND, Schupp JM, Busch JD, Keim P, Wagner DM. More than 50% of Clostridium difficile Isolates from Pet Dogs in Flagstaff, USA, Carry Toxigenic Genotypes. PLoS One 2016;11:e0164504. [PMID: 27723795 DOI: 10.1371/journal.pone.0164504] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 6.7] [Reference Citation Analysis]
356 Ressler A, Wang J, Rao K. Defining the black box: a narrative review of factors associated with adverse outcomes from severe Clostridioides difficile infection. Therap Adv Gastroenterol 2021;14:17562848211048127. [PMID: 34646358 DOI: 10.1177/17562848211048127] [Reference Citation Analysis]
357 Constantinides MG. Interactions between the microbiota and innate and innate-like lymphocytes. J Leukoc Biol 2018;103:409-19. [PMID: 29345366 DOI: 10.1002/JLB.3RI0917-378R] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
358 Chaparro-Rojas F, Mullane KM. Emerging therapies for Clostridium difficile infection - focus on fidaxomicin. Infect Drug Resist. 2013;6:41-53. [PMID: 23843696 DOI: 10.2147/idr.s24434] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
359 Xiao Y, Angulo MT, Lao S, Weiss ST, Liu YY. An ecological framework to understand the efficacy of fecal microbiota transplantation. Nat Commun 2020;11:3329. [PMID: 32620839 DOI: 10.1038/s41467-020-17180-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
360 Putsathit P, Kiratisin P, Ngamwongsatit P, Riley TV. Clostridium difficile infection in Thailand. Int J Antimicrob Agents 2015;45:1-7. [PMID: 25537687 DOI: 10.1016/j.ijantimicag.2014.09.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
361 Valdés L, Gueimonde M, Ruas-Madiedo P. Monitoring in real time the cytotoxic effect of Clostridium difficile upon the intestinal epithelial cell line HT29. J Microbiol Methods 2015;119:66-73. [PMID: 26436983 DOI: 10.1016/j.mimet.2015.09.022] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
362 Chamchod F, Palittapongarnpim P. Modeling Clostridium difficile in a hospital setting: control and admissions of colonized and symptomatic patients. Theor Biol Med Model 2019;16:2. [PMID: 30704484 DOI: 10.1186/s12976-019-0098-0] [Reference Citation Analysis]
363 Rotramel A, Poritz LS, Messaris E, Berg A, Stewart DB. PPI therapy and albumin are better predictors of recurrent Clostridium difficile colitis than choice of antibiotics. J Gastrointest Surg. 2012;16:2267-2273. [PMID: 23007285 DOI: 10.1007/s11605-012-2037-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 1.9] [Reference Citation Analysis]
364 Zackular JP, Moore JL, Jordan AT, Juttukonda LJ, Noto MJ, Nicholson MR, Crews JD, Semler MW, Zhang Y, Ware LB, Washington MK, Chazin WJ, Caprioli RM, Skaar EP. Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nat Med 2016;22:1330-4. [PMID: 27668938 DOI: 10.1038/nm.4174] [Cited by in Crossref: 112] [Cited by in F6Publishing: 99] [Article Influence: 18.7] [Reference Citation Analysis]
365 Soutourina O. Type I Toxin-Antitoxin Systems in Clostridia. Toxins (Basel) 2019;11:E253. [PMID: 31064056 DOI: 10.3390/toxins11050253] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
366 Miezeiewski M, Schnaufer T, Muravsky M, Wang S, Caro-Aguilar I, Secore S, Thiriot DS, Hsu C, Rogers I, DeSantis T, Kuczynski J, Probst AJ, Chehoud C, Steger R, Warrington J, Bodmer JL, Heinrichs JH. An in vitro culture model to study the dynamics of colonic microbiota in Syrian golden hamsters and their susceptibility to infection with Clostridium difficile. ISME J 2015;9:321-32. [PMID: 25036923 DOI: 10.1038/ismej.2014.127] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
367 Horvat S, Mahnic A, Breskvar M, Dzeroski S, Rupnik M. Evaluating the effect of Clostridium difficile conditioned medium on fecal microbiota community structure. Sci Rep 2017;7:16448. [PMID: 29180685 DOI: 10.1038/s41598-017-15434-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
368 Balassiano IT, Yates EA, Domingues RMCP, Ferreira EO. Clostridium difficile: a problem of concern in developed countries and still a mystery in Latin America. J Med Microbiol 2012;61:169-79. [PMID: 22116982 DOI: 10.1099/jmm.0.037077-0] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 4.7] [Reference Citation Analysis]
369 Li X, Liu J, Zhang W, Wu Y, Li J, Foda MF, Han H. Biogenic Hybrid Nanosheets Activated Photothermal Therapy and Promoted Anti-PD-L1 Efficacy for Synergetic Antitumor Strategy. ACS Appl Mater Interfaces 2020;12:29122-32. [PMID: 32501679 DOI: 10.1021/acsami.0c09111] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
370 Rodriguez-Palacios A, Borgmann S, Kline TR, LeJeune JT. Clostridium difficile in foods and animals: history and measures to reduce exposure. Anim Health Res Rev 2013;14:11-29. [PMID: 23324529 DOI: 10.1017/S1466252312000229] [Cited by in Crossref: 64] [Cited by in F6Publishing: 26] [Article Influence: 7.1] [Reference Citation Analysis]
371 Sarker MR, Paredes-Sabja D. Molecular basis of early stages of Clostridium difficile infection: germination and colonization. Future Microbiol. 2012;7:933-943. [PMID: 22913353 DOI: 10.2217/fmb.12.64] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
372 van Eijk E, Anvar SY, Browne HP, Leung WY, Frank J, Schmitz AM, Roberts AP, Smits WK. Complete genome sequence of the Clostridium difficile laboratory strain 630Δerm reveals differences from strain 630, including translocation of the mobile element CTn5. BMC Genomics 2015;16:31. [PMID: 25636331 DOI: 10.1186/s12864-015-1252-7] [Cited by in Crossref: 52] [Cited by in F6Publishing: 37] [Article Influence: 7.4] [Reference Citation Analysis]
373 Wultańska D, Piotrowski M, Pituch H. The effect of berberine chloride and/or its combination with vancomycin on the growth, biofilm formation, and motility of Clostridioides difficile. Eur J Clin Microbiol Infect Dis. 2020;39:1391-1399. [PMID: 32140903 DOI: 10.1007/s10096-020-03857-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
374 Sekulovic O, Fortier LC. Global transcriptional response of Clostridium difficile carrying the CD38 prophage. Appl Environ Microbiol 2015;81:1364-74. [PMID: 25501487 DOI: 10.1128/AEM.03656-14] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
375 Gokulan K, Kumar A, Lahiani MH, Sutherland VL, Cerniglia CE, Khare S. Differential Toxicological Outcome of Corn Oil Exposure in Rats and Mice as Assessed by Microbial Composition, Epithelial Permeability, and Ileal Mucosa-Associated Immune Status. Toxicol Sci 2021;180:89-102. [PMID: 33263755 DOI: 10.1093/toxsci/kfaa177] [Reference Citation Analysis]
376 Carneiro LG, Pinto TCA, Moura H, Barr J, Domingues RMCP, Ferreira EO. MALDI-TOF MS: An alternative approach for ribotyping Clostridioides difficile isolates in Brazil. Anaerobe 2021;69:102351. [PMID: 33621659 DOI: 10.1016/j.anaerobe.2021.102351] [Reference Citation Analysis]
377 McAllister KN, Martinez Aguirre A, Sorg JA. The selenophosphate synthetase, selD, is important for Clostridioides difficile physiology. J Bacteriol 2021:JB. [PMID: 33820795 DOI: 10.1128/JB.00008-21] [Reference Citation Analysis]
378 Anosova NG, Cole LE, Li L, Zhang J, Brown AM, Mundle S, Zhang J, Ray S, Ma F, Garrone P, Bertraminelli N, Kleanthous H, Anderson SF. A Combination of Three Fully Human Toxin A- and Toxin B-Specific Monoclonal Antibodies Protects against Challenge with Highly Virulent Epidemic Strains of Clostridium difficile in the Hamster Model. Clin Vaccine Immunol 2015;22:711-25. [PMID: 25924765 DOI: 10.1128/CVI.00763-14] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
379 Shen A. Allosteric regulation of protease activity by small molecules. Mol Biosyst 2010;6:1431-43. [PMID: 20539873 DOI: 10.1039/c003913f] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 2.7] [Reference Citation Analysis]
380 Usui M, Kawakura M, Yoshizawa N, San LL, Nakajima C, Suzuki Y, Tamura Y. Survival and prevalence of Clostridium difficile in manure compost derived from pigs. Anaerobe 2017;43:15-20. [DOI: 10.1016/j.anaerobe.2016.11.004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
381 Babcock S, Beverley J, Cowell LG, Smith B. The Infectious Disease Ontology in the age of COVID-19. J Biomed Semantics 2021;12:13. [PMID: 34275487 DOI: 10.1186/s13326-021-00245-1] [Reference Citation Analysis]
382 Ivarsson ME, Leroux J, Castagner B. Therapien gegen Bakterientoxine. Angew Chem 2012;124:4098-121. [DOI: 10.1002/ange.201104384] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
383 Schmidt CJ, Wenndorf K, Ebbers M, Volzke J, Müller M, Strübing J, Kriebel K, Kneitz S, Kreikemeyer B, Müller-Hilke B. Infection With Clostridioides difficile Attenuated Collagen-Induced Arthritis in Mice and Involved Mesenteric Treg and Th2 Polarization. Front Immunol 2020;11:571049. [PMID: 33193352 DOI: 10.3389/fimmu.2020.571049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
384 Gong D, Gong X, Wang L, Yu X, Dong Q. Involvement of Reduced Microbial Diversity in Inflammatory Bowel Disease. Gastroenterol Res Pract. 2016;2016:6951091. [PMID: 28074093 DOI: 10.1155/2016/6951091] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
385 Pessach I, Tsirigotis P, Nagler A. The gastrointestinal tract: properties and role in allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2017;10:315-26. [PMID: 28136133 DOI: 10.1080/17474086.2017.1288566] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
386 Moono P, Lim SC, Riley TV. High prevalence of toxigenic Clostridium difficile in public space lawns in Western Australia. Sci Rep 2017;7:41196. [PMID: 28145453 DOI: 10.1038/srep41196] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
387 Gutelius D, Hokeness K, Logan SM, Reid CW. Functional analysis of SleC from Clostridium difficile: an essential lytic transglycosylase involved in spore germination. Microbiology (Reading) 2014;160:209-16. [PMID: 24140647 DOI: 10.1099/mic.0.072454-0] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
388 Di Bella S, Ascenzi P, Siarakas S, Petrosillo N, di Masi A. Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects. Toxins (Basel) 2016;8:E134. [PMID: 27153087 DOI: 10.3390/toxins8050134] [Cited by in Crossref: 80] [Cited by in F6Publishing: 73] [Article Influence: 13.3] [Reference Citation Analysis]
389 Shaban L, Chen Y, Fasciano AC, Lin Y, Kaplan DL, Kumamoto CA, Mecsas J. A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage. Anaerobe 2018;50:85-92. [PMID: 29462695 DOI: 10.1016/j.anaerobe.2018.02.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
390 Paitan Y, Miller-roll T, Adler A. Comparative performance study of six commercial molecular assays for rapid detection of toxigenic Clostridium difficile. Clinical Microbiology and Infection 2017;23:567-72. [DOI: 10.1016/j.cmi.2017.02.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
391 Lechinski de Paula C, Silveira Silva RO, Tavanelli Hernandes R, de Nardi Júnior G, Babboni SD, Trevizan Guerra S, Paganini Listoni FJ, Giuffrida R, Takai S, Sasaki Y, Garcia Ribeiro M. First Microbiological and Molecular Identification of Rhodococcus equi in Feces of Nondiarrheic Cats. Biomed Res Int 2019;2019:4278598. [PMID: 31380423 DOI: 10.1155/2019/4278598] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
392 Unger M, Eichhoff AM, Schumacher L, Strysio M, Menzel S, Schwan C, Alzogaray V, Zylberman V, Seman M, Brandner J, Rohde H, Zhu K, Haag F, Mittrücker HW, Goldbaum F, Aktories K, Koch-Nolte F. Selection of nanobodies that block the enzymatic and cytotoxic activities of the binary Clostridium difficile toxin CDT. Sci Rep 2015;5:7850. [PMID: 25597743 DOI: 10.1038/srep07850] [Cited by in Crossref: 33] [Cited by in F6Publishing: 38] [Article Influence: 4.7] [Reference Citation Analysis]
393 Tattevin P, Buffet-Bataillon S, Donnio PY, Revest M, Michelet C. Clostridium difficile infections: do we know the real dimensions of the problem? Int J Antimicrob Agents 2013;42 Suppl:S36-40. [PMID: 23664578 DOI: 10.1016/j.ijantimicag.2013.04.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
394 Horvat S, Rupnik M. Interactions Between Clostridioides difficile and Fecal Microbiota in in Vitro Batch Model: Growth, Sporulation, and Microbiota Changes. Front Microbiol 2018;9:1633. [PMID: 30087660 DOI: 10.3389/fmicb.2018.01633] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
395 Hodges K, Gill R. Infectious diarrhea: Cellular and molecular mechanisms. Gut Microbes 2010;1:4-21. [PMID: 21327112 DOI: 10.4161/gmic.1.1.11036] [Cited by in Crossref: 150] [Cited by in F6Publishing: 109] [Article Influence: 18.8] [Reference Citation Analysis]
396 Alexander JL, Mullish BH. A Guide to the Gut Microbiome and its Relevance to Critical Care. Br J Nurs 2020;29:1106-12. [PMID: 33104419 DOI: 10.12968/bjon.2020.29.19.1106] [Reference Citation Analysis]
397 Qin J, Dai Y, Ma X, Wang Y, Gao Q, Lu H, Li T, Meng H, Liu Q, Li M. Nosocomial transmission of Clostridium difficile Genotype ST81 in a General Teaching Hospital in China traced by whole genome sequencing. Sci Rep 2017;7:9627. [PMID: 28851988 DOI: 10.1038/s41598-017-09878-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
398 Kim S, Covington A, Pamer EG. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev 2017;279:90-105. [PMID: 28856737 DOI: 10.1111/imr.12563] [Cited by in Crossref: 209] [Cited by in F6Publishing: 186] [Article Influence: 52.3] [Reference Citation Analysis]
399 Oliveira Paiva AM, Friggen AH, Hossein-javaheri S, Smits WK. The Signal Sequence of the Abundant Extracellular Metalloprotease PPEP-1 Can Be Used to Secrete Synthetic Reporter Proteins in Clostridium difficile. ACS Synth Biol 2016;5:1376-82. [DOI: 10.1021/acssynbio.6b00104] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
400 Wang P, Wu D, Su Y, Li X, Xie B. Dissemination of antibiotic resistance under antibiotics pressure during anaerobic co-digestion of food waste and sludge: Insights of driving factors, genetic expression, and regulation mechanism. Bioresour Technol 2021;344:126257. [PMID: 34752891 DOI: 10.1016/j.biortech.2021.126257] [Reference Citation Analysis]
401 Chilton CH, Crowther GS, Śpiewak K, Brindell M, Singh G, Wilcox MH, Monaghan TM. Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection. J Antimicrob Chemother 2016;71:975-85. [PMID: 26759363 DOI: 10.1093/jac/dkv452] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
402 Jain S, Smyth D, O'Hagan BMG, Heap JT, McMullan G, Minton NP, Ternan NG. Inactivation of the dnaK gene in Clostridium difficile 630 Δerm yields a temperature-sensitive phenotype and increases biofilm-forming ability. Sci Rep 2017;7:17522. [PMID: 29235503 DOI: 10.1038/s41598-017-17583-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
403 Didelot X, Eyre DW, Cule M, Ip CL, Ansari MA, Griffiths D, Vaughan A, O'Connor L, Golubchik T, Batty EM, Piazza P, Wilson DJ, Bowden R, Donnelly PJ, Dingle KE, Wilcox M, Walker AS, Crook DW, Peto TE, Harding RM. Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol 2012;13:R118. [PMID: 23259504 DOI: 10.1186/gb-2012-13-12-r118] [Cited by in Crossref: 150] [Cited by in F6Publishing: 134] [Article Influence: 15.0] [Reference Citation Analysis]
404 Herisse M, Duverger Y, Martin-Verstraete I, Barras F, Ezraty B. Silver potentiates aminoglycoside toxicity by enhancing their uptake. Mol Microbiol 2017;105:115-26. [PMID: 28383153 DOI: 10.1111/mmi.13687] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
405 Piotrowski M, Karpiński P, Pituch H, van Belkum A, Obuch-woszczatyński P. Antimicrobial effects of Manuka honey on in vitro biofilm formation by Clostridium difficile. Eur J Clin Microbiol Infect Dis 2017;36:1661-4. [DOI: 10.1007/s10096-017-2980-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
406 Donahue EH, Dawson LF, Valiente E, Firth-Clark S, Major MR, Littler E, Perrior TR, Wren BW. Clostridium difficile has a single sortase, SrtB, that can be inhibited by small-molecule inhibitors. BMC Microbiol 2014;14:219. [PMID: 25183427 DOI: 10.1186/s12866-014-0219-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
407 Arvand M, Moser V, Schwehn C, Bettge-Weller G, Hensgens MP, Kuijper EJ. High prevalence of Clostridium difficile colonization among nursing home residents in Hesse, Germany. PLoS One 2012;7:e30183. [PMID: 22253917 DOI: 10.1371/journal.pone.0030183] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 5.6] [Reference Citation Analysis]
408 Joshi T, Elderd BD, Abbott KC. No appendix necessary: Fecal transplants and antibiotics can resolve Clostridium difficile infection. J Theor Biol 2018;442:139-48. [PMID: 29355542 DOI: 10.1016/j.jtbi.2018.01.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
409 Mimee M, Citorik RJ, Lu TK. Microbiome therapeutics - Advances and challenges. Adv Drug Deliv Rev 2016;105:44-54. [PMID: 27158095 DOI: 10.1016/j.addr.2016.04.032] [Cited by in Crossref: 118] [Cited by in F6Publishing: 85] [Article Influence: 19.7] [Reference Citation Analysis]
410 Dalpke AH, Hofko M, Zorn M, Zimmermann S. Evaluation of the fully automated BD MAX Cdiff and Xpert C. difficile assays for direct detection of Clostridium difficile in stool specimens. J Clin Microbiol 2013;51:1906-8. [PMID: 23515539 DOI: 10.1128/JCM.00344-13] [Cited by in Crossref: 35] [Cited by in F6Publishing: 8] [Article Influence: 3.9] [Reference Citation Analysis]
411 Archbald-Pannone LR, Boone JH, Carman RJ, Lyerly DM, Guerrant RL. Clostridium difficile ribotype 027 is most prevalent among inpatients admitted from long-term care facilities. J Hosp Infect 2014;88:218-21. [PMID: 25228227 DOI: 10.1016/j.jhin.2014.06.016] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
412 Maikova A, Boudry P, Shiriaeva A, Vasileva A, Boutserin A, Medvedeva S, Semenova E, Severinov K, Soutourina O. Protospacer-Adjacent Motif Specificity during Clostridioides difficile Type I-B CRISPR-Cas Interference and Adaptation. mBio 2021;12:e0213621. [PMID: 34425703 DOI: 10.1128/mBio.02136-21] [Reference Citation Analysis]
413 Wongkuna S, Janvilisri T, Phanchana M, Harnvoravongchai P, Aroonnual A, Aimjongjun S, Malaisri N, Chankhamhaengdecha S. Temporal Variations in Patterns of Clostridioides difficile Strain Diversity and Antibiotic Resistance in Thailand. Antibiotics (Basel) 2021;10:714. [PMID: 34199301 DOI: 10.3390/antibiotics10060714] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
414 Chang D, Tram K, Li B, Feng Q, Shen Z, Lee CH, Salena BJ, Li Y. Detection of DNA Amplicons of Polymerase Chain Reaction Using Litmus Test. Sci Rep 2017;7:3110. [PMID: 28596600 DOI: 10.1038/s41598-017-03009-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
415 Dong D, Ni Q, Wang C, Zhang L, Li Z, Jiang C, EnqiangMao, Peng Y. Effects of intestinal colonization by Clostridium difficile and Staphylococcus aureus on microbiota diversity in healthy individuals in China. BMC Infect Dis 2018;18:207. [PMID: 29724187 DOI: 10.1186/s12879-018-3111-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
416 Mullane K. Fidaxomicin in Clostridium difficile infection: latest evidence and clinical guidance. Ther Adv Chronic Dis 2014;5:69-84. [PMID: 24587892 DOI: 10.1177/2040622313511285] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.1] [Reference Citation Analysis]
417 Borali E, De Giacomo C. Clostridium Difficile Infection in Children: A Review. Journal of Pediatric Gastroenterology & Nutrition 2016;63:e130-40. [DOI: 10.1097/mpg.0000000000001264] [Cited by in Crossref: 26] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
418 Jasni AS, Mullany P, Hussain H, Roberts AP. Demonstration of conjugative transposon (Tn5397)-mediated horizontal gene transfer between Clostridium difficile and Enterococcus faecalis. Antimicrob Agents Chemother 2010;54:4924-6. [PMID: 20713671 DOI: 10.1128/AAC.00496-10] [Cited by in Crossref: 37] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
419 Lau CS, Chamberlain RS. Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Int J Gen Med. 2016;9:27-37. [PMID: 26955289 DOI: 10.2147/ijgm.s98280] [Cited by in Crossref: 28] [Cited by in F6Publishing: 45] [Article Influence: 4.7] [Reference Citation Analysis]
420 Hemmasi S, Czulkies BA, Schorch B, Veit A, Aktories K, Papatheodorou P. Interaction of the Clostridium difficile Binary Toxin CDT and Its Host Cell Receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR). J Biol Chem 2015;290:14031-44. [PMID: 25882847 DOI: 10.1074/jbc.M115.650523] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
421 Bakker GJ, Nieuwdorp M. Fecal Microbiota Transplantation: Therapeutic Potential for a Multitude of Diseases beyond Clostridium difficile. Microbiol Spectr 2017;5. [PMID: 28840809 DOI: 10.1128/microbiolspec.BAD-0008-2017] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
422 Anosova NG, Brown AM, Li L, Liu N, Cole LE, Zhang J, Mehta H, Kleanthous H. Systemic antibody responses induced by a two-component Clostridium difficile toxoid vaccine protect against C. difficile-associated disease in hamsters. J Med Microbiol 2013;62:1394-404. [PMID: 23518659 DOI: 10.1099/jmm.0.056796-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
423 Stanley JD, Bartlett JG, Dart BW 4th, Ashcraft JH. Clostridium difficile infection. Curr Probl Surg 2013;50:302-37. [PMID: 23764494 DOI: 10.1067/j.cpsurg.2013.02.004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
424 Seugendo M, Janssen I, Lang V, Hasibuan I, Bohne W, Cooper P, Daniel R, Gunka K, Kusumawati RL, Mshana SE, von Müller L, Okamo B, Ortlepp JR, Overmann J, Riedel T, Rupnik M, Zimmermann O, Groß U. Prevalence and Strain Characterization of Clostridioides (Clostridium) difficile in Representative Regions of Germany, Ghana, Tanzania and Indonesia - A Comparative Multi-Center Cross-Sectional Study. Front Microbiol 2018;9:1843. [PMID: 30131799 DOI: 10.3389/fmicb.2018.01843] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
425 Usui Y, Ayibieke A, Kamiichi Y, Okugawa S, Moriya K, Tohda S, Saito R. Impact of deoxycholate on Clostridioides difficile growth, toxin production, and sporulation. Heliyon 2020;6:e03717. [PMID: 32322715 DOI: 10.1016/j.heliyon.2020.e03717] [Reference Citation Analysis]
426 Erickson SL, Alston L, Nieves K, Chang TKH, Mani S, Flannigan KL, Hirota SA. The xenobiotic sensing pregnane X receptor regulates tissue damage and inflammation triggered by C difficile toxins. FASEB J 2020;34:2198-212. [PMID: 31907988 DOI: 10.1096/fj.201902083RR] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
427 Dembek M, Willing SE, Hong HA, Hosseini S, Salgado PS, Cutting SM. Inducible Expression of spo0A as a Universal Tool for Studying Sporulation in Clostridium difficile. Front Microbiol 2017;8:1793. [PMID: 28983286 DOI: 10.3389/fmicb.2017.01793] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
428 Rothenbacher FP, Suzuki M, Hurley JM, Montville TJ, Kirn TJ, Ouyang M, Woychik NA. Clostridium difficile MazF toxin exhibits selective, not global, mRNA cleavage. J Bacteriol 2012;194:3464-74. [PMID: 22544268 DOI: 10.1128/JB.00217-12] [Cited by in Crossref: 48] [Cited by in F6Publishing: 33] [Article Influence: 4.8] [Reference Citation Analysis]
429 Stevens V, Brown JE. Comment: The Relationship Between Inpatient Fluoroquinolone Use and Clostridium difficile–Associated Disease. Ann Pharmacother 2010;44:1855-6. [DOI: 10.1345/aph.1m696a] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
430 Imhann F, Bonder MJ, Vich Vila A, Fu J, Mujagic Z, Vork L, Tigchelaar EF, Jankipersadsing SA, Cenit MC, Harmsen HJ, Dijkstra G, Franke L, Xavier RJ, Jonkers D, Wijmenga C, Weersma RK, Zhernakova A. Proton pump inhibitors affect the gut microbiome. Gut. 2016;65:740-748. [PMID: 26657899 DOI: 10.1136/gutjnl-2015-310376] [Cited by in Crossref: 467] [Cited by in F6Publishing: 425] [Article Influence: 66.7] [Reference Citation Analysis]
431 Janezic S, Potocnik M, Zidaric V, Rupnik M. Highly Divergent Clostridium difficile Strains Isolated from the Environment. PLoS One 2016;11:e0167101. [PMID: 27880843 DOI: 10.1371/journal.pone.0167101] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 8.8] [Reference Citation Analysis]
432 Schneeberg A, Neubauer H, Schmoock G, Grossmann E, Seyboldt C. Presence of Clostridium difficile PCR ribotype clusters related to 033, 078 and 045 in diarrhoeic calves in Germany. Journal of Medical Microbiology 2013;62:1190-8. [DOI: 10.1099/jmm.0.056473-0] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 4.2] [Reference Citation Analysis]
433 Chen P, Tao L, Liu Z, Dong M, Jin R. Structural insight into Wnt signaling inhibition by Clostridium difficile toxin B. FEBS J 2019;286:874-81. [PMID: 30347517 DOI: 10.1111/febs.14681] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
434 Bandelj P, Golob M, Ocepek M, Zdovc I, Vengust M. Antimicrobial Susceptibility Patterns of Clostridium difficile Isolates from Family Dairy Farms. Zoonoses Public Health 2017;64:213-21. [DOI: 10.1111/zph.12299] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
435 Allegretti J, Eysenbach LM, El-Nachef N, Fischer M, Kelly C, Kassam Z. The Current Landscape and Lessons from Fecal Microbiota Transplantation for Inflammatory Bowel Disease: Past, Present, and Future. Inflamm Bowel Dis. 2017;23:1710-1717. [PMID: 28858073 DOI: 10.1097/mib.0000000000001247] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
436 Shuai H, Bian Q, Luo Y, Zhou X, Song X, Ye J, Huang Q, Peng Z, Wu J, Jiang J, Jin D. Molecular characteristics of Clostridium difficile in children with acute gastroenteritis from Zhejiang. BMC Infect Dis 2020;20:343. [PMID: 32404060 DOI: 10.1186/s12879-020-05030-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
437 Cheng JW, Liu C, Kudinha T, Xiao M, Yu SY, Yang CX, Wei M, Liang GW, Shao DH, Kong F, Tong ZH, Xu YC. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify MLST clade 4 Clostridium difficile isolates. Diagn Microbiol Infect Dis 2018;92:19-24. [PMID: 29789190 DOI: 10.1016/j.diagmicrobio.2018.04.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
438 Matsuda K, Tsuji H, Asahara T, Takahashi T, Kubota H, Nagata S, Yamashiro Y, Nomoto K. Sensitive quantification of Clostridium difficile cells by reverse transcription-quantitative PCR targeting rRNA molecules. Appl Environ Microbiol. 2012;78:5111-5118. [PMID: 22582062 DOI: 10.1128/aem.07990-11] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
439 Tian TT, Zhao JH, Yang J, Qiang CX, Li ZR, Chen J, Xu KY, Ciu QQ, Li RX. Molecular Characterization of Clostridium difficile Isolates from Human Subjects and the Environment. PLoS One 2016;11:e0151964. [PMID: 27011211 DOI: 10.1371/journal.pone.0151964] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
440 Sorbara MT, Philpott DJ. Peptidoglycan: a critical activator of the mammalian immune system during infection and homeostasis. Immunol Rev. 2011;243:40-60. [PMID: 21884166 DOI: 10.1111/j.1600-065x.2011.01047.x] [Cited by in Crossref: 86] [Cited by in F6Publishing: 42] [Article Influence: 7.8] [Reference Citation Analysis]
441 Dowson L, Bennett N, Buising K, Marshall C, Friedman ND, Stuart RL, Kong DCM. Urinary tract infections in Australian aged care homes: Antibiotic prescribing practices and concordance to national guidelines. Am J Infect Control 2020;48:261-6. [PMID: 31677924 DOI: 10.1016/j.ajic.2019.08.034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
442 Mathur T, Barman TK, Kumar M, Singh D, Kumar R, Khera MK, Yamada M, Inoue SI, Upadhyay DJ, Masuda N. In Vitro and In Vivo Activities of DS-2969b, a Novel GyrB Inhibitor, against Clostridium difficile. Antimicrob Agents Chemother 2018;62:e02157-17. [PMID: 29439962 DOI: 10.1128/AAC.02157-17] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
443 Semenyuk EG, Poroyko VA, Johnston PF, Jones SE, Knight KL, Gerding DN, Driks A. Analysis of Bacterial Communities during Clostridium difficile Infection in the Mouse. Infect Immun 2015;83:4383-91. [PMID: 26324536 DOI: 10.1128/IAI.00145-15] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 5.9] [Reference Citation Analysis]
444 Kidane B, Lung K, McCreery G, El-Khatib C, Ott MC, Hernandez-Alejandro R, Vinden C, Gray D, Parry NG, Leslie KA, Mele TS. Early Rescue from Acute Severe Clostridium Difficile: A Novel Treatment Strategy. Surg Infect (Larchmt) 2018;19:78-82. [PMID: 29227201 DOI: 10.1089/sur.2017.147] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
445 Hawkins KG, Casolaro C, Brown JA, Edwards DA, Wikswo JP. The Microbiome and the Gut-Liver-Brain Axis for Central Nervous System Clinical Pharmacology: Challenges in Specifying and Integrating In Vitro and In Silico Models. Clin Pharmacol Ther 2020;108:929-48. [PMID: 32347548 DOI: 10.1002/cpt.1870] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
446 Hentschel V, Arnold F, Seufferlein T, Azoitei N, Kleger A, Müller M. Enteropathogenic Infections: Organoids Go Bacterial. Stem Cells Int 2021;2021:8847804. [PMID: 33505475 DOI: 10.1155/2021/8847804] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
447 Li J, Gu J, Zhang H, Liu R, Zhang W, Mohammed-Elsabagh M, Xia J, Morrison D, Zakaria S, Chang D, Arrabi A, Li Y. A Highly Specific DNA Aptamer for RNase H2 from Clostridium difficile. ACS Appl Mater Interfaces 2021;13:9464-71. [PMID: 33410654 DOI: 10.1021/acsami.0c20277] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
448 Kouassi KA, Dadie AT, N'Guessan KF, Dje KM, Loukou YG. Clostridium perfringens and Clostridium difficile in cooked beef sold in Côte d'Ivoire and their antimicrobial susceptibility. Anaerobe 2014;28:90-4. [PMID: 24944124 DOI: 10.1016/j.anaerobe.2014.05.012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
449 Ungurs M, Wand M, Vassey M, O'Brien S, Dixon D, Walker J, Sutton JM. The effectiveness of sodium dichloroisocyanurate treatments against Clostridium difficile spores contaminating stainless steel. Am J Infect Control. 2011;39:199-205. [PMID: 21288600 DOI: 10.1016/j.ajic.2010.07.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
450 Majeed A, Larriva MM, Iftikhar A, Mushtaq A, Campbell P, Nadeem Malik M, Rafae A, Zar MA, Kamal A, Lakhani M, Khalid NR, Zangeneh TT, Anwer F. A Single-Center Experience and Literature Review of Management Strategies for Clostridium difficile Infection in Hematopoietic Stem Cell Transplant Patients. Infect Dis Clin Pract (Baltim Md) 2020;28:10-5. [PMID: 33424210 DOI: 10.1097/ipc.0000000000000798] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
451 Hill DR, Spence JR. Gastrointestinal Organoids: Understanding the Molecular Basis of the Host-Microbe Interface. Cell Mol Gastroenterol Hepatol 2017;3:138-49. [PMID: 28275681 DOI: 10.1016/j.jcmgh.2016.11.007] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 8.0] [Reference Citation Analysis]
452 Marsden GL, Davis IJ, Wright VJ, Sebaihia M, Kuijper EJ, Minton NP. Array comparative hybridisation reveals a high degree of similarity between UK and European clinical isolates of hypervirulent Clostridium difficile. BMC Genomics 2010;11:389. [PMID: 20565959 DOI: 10.1186/1471-2164-11-389] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
453 Ubeda C, Pamer EG. Antibiotics, microbiota, and immune defense. Trends Immunol. 2012;33:459-466. [PMID: 22677185 DOI: 10.1016/j.it.2012.05.003] [Cited by in Crossref: 188] [Cited by in F6Publishing: 173] [Article Influence: 18.8] [Reference Citation Analysis]
454 Parker EM, Jenson I, Jordan D, Ward MP. Development of an algorithm for assessing the risk to food safety posed by a new animal disease. Zoonoses Public Health 2012;59:184-92. [PMID: 21884034 DOI: 10.1111/j.1863-2378.2011.01431.x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
455 Kint N, Janoir C, Monot M, Hoys S, Soutourina O, Dupuy B, Martin-Verstraete I. The alternative sigma factor σB plays a crucial role in adaptive strategies of Clostridium difficile during gut infection. Environ Microbiol 2017;19:1933-58. [PMID: 28198085 DOI: 10.1111/1462-2920.13696] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 6.8] [Reference Citation Analysis]
456 Kawada M, Annaka M, Kato H, Shibasaki S, Hikosaka K, Mizuno H, Masuda Y, Inamatsu T. Evaluation of a simultaneous detection kit for the glutamate dehydrogenase antigen and toxin A/B in feces for diagnosis of Clostridium difficile infection. J Infect Chemother 2011;17:807-11. [PMID: 21725661 DOI: 10.1007/s10156-011-0267-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
457 Garcia-Garcia T, Poncet S, Cuenot E, Douché T, Giai Gianetto Q, Peltier J, Courtin P, Chapot-Chartier MP, Matondo M, Dupuy B, Candela T, Martin-Verstraete I. Ser/Thr Kinase-Dependent Phosphorylation of the Peptidoglycan Hydrolase CwlA Controls Its Export and Modulates Cell Division in Clostridioides difficile. mBio 2021;12:e00519-21. [PMID: 34006648 DOI: 10.1128/mBio.00519-21] [Reference Citation Analysis]
458 Warren CA, Guerrant RL. Pathogenic C difficile is here (and everywhere) to stay. The Lancet 2011;377:8-9. [DOI: 10.1016/s0140-6736(10)61885-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
459 Gehin M, Desnica B, Dingemanse J. Minimal systemic and high faecal exposure to cadazolid in patients with severe Clostridium difficile infection. Int J Antimicrob Agents 2015;46:576-81. [PMID: 26419191 DOI: 10.1016/j.ijantimicag.2015.07.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
460 Peláez T, Alcalá L, Blanco JL, Álvarez-Pérez S, Marín M, Martín-López A, Catalán P, Reigadas E, García ME, Bouza E. Characterization of swine isolates of Clostridium difficile in Spain: a potential source of epidemic multidrug resistant strains? Anaerobe 2013;22:45-9. [PMID: 23764416 DOI: 10.1016/j.anaerobe.2013.05.009] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 4.7] [Reference Citation Analysis]
461 Pirš T, Avberšek J, Zdovc I, Krt B, Andlovic A, Lejko-zupanc T, Rupnik M, Ocepek M. Antimicrobial susceptibility of animal and human isolates of Clostridium difficile by broth microdilution. Journal of Medical Microbiology 2013;62:1478-85. [DOI: 10.1099/jmm.0.058875-0] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 5.2] [Reference Citation Analysis]
462 Wu X, Cherian PT, Lee RE, Hurdle JG. The membrane as a target for controlling hypervirulent Clostridium difficile infections. J Antimicrob Chemother 2013;68:806-15. [PMID: 23264511 DOI: 10.1093/jac/dks493] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
463 Nie L, Zhou Q, Qiao Y, Chen J. Interplay between the gut microbiota and immune responses of ayu (Plecoglossus altivelis) during Vibrio anguillarum infection. Fish & Shellfish Immunology 2017;68:479-87. [DOI: 10.1016/j.fsi.2017.07.054] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 8.2] [Reference Citation Analysis]
464 Rosenbusch KE, Bakker D, Kuijper EJ, Smits WK. C. difficile 630Δerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA. PLoS One 2012;7:e48608. [PMID: 23119071 DOI: 10.1371/journal.pone.0048608] [Cited by in Crossref: 49] [Cited by in F6Publishing: 41] [Article Influence: 4.9] [Reference Citation Analysis]
465 Bordenstein SR, Theis KR. Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes. PLoS Biol. 2015;13:e1002226. [PMID: 26284777 DOI: 10.1371/journal.pbio.1002226] [Cited by in Crossref: 562] [Cited by in F6Publishing: 428] [Article Influence: 80.3] [Reference Citation Analysis]
466 Shah Z, Mahbuba R, Turcotte B. The anticancer drug tirapazamine has antimicrobial activity against Escherichia coli, Staphylococcus aureus and Clostridium difficile. FEMS Microbiol Lett 2013;347:61-9. [PMID: 23888874 DOI: 10.1111/1574-6968.12223] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
467 Bartfeld S. Modeling infectious diseases and host-microbe interactions in gastrointestinal organoids. Dev Biol 2016;420:262-70. [PMID: 27640087 DOI: 10.1016/j.ydbio.2016.09.014] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 9.2] [Reference Citation Analysis]
468 Boonma P, Spinler JK, Venable SF, Versalovic J, Tumwasorn S. Lactobacillus rhamnosus L34 and Lactobacillus casei L39 suppress Clostridium difficile-induced IL-8 production by colonic epithelial cells. BMC Microbiol 2014;14:177. [PMID: 24989059 DOI: 10.1186/1471-2180-14-177] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 4.5] [Reference Citation Analysis]
469 Cornely OA, Nathwani D, Ivanescu C, Odufowora-Sita O, Retsa P, Odeyemi IA. Clinical efficacy of fidaxomicin compared with vancomycin and metronidazole in Clostridium difficile infections: a meta-analysis and indirect treatment comparison. J Antimicrob Chemother 2014;69:2892-900. [PMID: 25074856 DOI: 10.1093/jac/dku261] [Cited by in Crossref: 63] [Cited by in F6Publishing: 56] [Article Influence: 7.9] [Reference Citation Analysis]
470 Martin-Verstraete I, Peltier J, Dupuy B. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis. Toxins (Basel) 2016;8:E153. [PMID: 27187475 DOI: 10.3390/toxins8050153] [Cited by in Crossref: 80] [Cited by in F6Publishing: 61] [Article Influence: 13.3] [Reference Citation Analysis]
471 Barra-Carrasco J, Olguín-Araneda V, Plaza-Garrido A, Miranda-Cárdenas C, Cofré-Araneda G, Pizarro-Guajardo M, Sarker MR, Paredes-Sabja D. The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly. J Bacteriol 2013;195:3863-75. [PMID: 23794627 DOI: 10.1128/JB.00369-13] [Cited by in Crossref: 61] [Cited by in F6Publishing: 36] [Article Influence: 6.8] [Reference Citation Analysis]
472 Theophilou ES, Vohra P, Gallagher MP, Poxton IR, Blakely GW. Generation of Markerless Deletions in the Nosocomial Pathogen Clostridium difficile by Induction of DNA Double-Strand Breaks. Appl Environ Microbiol 2019;85:e02055-18. [PMID: 30478235 DOI: 10.1128/AEM.02055-18] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
473 Luan C, Xie L, Yang X, Miao H, Lv N, Zhang R, Xiao X, Hu Y, Liu Y, Wu N, Zhu Y, Zhu B. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci Rep 2015;5:7980. [PMID: 25613490 DOI: 10.1038/srep07980] [Cited by in Crossref: 72] [Cited by in F6Publishing: 65] [Article Influence: 10.3] [Reference Citation Analysis]
474 Hamilton MJ, Weingarden AR, Sadowsky MJ, Khoruts A. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am J Gastroenterol. 2012;107:761-767. [PMID: 22290405 DOI: 10.1038/ajg.2011.482] [Cited by in Crossref: 440] [Cited by in F6Publishing: 406] [Article Influence: 44.0] [Reference Citation Analysis]
475 Ananthakrishnan AN. Clostridium difficile infection: epidemiology, risk factors and management. Nat Rev Gastroenterol Hepatol. 2011;8:17-26. [PMID: 21119612 DOI: 10.1038/nrgastro.2010.190] [Cited by in Crossref: 234] [Cited by in F6Publishing: 198] [Article Influence: 19.5] [Reference Citation Analysis]
476 Oka K, Osaki T, Hanawa T, Kurata S, Okazaki M, Manzoku T, Takahashi M, Tanaka M, Taguchi H, Watanabe T, Inamatsu T, Kamiya S. Molecular and microbiological characterization of Clostridium difficile isolates from single, relapse, and reinfection cases. J Clin Microbiol 2012;50:915-21. [PMID: 22205786 DOI: 10.1128/JCM.05588-11] [Cited by in Crossref: 61] [Cited by in F6Publishing: 25] [Article Influence: 6.1] [Reference Citation Analysis]
477 Folgosa F, Martins MC, Teixeira M. The multidomain flavodiiron protein from Clostridium difficile 630 is an NADH:oxygen oxidoreductase. Sci Rep 2018;8:10164. [PMID: 29977056 DOI: 10.1038/s41598-018-28453-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
478 Senoh M, Iwaki M, Yamamoto A, Kato H, Fukuda T, Shibayama K. Development of vaccine for Clostridium difficile infection using membrane fraction of nontoxigenic Clostridium difficile. Microb Pathog 2018;123:42-6. [PMID: 29959036 DOI: 10.1016/j.micpath.2018.06.039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
479 Romano V, Pasquale V, Krovacek K, Mauri F, Demarta A, Dumontet S. Toxigenic Clostridium difficile PCR ribotypes from wastewater treatment plants in southern Switzerland. Appl Environ Microbiol 2012;78:6643-6. [PMID: 22798376 DOI: 10.1128/AEM.01379-12] [Cited by in Crossref: 46] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]
480 Biasizzo M, Vadnjal S, Henigman U, Krizman M, Kirbis A, Jamnikar-ciglenecki U. Development and Validation of a New Protocol for Detecting and Recovering Clostridium difficile from Meat Samples. Journal of Food Protection 2018;81:561-8. [DOI: 10.4315/0362-028x.jfp-17-354] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
481 Murase T, Eugenio L, Schorr M, Hussack G, Tanha J, Kitova EN, Klassen JS, Ng KK. Structural basis for antibody recognition in the receptor-binding domains of toxins A and B from Clostridium difficile. J Biol Chem 2014;289:2331-43. [PMID: 24311789 DOI: 10.1074/jbc.M113.505917] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
482 Permpoonpattana P, Phetcharaburanin J, Mikelsone A, Dembek M, Tan S, Brisson MC, La Ragione R, Brisson AR, Fairweather N, Hong HA, Cutting SM. Functional characterization of Clostridium difficile spore coat proteins. J Bacteriol 2013;195:1492-503. [PMID: 23335421 DOI: 10.1128/JB.02104-12] [Cited by in Crossref: 67] [Cited by in F6Publishing: 43] [Article Influence: 7.4] [Reference Citation Analysis]
483 Lyte M. Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes 2014;5:381-9. [PMID: 24690573 DOI: 10.4161/gmic.28682] [Cited by in Crossref: 102] [Cited by in F6Publishing: 93] [Article Influence: 12.8] [Reference Citation Analysis]
484 Senoh M, Iwaki M, Yamamoto A, Kato H, Fukuda T, Shibayama K. Inhibition of adhesion of Clostridium difficile to human intestinal cells after treatment with serum and intestinal fluid isolated from mice immunized with nontoxigenic C. difficile membrane fraction. Microb Pathog 2015;81:1-5. [PMID: 25745878 DOI: 10.1016/j.micpath.2015.03.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
485 Acácio S, Nhampossa T, Quintó L, Vubil D, Sacoor C, Kotloff K, Farag T, Dilruba N, Macete E, Levine MM, Alonso P, Mandomando I, Bassat Q. The role of HIV infection in the etiology and epidemiology of diarrheal disease among children aged 0-59 months in Manhiça District, Rural Mozambique. Int J Infect Dis 2018;73:10-7. [PMID: 29852260 DOI: 10.1016/j.ijid.2018.05.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
486 Pai S, Aliyu SH, Enoch DA, Karas JA. Five years experience of Clostridium difficile infection in children at a UK tertiary hospital: proposed criteria for diagnosis and management. PLoS One. 2012;7:e51728. [PMID: 23300561 DOI: 10.1371/journal.pone.0051728] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 3.8] [Reference Citation Analysis]
487 Theriot CM, Koumpouras CC, Carlson PE, Bergin II, Aronoff DM, Young VB. Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains. Gut Microbes 2011;2:326-34. [PMID: 22198617 DOI: 10.4161/gmic.19142] [Cited by in Crossref: 117] [Cited by in F6Publishing: 98] [Article Influence: 10.6] [Reference Citation Analysis]
488 Yu H, Chen K, Sun Y, Carter M, Garey KW, Savidge TC, Devaraj S, Tessier ME, von Rosenvinge EC, Kelly CP, Pasetti MF, Feng H. Cytokines Are Markers of the Clostridium difficile-Induced Inflammatory Response and Predict Disease Severity. Clin Vaccine Immunol 2017;24:e00037-17. [PMID: 28592627 DOI: 10.1128/CVI.00037-17] [Cited by in Crossref: 44] [Cited by in F6Publishing: 29] [Article Influence: 8.8] [Reference Citation Analysis]
489 Donnelly ML, Forster ER, Rohlfing AE, Shen A. Differential effects of 'resurrecting' Csp pseudoproteases during Clostridioides difficile spore germination. Biochem J 2020;477:1459-78. [PMID: 32242623 DOI: 10.1042/BCJ20190875] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
490 Wu X, Alam MZ, Feng L, Tsutsumi LS, Sun D, Hurdle JG. Prospects for flavonoid and related phytochemicals as nature-inspired treatments for Clostridium difficile infection. J Appl Microbiol 2014;116:23-31. [PMID: 24479135 DOI: 10.1111/jam.12344] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
491 Depestel DD, Aronoff DM. Epidemiology of Clostridium difficile infection. J Pharm Pract. 2013;26:464-475. [PMID: 24064435 DOI: 10.1177/0897190013499521] [Cited by in Crossref: 124] [Cited by in F6Publishing: 102] [Article Influence: 15.5] [Reference Citation Analysis]
492 Bomers MK, van Agtmael MA, Luik H, Vandenbroucke-Grauls CM, Smulders YM. A detection dog to identify patients with Clostridium difficile infection during a hospital outbreak. J Infect 2014;69:456-61. [PMID: 24973552 DOI: 10.1016/j.jinf.2014.05.017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
493 Babakhani F, Bouillaut L, Gomez A, Sears P, Nguyen L, Sonenshein AL. Fidaxomicin inhibits spore production in Clostridium difficile. Clin Infect Dis. 2012;55 Suppl 2:S162-S169. [PMID: 22752866 DOI: 10.1093/cid/cis453] [Cited by in Crossref: 77] [Cited by in F6Publishing: 74] [Article Influence: 7.7] [Reference Citation Analysis]
494 Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, Ubeda C, Xavier J, Pamer EG. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 2012;80:62-73. [PMID: 22006564 DOI: 10.1128/IAI.05496-11] [Cited by in Crossref: 350] [Cited by in F6Publishing: 240] [Article Influence: 31.8] [Reference Citation Analysis]
495 Knight DR, Riley TV. Prevalence of gastrointestinal Clostridium difficile carriage in Australian sheep and lambs. Appl Environ Microbiol 2013;79:5689-92. [PMID: 23851101 DOI: 10.1128/AEM.01888-13] [Cited by in Crossref: 27] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
496 Vyas D, Aekka A, Vyas A. Fecal transplant policy and legislation. World J Gastroenterol 2015; 21(1): 6-11 [PMID: 25574076 DOI: 10.3748/wjg.v21.i1.6] [Cited by in CrossRef: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
497 Janezic S, Indra A, Allerberger F, Rupnik M. Use of different molecular typing methods for the study of heterogeneity within Clostridium difficile toxinotypes V and III. Journal of Medical Microbiology 2011;60:1101-7. [DOI: 10.1099/jmm.0.031054-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
498 Fredua-agyeman M, Stapleton P, Basit AW, Beezer AE, Gaisford S. In vitro inhibition of Clostridium difficile by commercial probiotics: A microcalorimetric study. International Journal of Pharmaceutics 2017;517:96-103. [DOI: 10.1016/j.ijpharm.2016.12.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
499 Suwantarat N, Bobak DA. Current Status of Nonantibiotic and Adjunct Therapies for Clostridium difficile Infection. Curr Infect Dis Rep 2011;13:21-7. [PMID: 21308451 DOI: 10.1007/s11908-010-0155-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
500 Moura H, Terilli RR, Woolfitt AR, Williamson YM, Wagner G, Blake TA, Solano MI, Barr JR. Proteomic Analysis and Label-Free Quantification of the Large Clostridium difficile Toxins. Int J Proteomics 2013;2013:293782. [PMID: 24066231 DOI: 10.1155/2013/293782] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
501 Hargreaves KR, Otieno JR, Thanki A, Blades MJ, Millard AD, Browne HP, Lawley TD, Clokie MR. As Clear as Mud? Determining the Diversity and Prevalence of Prophages in the Draft Genomes of Estuarine Isolates of Clostridium difficile. Genome Biol Evol 2015;7:1842-55. [PMID: 26019165 DOI: 10.1093/gbe/evv094] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
502 Claro T, Daniels S, Humphreys H. Detecting Clostridium difficile spores from inanimate surfaces of the hospital environment: which method is best? J Clin Microbiol 2014;52:3426-8. [PMID: 25009047 DOI: 10.1128/JCM.01011-14] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
503 Heal WP, Tate EW. Application of Activity-Based Protein Profiling to the Study of Microbial Pathogenesis. In: Sieber SA, editor. Activity-Based Protein Profiling. Berlin: Springer Berlin Heidelberg; 2012. pp. 115-35. [DOI: 10.1007/128_2011_299] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
504 Marozsan AJ, Ma D, Nagashima KA, Kennedy BJ, Kang YK, Arrigale RR, Donovan GP, Magargal WW, Maddon PJ, Olson WC. Protection against Clostridium difficile infection with broadly neutralizing antitoxin monoclonal antibodies. J Infect Dis. 2012;206:706-713. [PMID: 22732923 DOI: 10.1093/infdis/jis416] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 5.3] [Reference Citation Analysis]
505 Maslanka JR, Gu CH, Zarin I, Denny JE, Broadaway S, Fett B, Mattei LM, Walk ST, Abt MC. Detection and elimination of a novel non-toxigenic Clostridioides difficile strain from the microbiota of a mouse colony. Gut Microbes 2020;12:1-15. [PMID: 33305657 DOI: 10.1080/19490976.2020.1851999] [Reference Citation Analysis]
506 Delgado A, Reveles IA, Cabello FT, Reveles KR. Poorer outcomes among cancer patients diagnosed with Clostridium difficile infections in United States community hospitals. BMC Infect Dis 2017;17:448. [PMID: 28645266 DOI: 10.1186/s12879-017-2553-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
507 Sholeh M, Krutova M, Forouzesh M, Mironov S, Sadeghifard N, Molaeipour L, Maleki A, Kouhsari E. Antimicrobial resistance in Clostridioides (Clostridium) difficile derived from humans: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2020;9:158. [PMID: 32977835 DOI: 10.1186/s13756-020-00815-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
508 Rahimi E, Jalali M, Weese JS. Prevalence of Clostridium difficile in raw beef, cow, sheep, goat, camel and buffalo meat in Iran. BMC Public Health 2014;14:119. [PMID: 24499381 DOI: 10.1186/1471-2458-14-119] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
509 Bouvet P, Ferraris L, Dauphin B, Popoff MR, Butel MJ, Aires J. 16S rRNA gene sequencing, multilocus sequence analysis, and mass spectrometry identification of the proposed new species "Clostridium neonatale". J Clin Microbiol 2014;52:4129-36. [PMID: 25232167 DOI: 10.1128/JCM.00477-14] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
510 Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016;7:22-39. [PMID: 26939849 DOI: 10.1080/19490976.2015.1127483] [Cited by in Crossref: 301] [Cited by in F6Publishing: 278] [Article Influence: 50.2] [Reference Citation Analysis]
511 Bradshaw WJ, Kirby JM, Thiyagarajan N, Chambers CJ, Davies AH, Roberts AK, Shone CC, Acharya KR. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile. Acta Crystallogr D Biol Crystallogr 2014;70:1983-93. [PMID: 25004975 DOI: 10.1107/S1399004714009997] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
512 Ternan NG, Jain S, Graham RL, McMullan G. Semiquantitative analysis of clinical heat stress in Clostridium difficile strain 630 using a GeLC/MS workflow with emPAI quantitation. PLoS One 2014;9:e88960. [PMID: 24586458 DOI: 10.1371/journal.pone.0088960] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
513 Heeg D, Burns DA, Cartman ST, Minton NP. Spores of Clostridium difficile clinical isolates display a diverse germination response to bile salts. PLoS One 2012;7:e32381. [PMID: 22384234 DOI: 10.1371/journal.pone.0032381] [Cited by in Crossref: 81] [Cited by in F6Publishing: 77] [Article Influence: 8.1] [Reference Citation Analysis]
514 Skraban J, Dzeroski S, Zenko B, Tusar L, Rupnik M. Changes of poultry faecal microbiota associated with Clostridium difficile colonisation. Vet Microbiol 2013;165:416-24. [PMID: 23664184 DOI: 10.1016/j.vetmic.2013.04.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
515 Ivarsson ME, Leroux JC, Castagner B. Targeting bacterial toxins. Angew Chem Int Ed Engl 2012;51:4024-45. [PMID: 22441768 DOI: 10.1002/anie.201104384] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 4.6] [Reference Citation Analysis]
516 Takahashi M, Mori N, Bito S. Multi-institution case-control and cohort study of risk factors for the development and mortality of Clostridium difficile infections in Japan. BMJ Open. 2014;4:e005665. [PMID: 25186155 DOI: 10.1136/bmjopen-2014-005665] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]
517 Warriner K, Xu C, Habash M, Sultan S, Weese S. Dissemination of Clostridium difficile in food and the environment: Significant sources of C. difficile community-acquired infection? J Appl Microbiol 2017;122:542-53. [DOI: 10.1111/jam.13338] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 7.5] [Reference Citation Analysis]
518 Gu H, Qi H, Chen S, Shi K, Wang H, Wang J. Carbon storage regulator CsrA plays important roles in multiple virulence-associated processes of Clostridium difficile. Microb Pathog 2018;121:303-9. [PMID: 29859293 DOI: 10.1016/j.micpath.2018.05.052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
519 Lofgren ET, Moehring RW, Anderson DJ, Weber DJ, Fefferman NH. A mathematical model to evaluate the routine use of fecal microbiota transplantation to prevent incident and recurrent Clostridium difficile infection. Infect Control Hosp Epidemiol 2014;35:18-27. [PMID: 24334794 DOI: 10.1086/674394] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
520 Monot M, Eckert C, Lemire A, Hamiot A, Dubois T, Tessier C, Dumoulard B, Hamel B, Petit A, Lalande V, Ma L, Bouchier C, Barbut F, Dupuy B. Clostridium difficile: New Insights into the Evolution of the Pathogenicity Locus. Sci Rep 2015;5:15023. [PMID: 26446480 DOI: 10.1038/srep15023] [Cited by in Crossref: 72] [Cited by in F6Publishing: 63] [Article Influence: 10.3] [Reference Citation Analysis]
521 Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 2013;14:685-90. [PMID: 23778796 DOI: 10.1038/ni.2608] [Cited by in Crossref: 752] [Cited by in F6Publishing: 664] [Article Influence: 83.6] [Reference Citation Analysis]
522 Harvala H, Alm E, Åkerlund T, Rizzardi K. Emergence and spread of moxifloxacin-resistant Clostridium difficile ribotype 231 in Sweden between 2006 and 2015. New Microbes New Infect 2016;14:58-66. [PMID: 27752322 DOI: 10.1016/j.nmni.2016.09.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
523 Sadighi Akha AA, Theriot CM, Erb-Downward JR, McDermott AJ, Falkowski NR, Tyra HM, Rutkowski DT, Young VB, Huffnagle GB. Acute infection of mice with Clostridium difficile leads to eIF2α phosphorylation and pro-survival signalling as part of the mucosal inflammatory response. Immunology 2013;140:111-22. [PMID: 23668260 DOI: 10.1111/imm.12122] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
524 Alverdy J, Gilbert J, DeFazio JR, Sadowsky MJ, Chang EB, Morowitz MJ, Teitelbaum DH. Proceedings of the 2013 A.S.P.E.N. Research workshop: the interface between nutrition and the gut microbiome: implications and applications for human health [corrected]. JPEN J Parenter Enteral Nutr 2014;38:167-78. [PMID: 24379111 DOI: 10.1177/0148607113517904] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
525 Thanissery R, Winston JA, Theriot CM. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 2017;45:86-100. [PMID: 28279860 DOI: 10.1016/j.anaerobe.2017.03.004] [Cited by in Crossref: 81] [Cited by in F6Publishing: 66] [Article Influence: 16.2] [Reference Citation Analysis]
526 Hatt S, Schindler B, Bach D, Greene C. Washer disinfector and alkaline detergent efficacy against C. difficile on plastic bedpans. Am J Infect Control 2020;48:761-4. [PMID: 31911070 DOI: 10.1016/j.ajic.2019.11.028] [Reference Citation Analysis]
527 Orenstein WA, Gellin BG, Beigi RH, Despres S, Lynfield R, Maldonado Y, Mouton C, Rawlins W, Rothholz MC, Smith N, Thompson K, Torres C, Viswanath K, Hosbach P; National Vaccine Advisory Committee. A Call for Greater Consideration for the Role of Vaccines in National Strategies to Combat Antibiotic-Resistant Bacteria: Recommendations from the National Vaccine Advisory Committee: Approved by the National Vaccine Advisory Committee on June 10, 2015. Public Health Rep 2016;131:11-6. [DOI: 10.1177/003335491613100105] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
528 Hicke B, Pasko C, Groves B, Ager E, Corpuz M, Frech G, Munns D, Smith W, Warcup A, Denys G, Ledeboer NA, Lindsey W, Owen C, Rea L, Jenison R. Automated detection of toxigenic Clostridium difficile in clinical samples: isothermal tcdB amplification coupled to array-based detection. J Clin Microbiol 2012;50:2681-7. [PMID: 22675134 DOI: 10.1128/JCM.00621-12] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
529 Jiang Y, Chowdhury S, Xu BH, Meybodi MA, Damiris K, Devalaraju S, Pyrsopoulos N. Nonalcoholic fatty liver disease is associated with worse intestinal complications in patients hospitalized for Clostridioides difficile infection. World J Hepatol 2021; 13(11): 1777-1790 [PMID: 34904045 DOI: 10.4254/wjh.v13.i11.1777] [Reference Citation Analysis]
530 Polage CR, Gyorke CE, Kennedy MA, Leslie JL, Chin DL, Wang S, Nguyen HH, Huang B, Tang YW, Lee LW. Overdiagnosis of Clostridium difficile Infection in the Molecular Test Era. JAMA Intern Med. 2015;175:1792-1801. [PMID: 26348734 DOI: 10.1001/jamainternmed.2015.4114] [Cited by in Crossref: 327] [Cited by in F6Publishing: 282] [Article Influence: 54.5] [Reference Citation Analysis]
531 Najarian A, Sharif S, Griffiths MW. Evaluation of protective effect of Lactobacillus acidophilus La-5 on toxicity and colonization of Clostridium difficile in human epithelial cells in vitro. Anaerobe 2019;55:142-51. [PMID: 30576791 DOI: 10.1016/j.anaerobe.2018.12.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
532 Androga GO, Knight DR, Hutton ML, Mileto SJ, James ML, Evans C, Lyras D, Chang BJ, Foster NF, Riley TV. In silico, in vitro and in vivo analysis of putative virulence factors identified in large clostridial toxin-negative, binary toxin- producing C. difficile strains. Anaerobe 2019;60:102083. [PMID: 31377188 DOI: 10.1016/j.anaerobe.2019.102083] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
533 Xiao XY, Zhao XP, Tan ZJ. Clostridium difficile-associated intestinal diseases. Shijie Huaren Xiaohua Zazhi 2015; 23(10): 1539-1545 [DOI: 10.11569/wcjd.v23.i10.1539] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
534 Liu R, Suárez JM, Weisblum B, Gellman SH, McBride SM. Synthetic polymers active against Clostridium difficile vegetative cell growth and spore outgrowth. J Am Chem Soc 2014;136:14498-504. [PMID: 25279431 DOI: 10.1021/ja506798e] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 6.3] [Reference Citation Analysis]
535 Locher HH, Seiler P, Chen X, Schroeder S, Pfaff P, Enderlin M, Klenk A, Fournier E, Hubschwerlen C, Ritz D. In vitro and in vivo antibacterial evaluation of cadazolid, a new antibiotic for treatment of Clostridium difficile infections. Antimicrob Agents Chemother. 2014;58:892-900. [PMID: 24277020 DOI: 10.1128/aac.01830-13] [Cited by in Crossref: 66] [Cited by in F6Publishing: 36] [Article Influence: 7.3] [Reference Citation Analysis]
536 Duan J, Meng X, Liu S, Zhou P, Zeng C, Fu C, Dou Q, Wu A, Li C. Gut Microbiota Composition Associated With Clostridium difficile-Positive Diarrhea and C. difficile Type in ICU Patients. Front Cell Infect Microbiol 2020;10:190. [PMID: 32477962 DOI: 10.3389/fcimb.2020.00190] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
537 Jarchum I, Liu M, Shi C, Equinda M, Pamer EG. Critical role for MyD88-mediated neutrophil recruitment during Clostridium difficile colitis. Infect Immun. 2012;80:2989-2996. [PMID: 22689818 DOI: 10.1128/iai.00448-12] [Cited by in Crossref: 99] [Cited by in F6Publishing: 76] [Article Influence: 9.9] [Reference Citation Analysis]
538 Granata G, Mariotti D, Ascenzi P, Petrosillo N, di Masi A. High Serum Levels of Toxin A Correlate with Disease Severity in Patients with Clostridioides difficile Infection. Antibiotics (Basel) 2021;10:1093. [PMID: 34572675 DOI: 10.3390/antibiotics10091093] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
539 Wu X, Paskaleva EE, Mehta KK, Dordick JS, Kane RS. Wall Teichoic Acids Are Involved in the Medium-Induced Loss of Function of the Autolysin CD11 against Clostridium difficile. Sci Rep 2016;6:35616. [PMID: 27759081 DOI: 10.1038/srep35616] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
540 Young-xu Y, Kakkar R, Mills P, Wegner CD. Effect of Colchicine on Clostridium Difficile Infection Incidence, Recurrence, and Severity. Infectious Diseases in Clinical Practice 2015;23:141-7. [DOI: 10.1097/ipc.0000000000000246] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
541 Papatheodorou P, Carette JE, Bell GW, Schwan C, Guttenberg G, Brummelkamp TR, Aktories K. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci U S A 2011;108:16422-7. [PMID: 21930894 DOI: 10.1073/pnas.1109772108] [Cited by in Crossref: 129] [Cited by in F6Publishing: 115] [Article Influence: 11.7] [Reference Citation Analysis]
542 Darkoh C, Deaton M, DuPont HL. Nonantimicrobial drug targets for Clostridium difficile infections. Future Microbiol 2017;12:975-85. [PMID: 28759258 DOI: 10.2217/fmb-2017-0024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
543 Mooyottu S, Flock G, Kollanoor-Johny A, Upadhyaya I, Jayarao B, Venkitanarayanan K. Characterization of a multidrug resistant C. difficile meat isolate. Int J Food Microbiol. 2015;192:111-116. [PMID: 25440554 DOI: 10.1016/j.ijfoodmicro.2014.10.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
544 Allen CA, Babakhani F, Sears P, Nguyen L, Sorg JA. Both fidaxomicin and vancomycin inhibit outgrowth of Clostridium difficile spores. Antimicrob Agents Chemother 2013;57:664-7. [PMID: 23147724 DOI: 10.1128/AAC.01611-12] [Cited by in Crossref: 46] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
545 Khoruts A, Sadowsky MJ. Therapeutic transplantation of the distal gut microbiota. Mucosal Immunol. 2011;4:4-7. [PMID: 21150894 DOI: 10.1038/mi.2010.79] [Cited by in Crossref: 66] [Cited by in F6Publishing: 55] [Article Influence: 5.5] [Reference Citation Analysis]
546 Knight DR, Squire MM, Riley TV. Laboratory detection of Clostridium difficile in piglets in Australia. J Clin Microbiol 2014;52:3856-62. [PMID: 25122859 DOI: 10.1128/JCM.01225-14] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 2.4] [Reference Citation Analysis]
547 Permpoonpattana P, Tolls EH, Nadem R, Tan S, Brisson A, Cutting SM. Surface layers of Clostridium difficile endospores. J Bacteriol 2011;193:6461-70. [PMID: 21949071 DOI: 10.1128/JB.05182-11] [Cited by in Crossref: 73] [Cited by in F6Publishing: 43] [Article Influence: 6.6] [Reference Citation Analysis]
548 Kumar M, Mathur T, Joshi V, Upadhyay DJ, Inoue SI, Masuda N. Effect of DS-2969b, a novel GyrB inhibitor, on rat and monkey intestinal microbiota. Anaerobe 2018;51:120-3. [PMID: 29758524 DOI: 10.1016/j.anaerobe.2018.04.017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
549 Berendsen EM, Boekhorst J, Kuipers OP, Wells-Bennik MH. A mobile genetic element profoundly increases heat resistance of bacterial spores. ISME J 2016;10:2633-42. [PMID: 27105070 DOI: 10.1038/ismej.2016.59] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 7.2] [Reference Citation Analysis]
550 Soutourina O. RNA-based control mechanisms of Clostridium difficile. Curr Opin Microbiol 2017;36:62-8. [PMID: 28214735 DOI: 10.1016/j.mib.2017.01.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
551 . Hygienemaßnahmen bei Clostridioides difficile-Infektion (CDI): Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl 2019;62:906-23. [DOI: 10.1007/s00103-019-02959-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
552 Halstead F, Ravi A, Thomson N, Nuur M, Hughes K, Brailey M, Oppenheim B. Whole genome sequencing of toxigenic Clostridium difficile in asymptomatic carriers: insights into possible role in transmission. Journal of Hospital Infection 2019;102:125-34. [DOI: 10.1016/j.jhin.2018.10.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
553 Baldan R, Trovato A, Bianchini V, Biancardi A, Cichero P, Mazzotti M, Nizzero P, Moro M, Ossi C, Scarpellini P, Cirillo DM. Clostridium difficile PCR Ribotype 018, a Successful Epidemic Genotype. J Clin Microbiol 2015;53:2575-80. [PMID: 26041894 DOI: 10.1128/JCM.00533-15] [Cited by in Crossref: 32] [Cited by in F6Publishing: 13] [Article Influence: 4.6] [Reference Citation Analysis]
554 Allegretti JR, Kelly CR, Grinspan A, Mullish BH, Hurtado J, Carrellas M, Marcus J, Marchesi JR, McDonald JAK, Gerardin Y, Silverstein M, Pechlivanis A, Barker GF, Miguens Blanco J, Alexander JL, Gallagher KI, Pettee W, Phelps E, Nemes S, Sagi SV, Bohm M, Kassam Z, Fischer M. Inflammatory Bowel Disease Outcomes Following Fecal Microbiota Transplantation for Recurrent C. difficile Infection. Inflamm Bowel Dis 2021;27:1371-8. [PMID: 33155639 DOI: 10.1093/ibd/izaa283] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
555 Kaus GM, Snyder LF, Müh U, Flores MJ, Popham DL, Ellermeier CD. Lysozyme Resistance in Clostridioides difficile Is Dependent on Two Peptidoglycan Deacetylases. J Bacteriol 2020;202:e00421-20. [PMID: 32868404 DOI: 10.1128/JB.00421-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
556 de Boer E, Zwartkruis-Nahuis A, Heuvelink AE, Harmanus C, Kuijper EJ. Prevalence of Clostridium difficile in retailed meat in the Netherlands. Int J Food Microbiol 2011;144:561-4. [PMID: 21131085 DOI: 10.1016/j.ijfoodmicro.2010.11.007] [Cited by in Crossref: 67] [Cited by in F6Publishing: 58] [Article Influence: 5.6] [Reference Citation Analysis]
557 Mileto S, Das A, Lyras D, Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI. Enterotoxic Clostridia: Clostridioides difficile Infections. Microbiol Spectr 2019;7. [DOI: 10.1128/microbiolspec.gpp3-0015-2018] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
558 Louie T, Nord CE, Talbot GH, Wilcox M, Gerding DN, Buitrago M, Kracker H, Charef P, Cornely OA. Multicenter, Double-Blind, Randomized, Phase 2 Study Evaluating the Novel Antibiotic Cadazolid in Patients with Clostridium difficile Infection. Antimicrob Agents Chemother. 2015;59:6266-6273. [PMID: 26248357 DOI: 10.1128/aac.00504-15] [Cited by in Crossref: 55] [Cited by in F6Publishing: 25] [Article Influence: 7.9] [Reference Citation Analysis]
559 Curry SR. Clostridium difficile. Clin Lab Med 2017;37:341-69. [PMID: 28457354 DOI: 10.1016/j.cll.2017.01.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
560 Liao F, Li W, Gu W, Zhang W, Liu X, Fu X, Xu W, Wu Y, Lu J. A retrospective study of community-acquired Clostridium difficile infection in southwest China. Sci Rep 2018;8:3992. [PMID: 29507300 DOI: 10.1038/s41598-018-21762-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
561 Fehlbaum S, Chassard C, Poeker SA, Derrien M, Fourmestraux C, Lacroix C. Clostridium difficile colonization and antibiotics response in PolyFermS continuous model mimicking elderly intestinal fermentation. Gut Pathog 2016;8:63. [PMID: 27980686 DOI: 10.1186/s13099-016-0144-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
562 Kumar R, Maynard CL, Eipers P, Goldsmith KT, Ptacek T, Grubbs JA, Dixon P, Howard D, Crossman DK, Crowley MR, Benjamin WH Jr, Lefkowitz EJ, Weaver CT, Rodriguez JM, Morrow CD. Colonization potential to reconstitute a microbe community in patients detected early after fecal microbe transplant for recurrent C. difficile. BMC Microbiol 2016;16:5. [PMID: 26758906 DOI: 10.1186/s12866-015-0622-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
563 Vickers R, Robinson N, Best E, Echols R, Tillotson G, Wilcox M. A randomised phase 1 study to investigate safety, pharmacokinetics and impact on gut microbiota following single and multiple oral doses in healthy male subjects of SMT19969, a novel agent for Clostridium difficile infections. BMC Infect Dis 2015;15:91. [PMID: 25880933 DOI: 10.1186/s12879-015-0759-5] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
564 Westblade LF, van Belkum A, Grundhoff A, Weinstock GM, Pamer EG, Pallen MJ, Dunne WM Jr. Role of Clinicogenomics in Infectious Disease Diagnostics and Public Health Microbiology. J Clin Microbiol 2016;54:1686-93. [PMID: 26912755 DOI: 10.1128/JCM.02664-15] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
565 Bassetti M, Villa G, Pecori D, Arzese A, Wilcox M. Epidemiology, diagnosis and treatment of Clostridium difficile infection. Expert Rev Anti Infect Ther 2012;10:1405-23. [PMID: 23253319 DOI: 10.1586/eri.12.135] [Cited by in Crossref: 49] [Cited by in F6Publishing: 38] [Article Influence: 5.4] [Reference Citation Analysis]
566 Hammami R, Fernandez B, Lacroix C, Fliss I. Anti-infective properties of bacteriocins: an update. Cell Mol Life Sci. 2013;70:2947-2967. [PMID: 23109101 DOI: 10.1007/s00018-012-1202-3] [Cited by in Crossref: 77] [Cited by in F6Publishing: 63] [Article Influence: 7.7] [Reference Citation Analysis]
567 Cornely O. Current and emerging management options for Clostridium difficile infection: what is the role of fidaxomicin? Clinical Microbiology and Infection 2012;18:28-35. [DOI: 10.1111/1469-0691.12012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
568 Pham TA, Lawley TD. Emerging insights on intestinal dysbiosis during bacterial infections. Curr Opin Microbiol 2014;17:67-74. [PMID: 24581695 DOI: 10.1016/j.mib.2013.12.002] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 7.3] [Reference Citation Analysis]
569 Sasaki D, Sasaki K, Kadowaki Y, Aotsuka Y, Kondo A. Bifidogenic and butyrogenic effects of young barely leaf extract in an in vitro human colonic microbiota model. AMB Express 2019;9:182. [PMID: 31721000 DOI: 10.1186/s13568-019-0911-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
570 Paredes-Sabja D, Shen A, Sorg JA. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol 2014;22:406-16. [PMID: 24814671 DOI: 10.1016/j.tim.2014.04.003] [Cited by in Crossref: 226] [Cited by in F6Publishing: 195] [Article Influence: 28.3] [Reference Citation Analysis]
571 Eastwood K, Else P, Charlett A, Wilcox M. Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods. J Clin Microbiol 2009;47:3211-7. [PMID: 19710274 DOI: 10.1128/JCM.01082-09] [Cited by in Crossref: 258] [Cited by in F6Publishing: 94] [Article Influence: 19.8] [Reference Citation Analysis]
572 Džunková M, Moya A, Chen X, Kelly C, D'Auria G. Detection of mixed-strain infections by FACS and ultra-low input genome sequencing. Gut Microbes 2020;11:305-9. [PMID: 30289342 DOI: 10.1080/19490976.2018.1526578] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
573 Jadhav A, Ezhilarasan V, Prakash Sharma O, Pan A. Clostridium-DT(DB): a comprehensive database for potential drug targets of Clostridium difficile. Comput Biol Med 2013;43:362-7. [PMID: 23415847 DOI: 10.1016/j.compbiomed.2013.01.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
574 Mooyottu S, Flock G, Venkitanarayanan K. Carvacrol reduces Clostridium difficile sporulation and spore outgrowth in vitro. J Med Microbiol 2017;66:1229-34. [PMID: 28786786 DOI: 10.1099/jmm.0.000515] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
575 Puri AW, Lupardus PJ, Deu E, Albrow VE, Garcia KC, Bogyo M, Shen A. Rational design of inhibitors and activity-based probes targeting Clostridium difficile virulence factor TcdB. Chem Biol 2010;17:1201-11. [PMID: 21095570 DOI: 10.1016/j.chembiol.2010.09.011] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 4.3] [Reference Citation Analysis]
576 Alonso CD, Marr KA. Clostridium difficile infection among hematopoietic stem cell transplant recipients: beyond colitis. Curr Opin Infect Dis 2013;26:326-31. [PMID: 23806895 DOI: 10.1097/QCO.0b013e3283630c4c] [Cited by in Crossref: 28] [Cited by in F6Publishing: 12] [Article Influence: 3.1] [Reference Citation Analysis]
577 Abecasis AB, Serrano M, Alves R, Quintais L, Pereira-Leal JB, Henriques AO. A genomic signature and the identification of new sporulation genes. J Bacteriol 2013;195:2101-15. [PMID: 23396918 DOI: 10.1128/JB.02110-12] [Cited by in Crossref: 84] [Cited by in F6Publishing: 42] [Article Influence: 9.3] [Reference Citation Analysis]
578 Boudry P, Semenova E, Monot M, Datsenko KA, Lopatina A, Sekulovic O, Ospina-Bedoya M, Fortier LC, Severinov K, Dupuy B, Soutourina O. Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile. mBio 2015;6:e01112-15. [PMID: 26330515 DOI: 10.1128/mBio.01112-15] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
579 Orth P, Xiao L, Hernandez LD, Reichert P, Sheth PR, Beaumont M, Yang X, Murgolo N, Ermakov G, DiNunzio E, Racine F, Karczewski J, Secore S, Ingram RN, Mayhood T, Strickland C, Therien AG. Mechanism of action and epitopes of Clostridium difficile toxin B-neutralizing antibody bezlotoxumab revealed by X-ray crystallography. J Biol Chem 2014;289:18008-21. [PMID: 24821719 DOI: 10.1074/jbc.M114.560748] [Cited by in F6Publishing: 47] [Reference Citation Analysis]
580 O'Reilly C, O'Connor PM, O'Sullivan Ó, Rea MC, Hill C, Ross RP. Impact of nisin on Clostridioides difficile and microbiota composition in a faecal fermentation model of the human colon. J Appl Microbiol 2021. [PMID: 34370377 DOI: 10.1111/jam.15250] [Reference Citation Analysis]
581 Kufel WD, Devanathan AS, Marx AH, Weber DJ, Daniels LM. Bezlotoxumab: A Novel Agent for the Prevention of Recurrent Clostridium difficile Infection. Pharmacotherapy 2017;37:1298-308. [PMID: 28730660 DOI: 10.1002/phar.1990] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
582 Ng YK, Ehsaan M, Philip S, Collery MM, Janoir C, Collignon A, Cartman ST, Minton NP. Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles. PLoS One 2013;8:e56051. [PMID: 23405251 DOI: 10.1371/journal.pone.0056051] [Cited by in Crossref: 103] [Cited by in F6Publishing: 78] [Article Influence: 11.4] [Reference Citation Analysis]
583 Argamany JR, Aitken SL, Lee GC, Boyd NK, Reveles KR. Regional and seasonal variation in Clostridium difficile infections among hospitalized patients in the United States, 2001-2010. American Journal of Infection Control 2015;43:435-40. [DOI: 10.1016/j.ajic.2014.11.018] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
584 Saito T, Kimura S, Tateda K, Mori N, Hosono N, Hayakawa K, Akasaka Y, Ishii T, Sumiyama Y, Kusachi S, Nagao J, Yamaguchi K. Evidence of intravenous immunoglobulin as a critical supportive therapy against Clostridium difficile toxin-mediated lethality in mice. J Antimicrob Chemother 2011;66:1096-9. [PMID: 21393125 DOI: 10.1093/jac/dkr027] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
585 Alonso CD, Dufresne SF, Hanna DB, Labbé AC, Treadway SB, Neofytos D, Bélanger S, Huff CA, Laverdière M, Marr KA. Clostridium difficile infection after adult autologous stem cell transplantation: a multicenter study of epidemiology and risk factors. Biol Blood Marrow Transplant 2013;19:1502-8. [PMID: 23916741 DOI: 10.1016/j.bbmt.2013.07.022] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
586 Shelby RD, Tengberg N, Conces M, Olson JK, Navarro JB, Bailey MT, Goodman SD, Besner GE. Development of a Standardized Scoring System to Assess a Murine Model of Clostridium difficile Colitis. J Invest Surg 2020;33:887-95. [PMID: 30892111 DOI: 10.1080/08941939.2019.1571129] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
587 Susmitha A, Bajaj H, Madhavan Nampoothiri K. The divergent roles of sortase in the biology of Gram-positive bacteria. Cell Surf 2021;7:100055. [PMID: 34195501 DOI: 10.1016/j.tcsw.2021.100055] [Reference Citation Analysis]
588 Fortier LC. Bacteriophages Contribute to Shaping Clostridioides (Clostridium) difficile Species. Front Microbiol 2018;9:2033. [PMID: 30233520 DOI: 10.3389/fmicb.2018.02033] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
589 Appaneal HJ, Caffrey AR, LaPlante KL. What Is the Role for Metronidazole in the Treatment of Clostridium difficile Infection? Results From a National Cohort Study of Veterans With Initial Mild Disease. Clin Infect Dis 2019;69:1288-95. [PMID: 30561531 DOI: 10.1093/cid/ciy1077] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
590 Pizarro-Guajardo M, Calderón-Romero P, Castro-Córdova P, Mora-Uribe P, Paredes-Sabja D. Ultrastructural Variability of the Exosporium Layer of Clostridium difficile Spores. Appl Environ Microbiol 2016;82:2202-9. [PMID: 26850296 DOI: 10.1128/AEM.03410-15] [Cited by in Crossref: 31] [Cited by in F6Publishing: 14] [Article Influence: 5.2] [Reference Citation Analysis]
591 Armstrong GD, Pillai DR, Louie TJ, Macdonald JA, Beck PL. A Potential New Tool for Managing Clostridium difficile Infection. Journal of Infectious Diseases 2013;207:1484-6. [DOI: 10.1093/infdis/jit069] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
592 Arvand M, Bettge-weller G. Clostridium difficile ribotype 027 is not evenly distributed in Hesse, Germany. Anaerobe 2016;40:1-4. [DOI: 10.1016/j.anaerobe.2016.04.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
593 Na'amnih W, Adler A, Miller-Roll T, Cohen D, Carmeli Y. Risk factors for recurrent Clostridium difficile infection in a tertiary hospital in Israel. Eur J Clin Microbiol Infect Dis 2018;37:1281-8. [PMID: 29627951 DOI: 10.1007/s10096-018-3247-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
594 Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM, Giannoukos G, Boylan MR, Ciulla D, Gevers D. Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci USA. 2014;111:E2329-E2338. [PMID: 24843156 DOI: 10.1073/pnas.1319284111] [Cited by in Crossref: 376] [Cited by in F6Publishing: 326] [Article Influence: 47.0] [Reference Citation Analysis]
595 Viswanathan VK, Mallozzi MJ, Vedantam G. Clostridium difficile infection: An overview of the disease and its pathogenesis, epidemiology and interventions. Gut Microbes. 2010;1:234-242. [PMID: 21327030 DOI: 10.4161/gmic.1.4.12706] [Cited by in Crossref: 68] [Cited by in F6Publishing: 65] [Article Influence: 5.7] [Reference Citation Analysis]
596 Ünal CM, Karagöz MS, Berges M, Priebe C, Borrero de Acuña JM, Wissing J, Jänsch L, Jahn D, Steinert M. Pleiotropic Clostridioides difficile Cyclophilin PpiB Controls Cysteine-Tolerance, Toxin Production, the Central Metabolism and Multiple Stress Responses. Front Pharmacol 2019;10:340. [PMID: 31024308 DOI: 10.3389/fphar.2019.00340] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
597 Alam MZ, Wu X, Mascio C, Chesnel L, Hurdle JG. Mode of action and bactericidal properties of surotomycin against growing and nongrowing Clostridium difficile. Antimicrob Agents Chemother 2015;59:5165-70. [PMID: 26055381 DOI: 10.1128/AAC.01087-15] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
598 Kumar N, Miyajima F, He M, Roberts P, Swale A, Ellison L, Pickard D, Smith G, Molyneux R, Dougan G, Parkhill J, Wren BW, Parry CM, Pirmohamed M, Lawley TD. Genome-Based Infection Tracking Reveals Dynamics of Clostridium difficile Transmission and Disease Recurrence. Clin Infect Dis 2016;62:746-52. [PMID: 26683317 DOI: 10.1093/cid/civ1031] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 7.1] [Reference Citation Analysis]
599 Bai Y, Wang Y, Goulian M, Driks A, Dmochowski IJ. Bacterial spore detection and analysis using hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR. Chem Sci 2014;5:3197-203. [PMID: 25089181 DOI: 10.1039/c4sc01190b] [Cited by in Crossref: 39] [Cited by in F6Publishing: 24] [Article Influence: 4.9] [Reference Citation Analysis]
600 Fimlaid KA, Jensen O, Donnelly ML, Francis MB, Sorg JA, Shen A. Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination. PLoS Pathog 2015;11:e1005239. [PMID: 26496694 DOI: 10.1371/journal.ppat.1005239] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 6.3] [Reference Citation Analysis]
601 Gu H, Liu J, Chen S, Qi H, Shi K, Li S, Ma Y, Wang J. High-mobility group box 1 protein contributes to the immunogenicity of rTcdB-treated CT26 cells. Acta Biochim Biophys Sin (Shanghai) 2018;50:921-8. [PMID: 30052706 DOI: 10.1093/abbs/gmy078] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
602 Ferrer M, Méndez-García C, Rojo D, Barbas C, Moya A. Antibiotic use and microbiome function. Biochem Pharmacol 2017;134:114-26. [PMID: 27641814 DOI: 10.1016/j.bcp.2016.09.007] [Cited by in Crossref: 106] [Cited by in F6Publishing: 95] [Article Influence: 17.7] [Reference Citation Analysis]
603 Sekulovic O, Garneau JR, Néron A, Fortier LC. Characterization of temperate phages infecting Clostridium difficile isolates of human and animal origins. Appl Environ Microbiol 2014;80:2555-63. [PMID: 24532062 DOI: 10.1128/AEM.00237-14] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
604 Molodtsov V, Fleming PR, Eyermann CJ, Ferguson AD, Foulk MA, McKinney DC, Masse CE, Buurman ET, Murakami KS. X-ray crystal structures of Escherichia coli RNA polymerase with switch region binding inhibitors enable rational design of squaramides with an improved fraction unbound to human plasma protein. J Med Chem 2015;58:3156-71. [PMID: 25798859 DOI: 10.1021/acs.jmedchem.5b00050] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
605 Kimura T, Snijder R, Sugitani T. Characterization and risk factors for recurrence of Clostridioides (Clostridium) difficile infection in Japan: A nationwide real-world analysis using a large hospital-based administrative dataset. J Infect Chemother 2019;25:615-20. [PMID: 30987950 DOI: 10.1016/j.jiac.2019.03.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
606 Weichert S, Simon A, von Müller L, Adam R, Schroten H. Clostridium-difficile-assoziierte Infektionen im Kindes- und Jugendalter. Monatsschr Kinderheilkd 2015;163:427-36. [DOI: 10.1007/s00112-014-3253-z] [Cited by in Crossref: 7] [Article Influence: 1.0] [Reference Citation Analysis]
607 Wang PW, Lee WT, Wu YN, Shieh DB. Opportunities for Nanomedicine in Clostridioides difficile Infection. Antibiotics (Basel) 2021;10:948. [PMID: 34438998 DOI: 10.3390/antibiotics10080948] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
608 Imhann F, Vich Vila A, Bonder MJ, Lopez Manosalva AG, Koonen DPY, Fu J, Wijmenga C, Zhernakova A, Weersma RK. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes. 2017;8:351-358. [PMID: 28118083 DOI: 10.1080/19490976.2017.1284732] [Cited by in Crossref: 67] [Cited by in F6Publishing: 65] [Article Influence: 13.4] [Reference Citation Analysis]
609 Adlerberth I, Huang H, Lindberg E, Åberg N, Hesselmar B, Saalman R, Nord CE, Wold AE, Weintraub A. Toxin-producing Clostridium difficile strains as long-term gut colonizers in healthy infants. J Clin Microbiol 2014;52:173-9. [PMID: 24172156 DOI: 10.1128/JCM.01701-13] [Cited by in Crossref: 34] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
610 Zanella Terrier MC, Simonet ML, Bichard P, Frossard JL. Recurrent Clostridium difficile infections: The importance of the intestinal microbiota. World J Gastroenterol 2014; 20(23): 7416-7423 [PMID: 24966611 DOI: 10.3748/wjg.v20.i23.7416] [Cited by in CrossRef: 28] [Cited by in F6Publishing: 24] [Article Influence: 3.5] [Reference Citation Analysis]
611 Zhang K, Zhao S, Wang Y, Zhu X, Shen H, Chen Y, Sun X. The non-toxigenic Clostridium difficile CD37 protects mice against infection with a BI/NAP1/027 type of C. difficile strain. Anaerobe 2015;36:49-52. [PMID: 26461425 DOI: 10.1016/j.anaerobe.2015.09.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
612 Menendez A, Willing BP, Montero M, Wlodarska M, So CC, Bhinder G, Vallance BA, Finlay BB. Bacterial stimulation of the TLR-MyD88 pathway modulates the homeostatic expression of ileal Paneth cell α-defensins. J Innate Immun 2013;5:39-49. [PMID: 22986642 DOI: 10.1159/000341630] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 4.7] [Reference Citation Analysis]
613 Fry PR, Thakur S, Abley M, Gebreyes WA. Antimicrobial resistance, toxinotype, and genotypic profiling of Clostridium difficile isolates of swine origin. J Clin Microbiol 2012;50:2366-72. [PMID: 22518873 DOI: 10.1128/JCM.06581-11] [Cited by in Crossref: 32] [Cited by in F6Publishing: 9] [Article Influence: 3.2] [Reference Citation Analysis]
614 Ananthakrishnan AN, Oxford EC, Nguyen DD, Sauk J, Yajnik V, Xavier RJ. Genetic risk factors for Clostridium difficile infection in ulcerative colitis. Aliment Pharmacol Ther. 2013;38:522-530. [PMID: 23848254 DOI: 10.1111/apt.12425] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
615 Abou Chakra CN, Pepin J, Sirard S, Valiquette L. Risk factors for recurrence, complications and mortality in Clostridium difficile infection: a systematic review. PLoS One. 2014;9:e98400. [PMID: 24897375 DOI: 10.1371/journal.pone.0098400] [Cited by in Crossref: 187] [Cited by in F6Publishing: 171] [Article Influence: 23.4] [Reference Citation Analysis]
616 Scaria J, Mao C, Chen JW, McDonough SP, Sobral B, Chang YF. Differential stress transcriptome landscape of historic and recently emerged hypervirulent strains of Clostridium difficile strains determined using RNA-seq. PLoS One 2013;8:e78489. [PMID: 24244315 DOI: 10.1371/journal.pone.0078489] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
617 Sirard S, Valiquette L, Fortier LC. Lack of association between clinical outcome of Clostridium difficile infections, strain type, and virulence-associated phenotypes. J Clin Microbiol 2011;49:4040-6. [PMID: 21956985 DOI: 10.1128/JCM.05053-11] [Cited by in Crossref: 64] [Cited by in F6Publishing: 39] [Article Influence: 5.8] [Reference Citation Analysis]
618 Chen K, Zhu Y, Zhang Y, Hamza T, Yu H, Saint Fleur A, Galen J, Yang Z, Feng H. A probiotic yeast-based immunotherapy against Clostridioides difficile infection. Sci Transl Med 2020;12:eaax4905. [PMID: 33115949 DOI: 10.1126/scitranslmed.aax4905] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
619 Liu YH, Chang YC, Chen LK, Su PA, Ko WC, Tsai YS, Chen YH, Lai HC, Wu CY, Hung YP, Tsai PJ. The ATP-P2X7 Signaling Axis Is an Essential Sentinel for Intracellular Clostridium difficile Pathogen-Induced Inflammasome Activation. Front Cell Infect Microbiol 2018;8:84. [PMID: 29616195 DOI: 10.3389/fcimb.2018.00084] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
620 Teng C, Reveles KR, Obodozie-Ofoegbu OO, Frei CR. Clostridium difficile Infection Risk with Important Antibiotic Classes: An Analysis of the FDA Adverse Event Reporting System. Int J Med Sci 2019;16:630-5. [PMID: 31217729 DOI: 10.7150/ijms.30739] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
621 Gil F, Calderón IL, Fuentes JA, Paredes-Sabja D. Clostridioides (Clostridium) difficile infection: current and alternative therapeutic strategies. Future Microbiol 2018;13:469-82. [PMID: 29464969 DOI: 10.2217/fmb-2017-0203] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
622 van Leeuwen HC, Bakker D, Steindel P, Kuijper EJ, Corver J. Clostridium difficile TcdC protein binds four-stranded G-quadruplex structures. Nucleic Acids Res 2013;41:2382-93. [PMID: 23303781 DOI: 10.1093/nar/gks1448] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
623 Adams HM, Li X, Mascio C, Chesnel L, Palmer KL. Mutations associated with reduced surotomycin susceptibility in Clostridium difficile and Enterococcus species. Antimicrob Agents Chemother 2015;59:4139-47. [PMID: 25941217 DOI: 10.1128/AAC.00526-15] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
624 Hemminger J, Balada-Llasat JM, Raczkowski M, Buckosh M, Pancholi P. Two case reports of Clostridium difficile bacteremia, one with the epidemic NAP-1 strain. Infection 2011;39:371-3. [PMID: 21509425 DOI: 10.1007/s15010-011-0115-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
625 Lawley TD, Walker AW. Intestinal colonization resistance. Immunology. 2013;138:1-11. [PMID: 23240815 DOI: 10.1111/j.1365-2567.2012.03616.x] [Cited by in Crossref: 307] [Cited by in F6Publishing: 259] [Article Influence: 34.1] [Reference Citation Analysis]
626 Colenutt C, Cutting SM. Use of Bacillus subtilis PXN21 spores for suppression of Clostridium difficile infection symptoms in a murine model. FEMS Microbiol Lett 2014;358:154-61. [PMID: 24828432 DOI: 10.1111/1574-6968.12468] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
627 Chen JW, Scaria J, Mao C, Sobral B, Zhang S, Lawley T, Chang YF. Proteomic comparison of historic and recently emerged hypervirulent Clostridium difficile strains. J Proteome Res 2013;12:1151-61. [PMID: 23298230 DOI: 10.1021/pr3007528] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
628 Balassiano IT, dos Santos-Filho J, Vital-Brazil JM, Nouér SA, Souza CR, Brazier JS, Ferreira Ede O, Domingues RM. Detection of cross-infection associated to a Brazilian PCR-ribotype of Clostridium difficile in a university hospital in Rio de Janeiro, Brazil. Antonie Van Leeuwenhoek 2011;99:249-55. [PMID: 20623188 DOI: 10.1007/s10482-010-9483-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
629 Beran V, Kuijper EJ, Harmanus C, Sanders IM, van Dorp SM, Knetsch CW, Janeckova J, Seidelova A, Barekova L, Tvrdik J, Chmelar D, Ciznar I. Molecular typing and antimicrobial susceptibility testing to six antimicrobials of Clostridium difficile isolates from three Czech hospitals in Eastern Bohemia in 2011–2012. Folia Microbiol 2017;62:445-51. [DOI: 10.1007/s12223-017-0515-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
630 Schoster A, Staempfli H. Epidemiology and Antimicrobial Resistance in Clostridium difficile With Special Reference to the Horse. Curr Clin Micro Rpt 2016;3:32-41. [DOI: 10.1007/s40588-016-0029-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
631 Qi H, Sun Q, Ma Y, Wu P, Wang J. Advantages of Lateral Flow Assays Based on Fluorescent Submicrospheres and Quantum Dots for Clostridium difficile Toxin B Detection. Toxins (Basel) 2020;12:E722. [PMID: 33227925 DOI: 10.3390/toxins12110722] [Reference Citation Analysis]
632 Gupta SB, Dubberke ER. Overview and changing epidemiology of Clostridium difficile infection. Seminars in Colon and Rectal Surgery 2014;25:118-23. [DOI: 10.1053/j.scrs.2014.05.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
633 Abbas A, Zackular JP. Microbe-microbe interactions during Clostridioides difficile infection. Curr Opin Microbiol 2020;53:19-25. [PMID: 32088581 DOI: 10.1016/j.mib.2020.01.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
634 Hasegawa M, Kamada N, Jiao Y, Liu MZ, Núñez G, Inohara N. Protective role of commensals against Clostridium difficile infection via an IL-1β-mediated positive-feedback loop. J Immunol 2012;189:3085-91. [PMID: 22888139 DOI: 10.4049/jimmunol.1200821] [Cited by in Crossref: 90] [Cited by in F6Publishing: 88] [Article Influence: 9.0] [Reference Citation Analysis]
635 Kachrimanidou M, Tzika E, Filioussis G. Clostridioides (Clostridium) Difficile in Food-Producing Animals, Horses and Household Pets: A Comprehensive Review. Microorganisms 2019;7:E667. [PMID: 31835413 DOI: 10.3390/microorganisms7120667] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
636 Willing SE, Richards EJ, Sempere L, Dale AG, Cutting SM, Fairweather NF. Increased toxin expression in a Clostridium difficile mfd mutant. BMC Microbiol 2015;15:280. [PMID: 26679502 DOI: 10.1186/s12866-015-0611-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
637 James GA, Chesnel L, Boegli L, deLancey Pulcini E, Fisher S, Stewart PS. Analysis of Clostridium difficile biofilms: imaging and antimicrobial treatment. J Antimicrob Chemother 2018;73:102-8. [PMID: 29029221 DOI: 10.1093/jac/dkx353] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
638 Alabdali YAJ, Oatley P, Kirk JA, Fagan RP. A cortex-specific penicillin-binding protein contributes to heat resistance in Clostridioides difficile spores. Anaerobe 2021;70:102379. [PMID: 33940167 DOI: 10.1016/j.anaerobe.2021.102379] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
639 Khoruts A, Weingarden AR. Emergence of fecal microbiota transplantation as an approach to repair disrupted microbial gut ecology. Immunol Lett. 2014;162:77-81. [PMID: 25106113 DOI: 10.1016/j.imlet.2014.07.016] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
640 Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, Littmann E, van den Brink MR, Jenq RR, Taur Y, Sander C, Cross JR, Toussaint NC, Xavier JB, Pamer EG. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517:205-208. [PMID: 25337874 DOI: 10.1038/nature13828] [Cited by in Crossref: 965] [Cited by in F6Publishing: 845] [Article Influence: 120.6] [Reference Citation Analysis]
641 Baliban SM, Michael A, Shammassian B, Mudakha S, Khan AS, Cocklin S, Zentner I, Latimer BP, Bouillaut L, Hunter M. An optimized, synthetic DNA vaccine encoding the toxin A and toxin B receptor binding domains of Clostridium difficile induces protective antibody responses in vivo. Infect Immun. 2014;82:4080-4091. [PMID: 25024365 DOI: 10.1128/iai.01950-14] [Cited by in Crossref: 23] [Cited by in F6Publishing: 10] [Article Influence: 2.9] [Reference Citation Analysis]
642 Zhao L, Luo Y, Bian Q, Wang L, Ye J, Song X, Jiang J, Tang YW, Wang X, Jin D. High-Level Resistance of Toxigenic Clostridioides difficile Genotype to Macrolide-Lincosamide- Streptogramin B in Community Acquired Patients in Eastern China. Infect Drug Resist 2020;13:171-81. [PMID: 32021331 DOI: 10.2147/IDR.S238916] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
643 Warn P, Thommes P, Sattar A, Corbett D, Flattery A, Zhang Z, Black T, Hernandez LD, Therien AG. Disease Progression and Resolution in Rodent Models of Clostridium difficile Infection and Impact of Antitoxin Antibodies and Vancomycin. Antimicrob Agents Chemother 2016;60:6471-82. [PMID: 27527088 DOI: 10.1128/AAC.00974-16] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
644 Ström J, Tham J, Månsson F, Ahl J, Savidge TC, Dann SM, Resman F. The Association between GABA-Modulators and Clostridium difficile Infection - A Matched Retrospective Case-Control Study. PLoS One 2017;12:e0169386. [PMID: 28060888 DOI: 10.1371/journal.pone.0169386] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
645 Papatheodorou P, Hornuss D, Nölke T, Hemmasi S, Castonguay J, Picchianti M, Aktories K. Clostridium difficile binary toxin CDT induces clustering of the lipolysis-stimulated lipoprotein receptor into lipid rafts. mBio 2013;4:e00244-13. [PMID: 23631918 DOI: 10.1128/mBio.00244-13] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
646 Knight DR, Squire MM, Riley TV. Nationwide surveillance study of Clostridium difficile in Australian neonatal pigs shows high prevalence and heterogeneity of PCR ribotypes. Appl Environ Microbiol 2015;81:119-23. [PMID: 25326297 DOI: 10.1128/AEM.03032-14] [Cited by in Crossref: 55] [Cited by in F6Publishing: 20] [Article Influence: 6.9] [Reference Citation Analysis]
647 Rea MC, Alemayehu D, Casey PG, O’Connor PM, Lawlor PG, Walsh M, Shanahan F, Kiely B, Ross RP, Hill C. Bioavailability of the anti-clostridial bacteriocin thuricin CD in gastrointestinal tract. Microbiology. 2014;160:439-445. [PMID: 24287693 DOI: 10.1099/mic.0.068767-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
648 Choi J, Yang F, Stepanauskas R, Cardenas E, Garoutte A, Williams R, Flater J, Tiedje JM, Hofmockel KS, Gelder B, Howe A. Strategies to improve reference databases for soil microbiomes. ISME J 2017;11:829-34. [PMID: 27935589 DOI: 10.1038/ismej.2016.168] [Cited by in Crossref: 55] [Cited by in F6Publishing: 34] [Article Influence: 9.2] [Reference Citation Analysis]
649 Sachsenheimer FE, Yang I, Zimmermann O, Wrede C, Müller LV, Gunka K, Groß U, Suerbaum S. Genomic and phenotypic diversity of Clostridium difficile during long-term sequential recurrences of infection. Int J Med Microbiol 2018;308:364-77. [PMID: 29490877 DOI: 10.1016/j.ijmm.2018.02.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
650 Krijger IM, Meerburg BG, Harmanus C, Burt SA. Clostridium difficile in wild rodents and insectivores in the Netherlands. Lett Appl Microbiol 2019;69:35-40. [PMID: 30958895 DOI: 10.1111/lam.13159] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
651 O’Donoghue C, Kyne L. Update on Clostridium difficile infection. Curr Opin Gastroenterol. 2011;27:38-47. [PMID: 21099432 DOI: 10.1097/mog.0b013e3283411634] [Cited by in Crossref: 47] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
652 Corver J, Cordo' V, van Leeuwen HC, Klychnikov OI, Hensbergen PJ. Covalent attachment and Pro-Pro endopeptidase (PPEP-1)-mediated release of Clostridium difficile cell surface proteins involved in adhesion. Mol Microbiol 2017;105:663-73. [PMID: 28636257 DOI: 10.1111/mmi.13736] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
653 Dang TH, de la Riva L, Fagan RP, Storck EM, Heal WP, Janoir C, Fairweather NF, Tate EW. Chemical probes of surface layer biogenesis in Clostridium difficile. ACS Chem Biol 2010;5:279-85. [PMID: 20067320 DOI: 10.1021/cb9002859] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 3.7] [Reference Citation Analysis]
654 Curran ET. Outbreak Column 20: are outbreaks man-made disasters that display intertwined errors of human judgement and behaviour? J Infect Prev 2017;18:199-206. [PMID: 28989528 DOI: 10.1177/1757177416683264] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
655 Burns DA, Heeg D, Cartman ST, Minton NP. Reconsidering the sporulation characteristics of hypervirulent Clostridium difficile BI/NAP1/027. PLoS One 2011;6:e24894. [PMID: 21949780 DOI: 10.1371/journal.pone.0024894] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 6.3] [Reference Citation Analysis]
656 Culligan EP, Sleator RD. Advances in the Microbiome: Applications to Clostridium difficile Infection. J Clin Med 2016;5:E83. [PMID: 27657145 DOI: 10.3390/jcm5090083] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
657 Pizarro-guajardo M, Olguín-araneda V, Barra-carrasco J, Brito-silva C, Sarker MR, Paredes-sabja D. Characterization of the collagen-like exosporium protein, BclA1, of Clostridium difficile spores. Anaerobe 2014;25:18-30. [DOI: 10.1016/j.anaerobe.2013.11.003] [Cited by in Crossref: 49] [Cited by in F6Publishing: 37] [Article Influence: 6.1] [Reference Citation Analysis]
658 Knight DR, Thean S, Putsathit P, Fenwick S, Riley TV. Cross-sectional study reveals high prevalence of Clostridium difficile non-PCR ribotype 078 strains in Australian veal calves at slaughter. Appl Environ Microbiol 2013;79:2630-5. [PMID: 23396338 DOI: 10.1128/AEM.03951-12] [Cited by in Crossref: 61] [Cited by in F6Publishing: 33] [Article Influence: 6.8] [Reference Citation Analysis]
659 Yakob L, Riley TV, Paterson DL, Clements AC. Clostridium difficile exposure as an insidious source of infection in healthcare settings: an epidemiological model. BMC Infect Dis 2013;13:376. [PMID: 23947736 DOI: 10.1186/1471-2334-13-376] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.3] [Reference Citation Analysis]
660 Valdés-Varela L, Hernández-Barranco AM, Ruas-Madiedo P, Gueimonde M. Effect of Bifidobacterium upon Clostridium difficile Growth and Toxicity When Co-cultured in Different Prebiotic Substrates. Front Microbiol 2016;7:738. [PMID: 27242753 DOI: 10.3389/fmicb.2016.00738] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 5.3] [Reference Citation Analysis]
661 Pizarro-Guajardo M, Díaz-González F, Álvarez-Lobos M, Paredes-Sabja D. Characterization of Chicken IgY Specific to Clostridium difficile R20291 Spores and the Effect of Oral Administration in Mouse Models of Initiation and Recurrent Disease. Front Cell Infect Microbiol 2017;7:365. [PMID: 28856119 DOI: 10.3389/fcimb.2017.00365] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
662 Luo P, Liu Y, Xia Y, Xu H, Xie G. Aptamer biosensor for sensitive detection of toxin A of Clostridium difficile using gold nanoparticles synthesized by Bacillus stearothermophilus. Biosens Bioelectron 2014;54:217-21. [PMID: 24287407 DOI: 10.1016/j.bios.2013.11.013] [Cited by in Crossref: 80] [Cited by in F6Publishing: 66] [Article Influence: 8.9] [Reference Citation Analysis]
663 Duclaux-Loras R, Berthiller J, Ferroni A, Chardot C, Goulet O, Lacaille F, Norsa L. Clostridium difficile: A Frequent Infection in Children After Intestinal Transplantation. Transplantation 2020;104:197-200. [PMID: 31205257 DOI: 10.1097/TP.0000000000002795] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
664 Danz HR, Lee S, Chapman-Bonofiglio SP, Ginese M, Beamer G, Girouard DJ, Tzipori S. The Impact of Actotoxumab Treatment of Gnotobiotic Piglets Infected With Different Clostridium difficile Isogenic Mutants. J Infect Dis 2020;221:276-84. [PMID: 31495879 DOI: 10.1093/infdis/jiz459] [Reference Citation Analysis]
665 Schneeberg A, Rupnik M, Neubauer H, Seyboldt C. Prevalence and distribution of Clostridium difficile PCR ribotypes in cats and dogs from animal shelters in Thuringia, Germany. Anaerobe 2012;18:484-8. [DOI: 10.1016/j.anaerobe.2012.08.002] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 4.5] [Reference Citation Analysis]
666 Lee STM, Kahn SA, Delmont TO, Shaiber A, Esen ÖC, Hubert NA, Morrison HG, Antonopoulos DA, Rubin DT, Eren AM. Tracking microbial colonization in fecal microbiota transplantation experiments via genome-resolved metagenomics. Microbiome 2017;5:50. [PMID: 28473000 DOI: 10.1186/s40168-017-0270-x] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 8.4] [Reference Citation Analysis]
667 Fimlaid KA, Bond JP, Schutz KC, Putnam EE, Leung JM, Lawley TD, Shen A. Global analysis of the sporulation pathway of Clostridium difficile. PLoS Genet 2013;9:e1003660. [PMID: 23950727 DOI: 10.1371/journal.pgen.1003660] [Cited by in Crossref: 147] [Cited by in F6Publishing: 116] [Article Influence: 16.3] [Reference Citation Analysis]
668 Schwartz R, Guichard A, Franc NC, Roy S, Bier E. A Drosophila Model for Clostridium difficile Toxin CDT Reveals Interactions with Multiple Effector Pathways. iScience 2020;23:100865. [PMID: 32058973 DOI: 10.1016/j.isci.2020.100865] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
669 Tanaka Y, Kimura S, Ishii Y, Tateda K. Equol inhibits growth and spore formation of Clostridioides difficile. J Appl Microbiol 2019;127:932-40. [PMID: 31211883 DOI: 10.1111/jam.14353] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
670 Tulli L, Marchi S, Petracca R, Shaw HA, Fairweather NF, Scarselli M, Soriani M, Leuzzi R. CbpA: a novel surface exposed adhesin of Clostridium difficile targeting human collagen. Cell Microbiol 2013;15:1674-87. [PMID: 23517059 DOI: 10.1111/cmi.12139] [Cited by in Crossref: 12] [Cited by in F6Publishing: 25] [Article Influence: 1.3] [Reference Citation Analysis]
671 Hussack G, Tanha J. Toxin-specific antibodies for the treatment of Clostridium difficile: current status and future perspectives. Toxins (Basel) 2010;2:998-1018. [PMID: 22069622 DOI: 10.3390/toxins2050998] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 2.3] [Reference Citation Analysis]
672 Valdés-Varela L, Gueimonde M, Ruas-Madiedo P. Probiotics for Prevention and Treatment of Clostridium difficile Infection. Adv Exp Med Biol 2018;1050:161-76. [PMID: 29383669 DOI: 10.1007/978-3-319-72799-8_10] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
673 Reveles KR, Mortensen EM, Koeller JM, Lawson KA, Pugh MJV, Rumbellow SA, Argamany JR, Frei CR. Derivation and Validation of a Clostridium difficile Infection Recurrence Prediction Rule in a National Cohort of Veterans. Pharmacotherapy 2018;38:349-56. [PMID: 29393522 DOI: 10.1002/phar.2088] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
674 Bintz J, Lenhart S, Lanzas C. Antimicrobial Stewardship and Environmental Decontamination for the Control of Clostridium difficile Transmission in Healthcare Settings. Bull Math Biol 2017;79:36-62. [PMID: 27826877 DOI: 10.1007/s11538-016-0224-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
675 Troha K, Ayres JS. Metabolic Adaptations to Infections at the Organismal Level. Trends Immunol 2020;41:113-25. [PMID: 31959515 DOI: 10.1016/j.it.2019.12.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 7.5] [Reference Citation Analysis]
676 Patel NC, Griesbach CL, DiBaise JK, Orenstein R. Fecal microbiota transplant for recurrent Clostridium difficile infection: Mayo Clinic in Arizona experience. Mayo Clin Proc. 2013;88:799-805. [PMID: 23910407 DOI: 10.1016/j.mayocp.2013.04.022] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
677 Okada Y, Kaku N, Kosai K, Uno N, Morinaga Y, Hasegawa H, Yanagihara K. Molecular epidemiology of Clostridioides difficile and risk factors for the detection of toxin gene-positive strains. J Infect Chemother 2019;25:262-6. [PMID: 30642771 DOI: 10.1016/j.jiac.2018.12.004] [Reference Citation Analysis]
678 Babakhani F, Gomez A, Robert N, Sears P. Postantibiotic effect of fidaxomicin and its major metabolite, OP-1118, against Clostridium difficile. Antimicrob Agents Chemother. 2011;55:4427-4429. [PMID: 21709084 DOI: 10.1128/aac.00104-11] [Cited by in Crossref: 42] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
679 Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 2016;14:273-287. [PMID: 26972811 DOI: 10.1038/nrmicro.2016.17] [Cited by in Crossref: 341] [Cited by in F6Publishing: 298] [Article Influence: 56.8] [Reference Citation Analysis]