BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018;17:865-86. [PMID: 30393373 DOI: 10.1038/nrd.2018.174] [Cited by in Crossref: 211] [Cited by in F6Publishing: 203] [Article Influence: 52.8] [Reference Citation Analysis]
Number Citing Articles
1 Koumpoura CL, Robert A, Athanassopoulos CM, Baltas M. Antimalarial Inhibitors Targeting Epigenetics or Mitochondria in Plasmodium falciparum: Recent Survey upon Synthesis and Biological Evaluation of Potential Drugs against Malaria. Molecules 2021;26:5711. [PMID: 34577183 DOI: 10.3390/molecules26185711] [Reference Citation Analysis]
2 Jiang Z, Yuan B, Qiu N, Wang Y, Sun L, Wei Z, Li Y, Zheng J, Jin Y, Li Y, Du S, Li J, Wu A. Manganese-Zeolitic Imidazolate Frameworks-90 with High Blood Circulation Stability for MRI-Guided Tumor Therapy. Nanomicro Lett 2019;11:61. [PMID: 34138009 DOI: 10.1007/s40820-019-0292-y] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
3 Bozi LHM, Campos JC, Zambelli VO, Ferreira ND, Ferreira JCB. Mitochondrially-targeted treatment strategies. Mol Aspects Med 2020;71:100836. [PMID: 31866004 DOI: 10.1016/j.mam.2019.100836] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
4 Liew SS, Qin X, Zhou J, Li L, Huang W, Yao SQ. Smart Design of Nanomaterials for Mitochondria-Targeted Nanotherapeutics. Angew Chem Int Ed Engl 2021;60:2232-56. [PMID: 32128948 DOI: 10.1002/anie.201915826] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
5 Shueng P, Yu L, Hou H, Chiu H, Lo C. Charge Conversion Polymer–Liposome Complexes to Overcome the Limitations of Cationic Liposomes in Mitochondrial-Targeting Drug Delivery. IJMS 2022;23:3080. [DOI: 10.3390/ijms23063080] [Reference Citation Analysis]
6 Lu P, Wong SY, Wu L, Lin D. Carotenoid metabolism in mitochondrial function. Food Quality and Safety 2020;4:115-22. [DOI: 10.1093/fqsafe/fyaa023] [Reference Citation Analysis]
7 Duan M, Gao P, Chen SX, Petr N, Yin K, Zhu X. Sphingosine-1-phosphate in mitochondrial function and metabolic diseases. Obes Rev 2022;:e13426. [PMID: 35122459 DOI: 10.1111/obr.13426] [Reference Citation Analysis]
8 Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Molecular Cell 2022;82:348-88. [DOI: 10.1016/j.molcel.2021.12.026] [Reference Citation Analysis]
9 Ibhazehiebo K, Rho JM, Kurrasch DM. Metabolism-based drug discovery in zebrafish: An emerging strategy to uncover new anti-seizure therapies. Neuropharmacology 2020;167:107988. [PMID: 32070912 DOI: 10.1016/j.neuropharm.2020.107988] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
10 Caldeira DAF, de Oliveira DF, Cavalcanti-de-Albuquerque JP, Nascimento JHM, Zin WA, Maciel L. Isolation of Mitochondria From Fresh Mice Lung Tissue. Front Physiol 2021;12:748261. [PMID: 34916953 DOI: 10.3389/fphys.2021.748261] [Reference Citation Analysis]
11 Gao Y, Kim S, Lee YI, Lee J. Cellular Stress-Modulating Drugs Can Potentially Be Identified by in Silico Screening with Connectivity Map (CMap). Int J Mol Sci 2019;20:E5601. [PMID: 31717493 DOI: 10.3390/ijms20225601] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
12 Qi H, Xu G, Peng XL, Li X, Shuai J, Xu R. Roles of four feedback loops in mitochondrial permeability transition pore opening induced by Ca^{2+} and reactive oxygen species. Phys Rev E 2020;102:062422. [PMID: 33466063 DOI: 10.1103/PhysRevE.102.062422] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Zhang S, Chen H, Wang L, Liu C, Liu L, Sun Y, Shen XC. A simple strategy for simultaneously enhancing photostability and mitochondrial-targeting stability of near-infrared fluorophores for multimodal imaging-guided photothermal therapy. J Mater Chem B 2021;9:1089-95. [PMID: 33427258 DOI: 10.1039/d0tb02674c] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Janssen JJE, Grefte S, Keijer J, de Boer VCJ. Mito-Nuclear Communication by Mitochondrial Metabolites and Its Regulation by B-Vitamins. Front Physiol 2019;10:78. [PMID: 30809153 DOI: 10.3389/fphys.2019.00078] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
15 Gao Y, Tong H, Li J, Li J, Huang D, Shi J, Xia B. Mitochondria-Targeted Nanomedicine for Enhanced Efficacy of Cancer Therapy. Front Bioeng Biotechnol 2021;9:720508. [PMID: 34490227 DOI: 10.3389/fbioe.2021.720508] [Reference Citation Analysis]
16 Philp AM, Saner NJ, Lazarou M, Ganley IG, Philp A. The influence of aerobic exercise on mitochondrial quality control in skeletal muscle. J Physiol 2021;599:3463-76. [PMID: 33369731 DOI: 10.1113/JP279411] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
17 Fang Y, Wang X, Yang D, Lu Y, Wei G, Yu W, Liu X, Zheng Q, Ying J, Hua F. Relieving Cellular Energy Stress in Aging, Neurodegenerative, and Metabolic Diseases, SIRT1 as a Therapeutic and Promising Node. Front Aging Neurosci 2021;13:738686. [PMID: 34616289 DOI: 10.3389/fnagi.2021.738686] [Reference Citation Analysis]
18 Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2021:cvab142. [PMID: 33881501 DOI: 10.1093/cvr/cvab142] [Reference Citation Analysis]
19 Sopha P, Phutubtim N, Chantrathonkul B, Ploypradith P, Ruchirawat S, Chittchang M. Roles of autophagy in relation to mitochondrial stress responses of HeLa cells to lamellarin cytotoxicity. Toxicology 2021;462:152963. [PMID: 34560126 DOI: 10.1016/j.tox.2021.152963] [Reference Citation Analysis]
20 Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, Sorrentino V, Millet GP. Boosting mitochondrial health to counteract neurodegeneration. Progress in Neurobiology 2022. [DOI: 10.1016/j.pneurobio.2022.102289] [Reference Citation Analysis]
21 Wang J, Dang MN, Day ES. Inhibition of Wnt signaling by Frizzled7 antibody-coated nanoshells sensitizes triple-negative breast cancer cells to the autophagy regulator chloroquine. Nano Res 2020;13:1693-703. [PMID: 33304449 DOI: 10.1007/s12274-020-2795-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 Dai SH, Wu QC, Zhu RR, Wan XM, Zhou XL. Notch1 protects against myocardial ischaemia-reperfusion injury via regulating mitochondrial fusion and function. J Cell Mol Med 2020;24:3183-91. [PMID: 31975567 DOI: 10.1111/jcmm.14992] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
23 Rigotto G, Basso E. Mitochondrial Dysfunctions: A Thread Sewing Together Alzheimer's Disease, Diabetes, and Obesity. Oxid Med Cell Longev 2019;2019:7210892. [PMID: 31316720 DOI: 10.1155/2019/7210892] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
24 Aventaggiato M, Vernucci E, Barreca F, Russo MA, Tafani M. Sirtuins' control of autophagy and mitophagy in cancer. Pharmacol Ther 2021;221:107748. [PMID: 33245993 DOI: 10.1016/j.pharmthera.2020.107748] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
25 Tang YN, Zhang GF, Chen HL, Sun XP, Qin WW, Shi F, Sun LX, Xu XN, Wang MS. Selective brain hypothermia-induced neuroprotection against focal cerebral ischemia/reperfusion injury is associated with Fis1 inhibition. Neural Regen Res 2020;15:903-11. [PMID: 31719256 DOI: 10.4103/1673-5374.268973] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
26 Qu C, Zhang S, Li Y, Wang Y, Peppelenbosch MP, Pan Q. Mitochondria in the biology, pathogenesis, and treatment of hepatitis virus infections. Rev Med Virol 2019;29:e2075. [PMID: 31322806 DOI: 10.1002/rmv.2075] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
27 Flannery PJ, Trushina E. Mitochondrial dynamics and transport in Alzheimer's disease. Mol Cell Neurosci 2019;98:109-20. [PMID: 31216425 DOI: 10.1016/j.mcn.2019.06.009] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 17.0] [Reference Citation Analysis]
28 Tan YB, Pastukh VM, Gorodnya OM, Mulekar MS, Simmons JD, Machuca TN, Beaver TM, Wilson GL, Gillespie MN. Enhanced Mitochondrial DNA Repair Resuscitates Transplantable Lungs Donated After Circulatory Death. J Surg Res 2020;245:273-80. [PMID: 31421373 DOI: 10.1016/j.jss.2019.07.057] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
29 Krauss R, Bosanac T, Devraj R, Engber T, Hughes RO. Axons Matter: The Promise of Treating Neurodegenerative Disorders by Targeting SARM1-Mediated Axonal Degeneration. Trends in Pharmacological Sciences 2020;41:281-93. [DOI: 10.1016/j.tips.2020.01.006] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
30 Misrani A, Tabassum S, Yang L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer's Disease. Front Aging Neurosci 2021;13:617588. [PMID: 33679375 DOI: 10.3389/fnagi.2021.617588] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
31 Chen J, He HJ, Ye Q, Feng F, Wang WW, Gu Y, Han R, Xie C. Defective Autophagy and Mitophagy in Alzheimer's Disease: Mechanisms and Translational Implications. Mol Neurobiol 2021. [PMID: 34279771 DOI: 10.1007/s12035-021-02487-7] [Reference Citation Analysis]
32 Palikaras K, Tavernarakis N. Regulation and roles of mitophagy at synapses. Mech Ageing Dev 2020;187:111216. [PMID: 32084458 DOI: 10.1016/j.mad.2020.111216] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
33 Duan C, Kuang L, Xiang X, Zhang J, Zhu Y, Wu Y, Yan Q, Liu L, Li T. Activated Drp1-mediated mitochondrial ROS influence the gut microbiome and intestinal barrier after hemorrhagic shock. Aging (Albany NY) 2020;12:1397-416. [PMID: 31954373 DOI: 10.18632/aging.102690] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
34 Chai X, Fan Z, Yu MM, Zhao J, Li L. A Redox-Activatable DNA Nanodevice for Spatially-Selective, AND-Gated Imaging of ATP and Glutathione in Mitochondria. Nano Lett 2021;21:10047-53. [PMID: 34807619 DOI: 10.1021/acs.nanolett.1c03732] [Reference Citation Analysis]
35 Wu Q, Mao Z, Liu J, Huang J, Wang N. Ligustilide Attenuates Ischemia Reperfusion-Induced Hippocampal Neuronal Apoptosis via Activating the PI3K/Akt Pathway. Front Pharmacol 2020;11:979. [PMID: 32676033 DOI: 10.3389/fphar.2020.00979] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
36 Ji C, Si J, Xu Y, Zhang W, Yang Y, He X, Xu H, Mou X, Ren H, Guo H. Mitochondria-targeted and ultrasound-responsive nanoparticles for oxygen and nitric oxide codelivery to reverse immunosuppression and enhance sonodynamic therapy for immune activation. Theranostics 2021;11:8587-604. [PMID: 34373760 DOI: 10.7150/thno.62572] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
37 An H, Zhou B, Ji X. Mitochondrial quality control in acute ischemic stroke. J Cereb Blood Flow Metab 2021;:271678X211046992. [PMID: 34551609 DOI: 10.1177/0271678X211046992] [Reference Citation Analysis]
38 Luciano-Mateo F, Cabré N, Fernández-Arroyo S, Baiges-Gaya G, Hernández-Aguilera A, Rodríguez-Tomàs E, Muñoz-Pinedo C, Menéndez JA, Camps J, Joven J. Chemokine C-C motif ligand 2 overexpression drives tissue-specific metabolic responses in the liver and muscle of mice. Sci Rep 2020;10:11954. [PMID: 32686726 DOI: 10.1038/s41598-020-68769-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Rumyantseva A, Popovic M, Trifunovic A. CLPP deficiency ameliorates neurodegeneration caused by impaired mitochondrial protein synthesis. Brain 2022:awab303. [PMID: 35240691 DOI: 10.1093/brain/awab303] [Reference Citation Analysis]
40 Duan J, Chen Z, Wu Y, Zhu B, Yang L, Yang C. Metabolic remodeling induced by mitokines in heart failure. Aging (Albany NY) 2019;11:7307-27. [PMID: 31498116 DOI: 10.18632/aging.102247] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
41 Saeb-Parsy K, Martin JL, Summers DM, Watson CJE, Krieg T, Murphy MP. Mitochondria as Therapeutic Targets in Transplantation. Trends Mol Med 2021;27:185-98. [PMID: 32952044 DOI: 10.1016/j.molmed.2020.08.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Chen S, Liu S, Wang J, Wu Q, Wang A, Guan H, Zhang Q, Zhang D, Wang X, Song H, Qin J, Zou J, Jiang Z, Ouyang S, Feng XH, Liang T, Xu P. TBK1-Mediated DRP1 Targeting Confers Nucleic Acid Sensing to Reprogram Mitochondrial Dynamics and Physiology. Mol Cell 2020;80:810-827.e7. [PMID: 33171123 DOI: 10.1016/j.molcel.2020.10.018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
43 Liew SS, Zhou J, Li L, Yao SQ. Co-delivery of proteins and small molecule drugs for mitochondria-targeted combination therapy. Chem Commun 2021;57:3215-8. [DOI: 10.1039/d0cc08020a] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Vilella R, Sgarbi G, Naponelli V, Savi M, Bocchi L, Liuzzi F, Righetti R, Quaini F, Frati C, Bettuzzi S, Solaini G, Stilli D, Rizzi F, Baracca A. Effects of Standardized Green Tea Extract and Its Main Component, EGCG, on Mitochondrial Function and Contractile Performance of Healthy Rat Cardiomyocytes. Nutrients 2020;12:E2949. [PMID: 32993022 DOI: 10.3390/nu12102949] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Deng Y, Zhan W, Liang G. Intracellular Self-Assembly of Peptide Conjugates for Tumor Imaging and Therapy. Adv Healthc Mater 2021;10:e2001211. [PMID: 32902191 DOI: 10.1002/adhm.202001211] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 24.0] [Reference Citation Analysis]
46 Song Z, Gao C, Jiang Q, Xu J, Xiong L, Liu K, Sun D, Li H, Chen L. Diterpenoid alkaloids from Delphinium forrestii var. viride and their anti-inflammation activity. Phytochemistry 2021;192:112971. [PMID: 34628107 DOI: 10.1016/j.phytochem.2021.112971] [Reference Citation Analysis]
47 Di Nottia M, Verrigni D, Torraco A, Rizza T, Bertini E, Carrozzo R. Mitochondrial Dynamics: Molecular Mechanisms, Related Primary Mitochondrial Disorders and Therapeutic Approaches. Genes (Basel) 2021;12:247. [PMID: 33578638 DOI: 10.3390/genes12020247] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020;19:609-33. [PMID: 32709961 DOI: 10.1038/s41573-020-0072-x] [Cited by in Crossref: 73] [Cited by in F6Publishing: 71] [Article Influence: 36.5] [Reference Citation Analysis]
49 Qi G, Mi Y, Yin F. Cellular Specificity and Inter-cellular Coordination in the Brain Bioenergetic System: Implications for Aging and Neurodegeneration. Front Physiol 2019;10:1531. [PMID: 31969828 DOI: 10.3389/fphys.2019.01531] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
50 Wong JH, Barron AM, Abdullah JM. Mitoprotective Effects of Centella asiatica (L.) Urb.: Anti-Inflammatory and Neuroprotective Opportunities in Neurodegenerative Disease. Front Pharmacol 2021;12:687935. [PMID: 34267660 DOI: 10.3389/fphar.2021.687935] [Reference Citation Analysis]
51 Liao X, Lv X, Zhang Y, Han Y, Li J, Zeng J, Tang D, Meng J, Yuan X, Peng Z, Tao L, Xie Y, Durazzo A. Fluorofenidone Inhibits UUO/IRI-Induced Renal Fibrosis by Reducing Mitochondrial Damage. Oxidative Medicine and Cellular Longevity 2022;2022:1-15. [DOI: 10.1155/2022/2453617] [Reference Citation Analysis]
52 Williamson J, Hughes CM, Cobley JN, Davison GW. The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage. Redox Biol 2020;36:101673. [PMID: 32810739 DOI: 10.1016/j.redox.2020.101673] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
53 Huang T, Zhang T, Gao J. Targeted mitochondrial delivery: A therapeutic new era for disease treatment. Journal of Controlled Release 2022;343:89-106. [DOI: 10.1016/j.jconrel.2022.01.025] [Reference Citation Analysis]
54 Farmoudeh A, enayatifard R, Saeedi M, Talavaki F, Ghasemi M, Akbari J, Nokhodchi A. Methylene blue loaded solid lipid nanoparticles: Preparation, optimization, and in-vivo burn healing assessment. Journal of Drug Delivery Science and Technology 2022;70:103209. [DOI: 10.1016/j.jddst.2022.103209] [Reference Citation Analysis]
55 Chidambaram SB, Ray B, Bhat A, Mahalakshmi AM, Sunanda T, Jagadeeswari P, Gowrav MP, Chandra R, Sakharkar MK. Mitochondria-targeted drug delivery in neurodegenerative diseases. Delivery of Drugs. Elsevier; 2020. pp. 97-117. [DOI: 10.1016/b978-0-12-817776-1.00005-5] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Su X, Zhou M, Li Y, An N, Yang F, Zhang G, Xu L, Chen H, Wu H, Xing Y, Li T. Mitochondrial Damage in Myocardial Ischemia/Reperfusion Injury and Application of Natural Plant Products. Oxidative Medicine and Cellular Longevity 2022;2022:1-19. [DOI: 10.1155/2022/8726564] [Reference Citation Analysis]
57 Pagano G, Pallardó FV, Lyakhovich A, Tiano L, Trifuoggi M. Mitigating the pro-oxidant state and melanogenesis of Retinitis pigmentosa: by counteracting mitochondrial dysfunction. Cell Mol Life Sci 2021;78:7491-503. [PMID: 34718826 DOI: 10.1007/s00018-021-04007-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Toglia P, Ullah G. Mitochondrial dysfunction and role in spreading depolarization and seizure. J Comput Neurosci 2019;47:91-108. [PMID: 31506806 DOI: 10.1007/s10827-019-00724-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
59 Liang Z, Currais A, Soriano-Castell D, Schubert D, Maher P. Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. Pharmacol Ther 2021;221:107749. [PMID: 33227325 DOI: 10.1016/j.pharmthera.2020.107749] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
60 Doulamis IP, McCully JD. Mitochondrial Transplantation for Ischemia Reperfusion Injury. Methods Mol Biol 2021;2277:15-37. [PMID: 34080142 DOI: 10.1007/978-1-0716-1270-5_2] [Reference Citation Analysis]
61 Adhikari A, Mondal S, Darbar S, Kumar Pal S. Role of Nanomedicine in Redox Mediated Healing at Molecular Level. Biomol Concepts 2019;10:160-74. [PMID: 31661433 DOI: 10.1515/bmc-2019-0019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
62 Wu Q, Liu J, Mao Z, Tian L, Wang N, Wang G, Wang Y, Seto S. Ligustilide attenuates ischemic stroke injury by promoting Drp1-mediated mitochondrial fission via activation of AMPK. Phytomedicine 2021;95:153884. [PMID: 34929562 DOI: 10.1016/j.phymed.2021.153884] [Reference Citation Analysis]
63 Salvetti M, Battaglia MA, Di Filippo M, Mancardi GL, Mancuso M, Patti F, Sormani MP, Zaratin P. An "all-wheel drive" proposal to accelerate clinical research in common and rare neurological diseases. Neurol Sci 2020;41:789-93. [PMID: 31858329 DOI: 10.1007/s10072-019-04189-4] [Reference Citation Analysis]
64 Jain S, Kaur J, Prasad S, Roy I. Nucleic acid therapeutics: a focus on the development of aptamers. Expert Opin Drug Discov 2021;16:255-74. [PMID: 32990095 DOI: 10.1080/17460441.2021.1829587] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Cheng W, Wang L, Yang T, Wu A, Wang B, Li T, Lu Z, Yang J, Li Y, Jiang Y, Wu X, Meng H, Zhao M. Qiliqiangxin Capsules Optimize Cardiac Metabolism Flexibility in Rats With Heart Failure After Myocardial Infarction. Front Physiol 2020;11:805. [PMID: 32848816 DOI: 10.3389/fphys.2020.00805] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Huang Q, Gao S, Zhao D, Li X. Review of ginsenosides targeting mitochondrial function to treat multiple disorders: Current status and perspectives. J Ginseng Res 2021;45:371-9. [PMID: 34025130 DOI: 10.1016/j.jgr.2020.12.004] [Reference Citation Analysis]
67 Zeng M, Zhou H, He Y, Wang Z, Shao C, Yin J, Du H, Yang J, Wan H. Danhong injection alleviates cerebral ischemia/reperfusion injury by improving intracellular energy metabolism coupling in the ischemic penumbra. Biomed Pharmacother 2021;140:111771. [PMID: 34058441 DOI: 10.1016/j.biopha.2021.111771] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Berry BJ, Trewin AJ, Milliken AS, Baldzizhar A, Amitrano AM, Lim Y, Kim M, Wojtovich AP. Optogenetic control of mitochondrial protonmotive force to impact cellular stress resistance. EMBO Rep 2020;21:e49113. [PMID: 32043300 DOI: 10.15252/embr.201949113] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
69 Poudel SB, Dixit M, Neginskaya M, Nagaraj K, Pavlov E, Werner H, Yakar S. Effects of GH/IGF on the Aging Mitochondria. Cells 2020;9:E1384. [PMID: 32498386 DOI: 10.3390/cells9061384] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
70 Ryan F, Khoshnam SE, Khodagholi F, Ashabi G, Ahmadiani A. How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia. Metab Brain Dis 2021. [PMID: 34173922 DOI: 10.1007/s11011-021-00770-z] [Reference Citation Analysis]
71 Huwaimel BI, Bhakta M, Kulkarni CA, Milliken AS, Wang F, Peng A, Brookes PS, Trippier PC. Discovery of Halogenated Benzothiadiazine Derivatives with Anticancer Activity*. ChemMedChem 2021;16:1143-62. [PMID: 33331124 DOI: 10.1002/cmdc.202000729] [Reference Citation Analysis]
72 Fock EM, Parnova RG. Protective Effect of Mitochondria-Targeted Antioxidants against Inflammatory Response to Lipopolysaccharide Challenge: A Review. Pharmaceutics 2021;13:144. [PMID: 33499252 DOI: 10.3390/pharmaceutics13020144] [Reference Citation Analysis]
73 Kalyanaraman B. Reactive oxygen species, proinflammatory and immunosuppressive mediators induced in COVID-19: overlapping biology with cancer. RSC Chem Biol 2021;2:1402-14. [PMID: 34704045 DOI: 10.1039/d1cb00042j] [Reference Citation Analysis]
74 Lee AR, Moon DK, Siregar A, Moon SY, Jeon RH, Son YB, Kim BG, Hah YS, Hwang SC, Byun JH, Woo DK. Involvement of mitochondrial biogenesis during the differentiation of human periosteum-derived mesenchymal stem cells into adipocytes, chondrocytes and osteocytes. Arch Pharm Res 2019;42:1052-62. [PMID: 31802425 DOI: 10.1007/s12272-019-01198-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
75 Wacquier B, Combettes L, Dupont G. Cytoplasmic and Mitochondrial Calcium Signaling: A Two-Way Relationship. Cold Spring Harb Perspect Biol 2019;11:a035139. [PMID: 31110132 DOI: 10.1101/cshperspect.a035139] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
76 Shoshan-Barmatz V, Anand U, Nahon-Crystal E, Di Carlo M, Shteinfer-Kuzmine A. Adverse Effects of Metformin From Diabetes to COVID-19, Cancer, Neurodegenerative Diseases, and Aging: Is VDAC1 a Common Target? Front Physiol 2021;12:730048. [PMID: 34671273 DOI: 10.3389/fphys.2021.730048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Dromard Y, Arango-Lievano M, Fontanaud P, Tricaud N, Jeanneteau F. Dual imaging of dendritic spines and mitochondria in vivo reveals hotspots of plasticity and metabolic adaptation to stress. Neurobiol Stress 2021;15:100402. [PMID: 34611532 DOI: 10.1016/j.ynstr.2021.100402] [Reference Citation Analysis]
78 Zheng A, Li H, Feng Z, Liu J. Integrative Analyses Reveal Tstd1 as a Potential Modulator of HDL Cholesterol and Mitochondrial Function in Mice. Cells 2021;10:2976. [PMID: 34831199 DOI: 10.3390/cells10112976] [Reference Citation Analysis]
79 Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S, Sperlongano P, Irace C, Caraglia M, Misso G. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol. 2020;98:139-153. [PMID: 31154010 DOI: 10.1016/j.semcdb.2019.05.022] [Cited by in Crossref: 56] [Cited by in F6Publishing: 65] [Article Influence: 18.7] [Reference Citation Analysis]
80 Choi A, Barrientos A. Sucrose Gradient Sedimentation Analysis of Mitochondrial Ribosomes. Methods Mol Biol 2021;2192:211-26. [PMID: 33230776 DOI: 10.1007/978-1-0716-0834-0_16] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
81 Hossain M, Das U, Dimmock JR. Recent advances in α,β-unsaturated carbonyl compounds as mitochondrial toxins. European Journal of Medicinal Chemistry 2019;183:111687. [DOI: 10.1016/j.ejmech.2019.111687] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
82 Kulkarni AS, Gubbi S, Barzilai N. Benefits of Metformin in Attenuating the Hallmarks of Aging. Cell Metab 2020;32:15-30. [PMID: 32333835 DOI: 10.1016/j.cmet.2020.04.001] [Cited by in Crossref: 79] [Cited by in F6Publishing: 75] [Article Influence: 39.5] [Reference Citation Analysis]
83 Tang Y, Wang L, Yi T, Xu J, Wang J, Qin JJ, Chen Q, Yip KM, Pan Y, Hong P, Lu Y, Shen HM, Chen HB. Synergistic effects of autophagy/mitophagy inhibitors and magnolol promote apoptosis and antitumor efficacy. Acta Pharm Sin B 2021;11:3966-82. [PMID: 35024319 DOI: 10.1016/j.apsb.2021.06.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
84 Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B 2020;10:1347-59. [PMID: 32963936 DOI: 10.1016/j.apsb.2020.01.015] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 17.0] [Reference Citation Analysis]
85 Prag HA, Pala L, Kula-Alwar D, Mulvey JF, Luping D, Beach TE, Booty LM, Hall AR, Logan A, Sauchanka V, Caldwell ST, Robb EL, James AM, Xu Z, Saeb-Parsy K, Hartley RC, Murphy MP, Krieg T. Ester Prodrugs of Malonate with Enhanced Intracellular Delivery Protect Against Cardiac Ischemia-Reperfusion Injury In Vivo. Cardiovasc Drugs Ther 2020. [PMID: 32648168 DOI: 10.1007/s10557-020-07033-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
86 Chiu HY, Tay EXY, Ong DST, Taneja R. Mitochondrial Dysfunction at the Center of Cancer Therapy. Antioxid Redox Signal 2020;32:309-30. [PMID: 31578870 DOI: 10.1089/ars.2019.7898] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
87 Ranjan K. Intestinal Immune Homeostasis and Inflammatory Bowel Disease: A Perspective on Intracellular Response Mechanisms. GastrointestDisord 2020;2:246-66. [DOI: 10.3390/gidisord2030024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Matula Z, Mikala G, Lukácsi S, Matkó J, Kovács T, Monostori É, Uher F, Vályi-Nagy I. Stromal Cells Serve Drug Resistance for Multiple Myeloma via Mitochondrial Transfer: A Study on Primary Myeloma and Stromal Cells. Cancers (Basel) 2021;13:3461. [PMID: 34298674 DOI: 10.3390/cancers13143461] [Reference Citation Analysis]
89 Berry BJ, Wojtovich AP. Mitochondrial light switches: optogenetic approaches to control metabolism. FEBS J 2020;287:4544-56. [PMID: 32459870 DOI: 10.1111/febs.15424] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
90 Kim S, Nam HY, Lee J, Seo J. Mitochondrion-Targeting Peptides and Peptidomimetics: Recent Progress and Design Principles. Biochemistry 2020;59:270-84. [PMID: 31696703 DOI: 10.1021/acs.biochem.9b00857] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
91 Bugger H, Pfeil K. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis 2020;1866:165768. [PMID: 32173461 DOI: 10.1016/j.bbadis.2020.165768] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
92 Dejakaisaya H, Harutyunyan A, Kwan P, Jones NC. Altered metabolic pathways in a transgenic mouse model suggest mechanistic role of amyloid precursor protein overexpression in Alzheimer's disease. Metabolomics 2021;17:42. [PMID: 33876332 DOI: 10.1007/s11306-021-01793-4] [Reference Citation Analysis]
93 Kulawiak B, Bednarczyk P, Szewczyk A. Multidimensional Regulation of Cardiac Mitochondrial Potassium Channels. Cells 2021;10:1554. [PMID: 34205420 DOI: 10.3390/cells10061554] [Reference Citation Analysis]
94 Lee C, Nam JS, Lee CG, Park M, Yoo CM, Rhee HW, Seo JK, Kwon TH. Analysing the mechanism of mitochondrial oxidation-induced cell death using a multifunctional iridium(III) photosensitiser. Nat Commun 2021;12:26. [PMID: 33397915 DOI: 10.1038/s41467-020-20210-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Zeng M, He Y, Du H, Yang J, Wan H. Output Regulation and Function Optimization of Mitochondria in Eukaryotes. Front Cell Dev Biol 2020;8:598112. [PMID: 33330486 DOI: 10.3389/fcell.2020.598112] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
96 Haam S, Noda K, Philips BJ, Harano T, Sanchez PG, Shigemura N. Cyclosporin A Administration During Ex Vivo Lung Perfusion Preserves Lung Grafts in Rat Transplant Model. Transplantation 2020;104:e252-9. [PMID: 32217944 DOI: 10.1097/TP.0000000000003237] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
97 Vecoli C, Borghini A, Pulignani S, Mercuri A, Turchi S, Picano E, Andreassi MG. Independent and Combined Effects of Telomere Shortening and mtDNA4977 Deletion on Long-term Outcomes of Patients with Coronary Artery Disease. Int J Mol Sci 2019;20:E5508. [PMID: 31694204 DOI: 10.3390/ijms20215508] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
98 Lin KL, Chen SD, Lin KJ, Liou CW, Chuang YC, Wang PW, Chuang JH, Lin TK. Quality Matters? The Involvement of Mitochondrial Quality Control in Cardiovascular Disease. Front Cell Dev Biol 2021;9:636295. [PMID: 33829016 DOI: 10.3389/fcell.2021.636295] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
99 Rosenkranz SC, Shaposhnykov AA, Träger S, Engler JB, Witte ME, Roth V, Vieira V, Paauw N, Bauer S, Schwencke-Westphal C, Schubert C, Bal LC, Schattling B, Pless O, van Horssen J, Freichel M, Friese MA. Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis. Elife 2021;10:e61798. [PMID: 33565962 DOI: 10.7554/eLife.61798] [Reference Citation Analysis]
100 Rodríguez M, Valez V, Cimarra C, Blasina F, Radi R. Hypoxic-Ischemic Encephalopathy and Mitochondrial Dysfunction: Facts, Unknowns, and Challenges. Antioxidants & Redox Signaling 2020;33:247-62. [DOI: 10.1089/ars.2020.8093] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
101 James R, Chaytow H, Ledahawsky LM, Gillingwater TH. Revisiting the role of mitochondria in spinal muscular atrophy. Cell Mol Life Sci 2021;78:4785-804. [PMID: 33821292 DOI: 10.1007/s00018-021-03819-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Evinova A, Cizmarova B, Hatokova Z, Racay P. High-Resolution Respirometry in Assessment of Mitochondrial Function in Neuroblastoma SH-SY5Y Intact Cells. J Membr Biol 2020;253:129-36. [PMID: 31970434 DOI: 10.1007/s00232-020-00107-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
103 Wu RM, Jiang B, Li H, Dang WZ, Bao WL, Li HD, Ye G, Shen X. A network pharmacology approach to discover action mechanisms of Yangxinshi Tablet for improving energy metabolism in chronic ischemic heart failure. J Ethnopharmacol 2020;246:112227. [PMID: 31509780 DOI: 10.1016/j.jep.2019.112227] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
104 He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M. Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med 2020;146:45-58. [PMID: 31704373 DOI: 10.1016/j.freeradbiomed.2019.11.005] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 10.7] [Reference Citation Analysis]
105 Kuzyk CL, Anderson CC, Roede JR. Simvastatin Induces Delayed Apoptosis Through Disruption of Glycolysis and Mitochondrial Impairment in Neuroblastoma Cells. Clin Transl Sci 2020;13:563-72. [PMID: 31917509 DOI: 10.1111/cts.12740] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
106 Wu Z, Liu M, Liu Z, Tian Y. Real-Time Imaging and Simultaneous Quantification of Mitochondrial H2O2 and ATP in Neurons with a Single Two-Photon Fluorescence-Lifetime-Based Probe. J Am Chem Soc 2020;142:7532-41. [PMID: 32233469 DOI: 10.1021/jacs.0c00771] [Cited by in Crossref: 38] [Cited by in F6Publishing: 24] [Article Influence: 19.0] [Reference Citation Analysis]
107 Song D, Yang Q, Jiang X, Shan A, Nan J, Lei Y, Ji H, Di W, Yang T, Wang T, Wang W, Ning G, Cao Y. YY1 deficiency in β-cells leads to mitochondrial dysfunction and diabetes in mice. Metabolism 2020;112:154353. [PMID: 32916152 DOI: 10.1016/j.metabol.2020.154353] [Reference Citation Analysis]
108 Suomi F, McWilliams TG. Autophagy in the mammalian nervous system: a primer for neuroscientists. Neuronal Signal 2019;3:NS20180134. [PMID: 32269837 DOI: 10.1042/NS20180134] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
109 Elesela S, Lukacs NW. Role of Mitochondria in Viral Infections. Life (Basel) 2021;11:232. [PMID: 33799853 DOI: 10.3390/life11030232] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
110 Hayashida K, Takegawa R, Shoaib M, Aoki T, Choudhary RC, Kuschner CE, Nishikimi M, Miyara SJ, Rolston DM, Guevara S, Kim J, Shinozaki K, Molmenti EP, Becker LB. Mitochondrial transplantation therapy for ischemia reperfusion injury: a systematic review of animal and human studies. J Transl Med 2021;19:214. [PMID: 34001191 DOI: 10.1186/s12967-021-02878-3] [Reference Citation Analysis]
111 Guha S, Johnson GVW, Nehrke K. The Crosstalk Between Pathological Tau Phosphorylation and Mitochondrial Dysfunction as a Key to Understanding and Treating Alzheimer's Disease. Mol Neurobiol 2020;57:5103-20. [PMID: 32851560 DOI: 10.1007/s12035-020-02084-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
112 Zeng M, He Y, Zhou H, Du H, Shao C, Yang J, Wan H. Domesticated and optimized mitochondria: Mitochondrial modifications based on energetic status and cellular stress. Life Sci 2021;265:118766. [PMID: 33245965 DOI: 10.1016/j.lfs.2020.118766] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
113 Marín R, Chiarello DI, Abad C, Rojas D, Toledo F, Sobrevia L. Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020;1866:165961. [PMID: 32916282 DOI: 10.1016/j.bbadis.2020.165961] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
114 Yang K, Li Y, Tang Q, Zheng L, He D. Synthesis, mitochondrial localization of fluorescent derivatives of cinnamamide as anticancer agents. European Journal of Medicinal Chemistry 2019;170:45-54. [DOI: 10.1016/j.ejmech.2019.03.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
115 Ma C, Xia F, Kelley SO. Mitochondrial Targeting of Probes and Therapeutics to the Powerhouse of the Cell. Bioconjug Chem 2020;31:2650-67. [PMID: 33191743 DOI: 10.1021/acs.bioconjchem.0c00470] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
116 George J, Tuomela T, Kemppainen E, Nurminen A, Braun S, Yalgin C, Jacobs HT. Mitochondrial dysfunction generates a growth-restraining signal linked to pyruvate in Drosophila larvae. Fly (Austin) 2019;13:12-28. [PMID: 31526131 DOI: 10.1080/19336934.2019.1662266] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
117 Lee H, Jose PA. Coordinated Contribution of NADPH Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Metabolic Syndrome and Its Implication in Renal Dysfunction. Front Pharmacol 2021;12:670076. [PMID: 34017260 DOI: 10.3389/fphar.2021.670076] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
118 Vargas-Mendoza N, Angeles-Valencia M, Morales-González Á, Madrigal-Santillán EO, Morales-Martínez M, Madrigal-Bujaidar E, Álvarez-González I, Gutiérrez-Salinas J, Esquivel-Chirino C, Chamorro-Cevallos G, Cristóbal-Luna JM, Morales-González JA. Oxidative Stress, Mitochondrial Function and Adaptation to Exercise: New Perspectives in Nutrition. Life (Basel) 2021;11:1269. [PMID: 34833151 DOI: 10.3390/life11111269] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
119 Liang B, Qiao B, Yu K, Cao J, Zhou H, Jiang Q, Zhong Y, Cao Y, Wang Z, Zheng Y. Mitochondrial Glutathione Depletion Nanoshuttles for Oxygen-Irrelevant Free Radicals Generation: A Cascaded Hierarchical Targeting and Theranostic Strategy Against Hypoxic Tumor. ACS Appl Mater Interfaces 2022;14:13038-55. [PMID: 35266691 DOI: 10.1021/acsami.1c24708] [Reference Citation Analysis]
120 Wells MA, See Hoe LE, Heather LC, Molenaar P, Suen JY, Peart J, McGiffin D, Fraser JF. Peritransplant Cardiometabolic and Mitochondrial Function: The Missing Piece in Donor Heart Dysfunction and Graft Failure. Transplantation 2021;105:496-508. [PMID: 33617201 DOI: 10.1097/TP.0000000000003368] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Mendes D, Valentão P, Oliveira MM, Andrade P, Videira RA. A nanophytosomes formulation based on elderberry anthocyanins and Codium lipids to mitigate mitochondrial dysfunctions. Biomed Pharmacother 2021;143:112157. [PMID: 34517282 DOI: 10.1016/j.biopha.2021.112157] [Reference Citation Analysis]
122 Angrand L, Boukouaci W, Lajnef M, Richard JR, Andreazza A, Wu CL, Bouassida J, Rafik I, Foiselle M, Mezouad E, Naamoune S, Chami L, Mihoub O, Salah S, Benchaaben A, Le Corvoisier P, Barau C, Costes B, Yolken R, Crepeaux G, Leboyer M, Tamouza R. Low peripheral mitochondrial DNA copy number during manic episodes of bipolar disorders is associated with disease severity and inflammation. Brain Behav Immun 2021;98:349-56. [PMID: 34500035 DOI: 10.1016/j.bbi.2021.09.003] [Reference Citation Analysis]
123 Lin KJ, Lin KL, Chen SD, Liou CW, Chuang YC, Lin HY, Lin TK. The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson's Disease. Int J Mol Sci 2019;20:E5312. [PMID: 31731450 DOI: 10.3390/ijms20215312] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 11.3] [Reference Citation Analysis]
124 Adisa RA, Sulaimon LA, Okeke EG, Ariyo OC, Abdulkareem FB. Mitoquinol mesylate (MITOQ) attenuates diethyl nitrosamine-induced hepatocellular carcinoma through modulation of mitochondrial antioxidant defense systems. Toxicol Res . [DOI: 10.1007/s43188-021-00105-1] [Reference Citation Analysis]
125 Xiao Q, Du W, Dong X, Du S, Ong SY, Tang G, Zhang C, Yang F, Li L, Gao L, Yao SQ. Cell-Penetrating Mitochondrion-Targeting Ligands for the Universal Delivery of Small Molecules, Proteins and Nanomaterials. Chemistry 2021;27:12207-14. [PMID: 34115398 DOI: 10.1002/chem.202101989] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
126 Borkum JM. Brain Energy Deficit as a Source of Oxidative Stress in Migraine: A Molecular Basis for Migraine Susceptibility. Neurochem Res 2021;46:1913-32. [PMID: 33939061 DOI: 10.1007/s11064-021-03335-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
127 Vial G, Detaille D, Guigas B. Role of Mitochondria in the Mechanism(s) of Action of Metformin. Front Endocrinol (Lausanne). 2019;10:294. [PMID: 31133988 DOI: 10.3389/fendo.2019.00294] [Cited by in Crossref: 72] [Cited by in F6Publishing: 71] [Article Influence: 24.0] [Reference Citation Analysis]
128 Resta IM, Lucantoni F, Apostolova N, Galindo F. Fluorescent styrylpyrylium probes for the imaging of mitochondria in live cells. Org Biomol Chem 2021;19:9043-57. [PMID: 34617091 DOI: 10.1039/d1ob01543e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
129 Russell OM, Gorman GS, Lightowlers RN, Turnbull DM. Mitochondrial Diseases: Hope for the Future. Cell 2020;181:168-88. [PMID: 32220313 DOI: 10.1016/j.cell.2020.02.051] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 28.5] [Reference Citation Analysis]
130 Rodrigues SC, Cardoso RMS, Duarte FV. Mitochondrial microRNAs: A Putative Role in Tissue Regeneration. Biology (Basel) 2020;9:486. [PMID: 33371511 DOI: 10.3390/biology9120486] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
131 Armstrong JA, Cash NJ, Morton JC, Tepikin AV, Sutton R, Criddle DN. Mitochondrial Targeting of Antioxidants Alters Pancreatic Acinar Cell Bioenergetics and Determines Cell Fate. Int J Mol Sci 2019;20:E1700. [PMID: 30959771 DOI: 10.3390/ijms20071700] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
132 Xu X, Chen C, Lu WJ, Su YL, Shi JY, Liu YC, Wang L, Xiao CX, Wu X, Lu Q. Pyrroloquinoline quinone can prevent chronic heart failure by regulating mitochondrial function. Cardiovasc Diagn Ther 2020;10:453-69. [PMID: 32695625 DOI: 10.21037/cdt-20-129] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
133 Nie X, Chen Y, Li W, Lu Y. Anti-aging properties of Dendrobium nobile Lindl.: From molecular mechanisms to potential treatments. Journal of Ethnopharmacology 2020;257:112839. [DOI: 10.1016/j.jep.2020.112839] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
134 Li Z, Wang Y, Ding Y, Repp L, Kwon GS, Hu Q. Cell‐Based Delivery Systems: Emerging Carriers for Immunotherapy. Adv Funct Mater 2021;31:2100088. [DOI: 10.1002/adfm.202100088] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 18.0] [Reference Citation Analysis]
135 Zuo Z, Jing K, Wu H, Wang S, Ye L, Li Z, Yang C, Pan Q, Liu WJ, Liu HF. Mechanisms and Functions of Mitophagy and Potential Roles in Renal Disease. Front Physiol 2020;11:935. [PMID: 32903665 DOI: 10.3389/fphys.2020.00935] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
136 Huang W, Wang X, Zhang H, Wang G, Liu D. Prognostic Significance of the Fission1/Parkin Ratio for Sepsis: A Prospective Cohort Study. Front Med (Lausanne) 2021;8:642749. [PMID: 34055831 DOI: 10.3389/fmed.2021.642749] [Reference Citation Analysis]
137 Shi J, Yu J, Zhang Y, Wu L, Dong S, Wu L, Wu L, Du S, Zhang Y, Ma D. PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury. Lab Invest 2019;99:1795-809. [DOI: 10.1038/s41374-019-0286-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
138 Zhou K, Mo Q, Guo S, Liu Y, Yin C, Ji X, Guo X, Xing J. A Novel Next-Generation Sequencing-Based Approach for Concurrent Detection of Mitochondrial DNA Copy Number and Mutation. J Mol Diagn 2020;22:1408-18. [PMID: 33011442 DOI: 10.1016/j.jmoldx.2020.09.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
139 Ji W, Tang X, Du W, Lu Y, Wang N, Wu Q, Wei W, Liu J, Yu H, Ma B, Li L, Huang W. Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chem Soc Rev 2021. [PMID: 34792041 DOI: 10.1039/d0cs01610a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
140 Douiev L, Sheffer R, Horvath G, Saada A. Bezafibrate Improves Mitochondrial Fission and Function in DNM1L-Deficient Patient Cells. Cells 2020;9:E301. [PMID: 32012656 DOI: 10.3390/cells9020301] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
141 Jones AE, Divakaruni AS. Macrophage activation as an archetype of mitochondrial repurposing. Mol Aspects Med 2020;71:100838. [PMID: 31954522 DOI: 10.1016/j.mam.2019.100838] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
142 Zheng YR, Zhang XN, Chen Z. Mitochondrial transport serves as a mitochondrial quality control strategy in axons: Implications for central nervous system disorders. CNS Neurosci Ther 2019;25:876-86. [PMID: 30900394 DOI: 10.1111/cns.13122] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
143 Lelcu T, Bînă A, Avram V, Arghirescu S, Borza C, Muntean M. A permeable succinate improved platelet mitochondrial respiration in paediatric acute lymphoblastic leukaemia in remission: Case report. Scripta Medica 2022;53:89-94. [DOI: 10.5937/scriptamed53-37038] [Reference Citation Analysis]
144 Zhang X, Yuan T, Keijer J, de Boer VCJ. OCRbayes: A Bayesian hierarchical modeling framework for Seahorse extracellular flux oxygen consumption rate data analysis. PLoS One 2021;16:e0253926. [PMID: 34265000 DOI: 10.1371/journal.pone.0253926] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
145 Liu C, Liu B, Zhao J, Di Z, Chen D, Gu Z, Li L, Zhao Y. Nd 3+ ‐Sensitized Upconversion Metal–Organic Frameworks for Mitochondria‐Targeted Amplified Photodynamic Therapy. Angew Chem Int Ed 2020;59:2634-8. [DOI: 10.1002/anie.201911508] [Cited by in Crossref: 64] [Cited by in F6Publishing: 52] [Article Influence: 32.0] [Reference Citation Analysis]
146 Liaghati A, Pileggi CA, Parmar G, Patten DA, Hadzimustafic N, Cuillerier A, Menzies KJ, Burelle Y, Harper ME. Grx2 Regulates Skeletal Muscle Mitochondrial Structure and Autophagy. Front Physiol 2021;12:604210. [PMID: 33762963 DOI: 10.3389/fphys.2021.604210] [Reference Citation Analysis]
147 Mthembu SXH, Dludla PV, Nyambuya TM, Kappo AP, Madoroba E, Ziqubu K, Nyawo TA, Nkambule BB, Silvestri S, Muller CJF, Mazibuko-Mbeje SE. Experimental models of lipid overload and their relevance in understanding skeletal muscle insulin resistance and pathological changes in mitochondrial oxidative capacity. Biochimie 2021:S0300-9084(21)00222-4. [PMID: 34563603 DOI: 10.1016/j.biochi.2021.09.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
148 Shi Y, Zou X, Wen S, Gao L, Li J, Han J, Han S. An organelle-directed chemical ligation approach enables dual-color detection of mitophagy. Autophagy 2021;:1-16. [PMID: 33435798 DOI: 10.1080/15548627.2021.1875597] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
149 Hwang JW, Lee MJ, Chung TN, Lee HAR, Lee JH, Choi SY, Park YJ, Kim CH, Jin I, Kim SH, Kwak HB, Heo JW, Na K, Choi S, Choi YS, Kim K. The immune modulatory effects of mitochondrial transplantation on cecal slurry model in rat. Crit Care 2021;25:20. [PMID: 33413559 DOI: 10.1186/s13054-020-03436-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
150 Giner MP, Christen S, Bartova S, Makarov MV, Migaud ME, Canto C, Moco S. A Method to Monitor the NAD+ Metabolome-From Mechanistic to Clinical Applications. Int J Mol Sci 2021;22:10598. [PMID: 34638936 DOI: 10.3390/ijms221910598] [Reference Citation Analysis]
151 Karthika C, Appu AP, Akter R, Rahman MH, Tagde P, Ashraf GM, Abdel-Daim MM, Hassan SSU, Abid A, Bungau S. Potential innovation against Alzheimer's disorder: a tricomponent combination of natural antioxidants (vitamin E, quercetin, and basil oil) and the development of its intranasal delivery. Environ Sci Pollut Res Int 2022;29:10950-65. [PMID: 35000160 DOI: 10.1007/s11356-021-17830-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
152 Chen W, Huang J, Hu Y, Khoshnam SE, Sarkaki A. Mitochondrial Transfer as a Therapeutic Strategy Against Ischemic Stroke. Transl Stroke Res 2020;11:1214-28. [PMID: 32592024 DOI: 10.1007/s12975-020-00828-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
153 Aldossary AM, Tawfik EA, Alomary MN, Alsudir SA, Alfahad AJ, Alshehri AA, Almughem FA, Mohammed RY, Alzaydi MM. Recent Advances in Mitochondrial Diseases: from Molecular Insights to Therapeutic Perspectives. Saudi Pharmaceutical Journal 2022. [DOI: 10.1016/j.jsps.2022.05.011] [Reference Citation Analysis]
154 Qi H, Li ZC, Wang SM, Wu L, Xu F, Liu ZL, Li X, Wang JZ. Tristability in mitochondrial permeability transition pore opening. Chaos 2021;31:123108. [PMID: 34972328 DOI: 10.1063/5.0065400] [Reference Citation Analysis]
155 González-Sánchez P, Satrústegui J, Palau F, Del Arco A. Calcium Deregulation and Mitochondrial Bioenergetics in GDAP1-Related CMT Disease. Int J Mol Sci 2019;20:E403. [PMID: 30669311 DOI: 10.3390/ijms20020403] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
156 Liu B, Li A, Qin Y, Tian X, Gao M, Jiang W, Gong G. Comparative study on isolation and mitochondrial function of adult mouse and rat cardiomyocytes. J Mol Cell Cardiol 2019;136:64-71. [PMID: 31521710 DOI: 10.1016/j.yjmcc.2019.09.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
157 Kalyanaraman B. Teaching the basics of repurposing mitochondria-targeted drugs: From Parkinson's disease to cancer and back to Parkinson's disease. Redox Biol 2020;36:101665. [PMID: 32795938 DOI: 10.1016/j.redox.2020.101665] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
158 Tan CP, Zhong YM, Ji LN, Mao ZW. Phosphorescent metal complexes as theranostic anticancer agents: combining imaging and therapy in a single molecule. Chem Sci 2021;12:2357-67. [PMID: 34164000 DOI: 10.1039/d0sc06885c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
159 Zhong X, Bao X, Zhong H, Zhou Y, Zhang Z, Lu Y, Dai Q, Yang Q, Ke P, Xia Y, Wu L, Sui Z, Lu Y, Han M, Xu W, Gao J. Mitochondrial targeted drug delivery combined with Manganese Catalyzed Fenton reaction for the treatment of breast cancer. Int J Pharm 2022;:121810. [PMID: 35580685 DOI: 10.1016/j.ijpharm.2022.121810] [Reference Citation Analysis]
160 Wen Y, Gu Y, Tang X, Hu Z. PINK1 overexpression protects against cerebral ischemia through Parkin regulation. Environ Toxicol 2020;35:188-93. [PMID: 31654556 DOI: 10.1002/tox.22855] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
161 Xue J, Liu J, Yong J, Liang K. Biomedical Applications of Metal–Organic Frameworks at the Subcellular Level. Adv NanoBio Res 2021;1:2100034. [DOI: 10.1002/anbr.202100034] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
162 Puthanmadhom Narayanan S, O'Brien D, Sharma M, Miller K, Adams P, Passos JF, Eirin A, Ordog T, Bharucha AE. Duodenal mucosal mitochondrial gene expression is associated with delayed gastric emptying in diabetic gastroenteropathy. JCI Insight 2021;6:143596. [PMID: 33491664 DOI: 10.1172/jci.insight.143596] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
163 Lyamzaev KG, Zinovkin RA, Chernyak BV. Extrusion of mitochondria: Garbage clearance or cell–cell communication signals? Journal Cellular Physiology. [DOI: 10.1002/jcp.30711] [Reference Citation Analysis]
164 Zhong Y, Liang N, Liu Y, Cheng MS. Recent progress on betulinic acid and its derivatives as antitumor agents: a mini review. Chin J Nat Med 2021;19:641-7. [PMID: 34561074 DOI: 10.1016/S1875-5364(21)60097-3] [Reference Citation Analysis]
165 Liu C, Liu B, Zhao J, Di Z, Chen D, Gu Z, Li L, Zhao Y. Nd 3+ ‐Sensitized Upconversion Metal–Organic Frameworks for Mitochondria‐Targeted Amplified Photodynamic Therapy. Angew Chem 2020;132:2656-60. [DOI: 10.1002/ange.201911508] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
166 Tang M, Lin K, Ramachandran M, Li L, Zou H, Zheng H, Ma Z, Li Y. A mitochondria-targeting lipid–small molecule hybrid nanoparticle for imaging and therapy in an orthotopic glioma model. Acta Pharmaceutica Sinica B 2022;12:2672-82. [DOI: 10.1016/j.apsb.2022.04.005] [Reference Citation Analysis]
167 Carvalho C, Cardoso S. Diabetes–Alzheimer's Disease Link: Targeting Mitochondrial Dysfunction and Redox Imbalance. Antioxidants & Redox Signaling 2021;34:631-49. [DOI: 10.1089/ars.2020.8056] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
168 Mooli RGR, Mukhi D, Ramakrishnan SK. Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases. Compr Physiol 2022;12:3167-92. [PMID: 35578969 DOI: 10.1002/cphy.c200021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
169 Sánchez-Villamil JP, Bautista-Niño PK, Serrano NC, Rincon MY, Garg NJ. Potential Role of Antioxidants as Adjunctive Therapy in Chagas Disease. Oxid Med Cell Longev 2020;2020:9081813. [PMID: 32308809 DOI: 10.1155/2020/9081813] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
170 Lin YT, Lin KH, Huang CJ, Wei AC. MitoTox: a comprehensive mitochondrial toxicity database. BMC Bioinformatics 2021;22:369. [PMID: 34266386 DOI: 10.1186/s12859-021-04285-3] [Reference Citation Analysis]
171 Rai Y, Anita, Kumari N, Singh S, Kalra N, Soni R, Bhatt AN. Mild mitochondrial uncoupling protects from ionizing radiation induced cell death by attenuating oxidative stress and mitochondrial damage. Biochim Biophys Acta Bioenerg 2021;1862:148325. [PMID: 33065098 DOI: 10.1016/j.bbabio.2020.148325] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
172 Weissig V. Drug Development for the Therapy of Mitochondrial Diseases. Trends Mol Med 2020;26:40-57. [PMID: 31727544 DOI: 10.1016/j.molmed.2019.09.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 11.7] [Reference Citation Analysis]
173 Huang TT, Sun WJ, Liu HY, Ma HL, Cui BX. p66Shc-mediated oxidative stress is involved in gestational diabetes mellitus. World J Diabetes 2021; 12(11): 1894-1907 [PMID: 34888014 DOI: 10.4239/wjd.v12.i11.1894] [Reference Citation Analysis]
174 Luo Z, Gao Y, Duan Z, Yi Y, Wang H. Mitochondria-Targeted Self-Assembly of Peptide-Based Nanomaterials. Front Bioeng Biotechnol 2021;9:782234. [PMID: 34900970 DOI: 10.3389/fbioe.2021.782234] [Reference Citation Analysis]
175 Chen Y, Wu YY, Si HB, Lu YR, Shen B. Mechanistic insights into AMPK-SIRT3 positive feedback loop-mediated chondrocyte mitochondrial quality control in osteoarthritis pathogenesis. Pharmacol Res 2021;166:105497. [PMID: 33609697 DOI: 10.1016/j.phrs.2021.105497] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
176 Xiao J, Dong X, Peng K, Ye F, Cheng J, Dan G, Zou Z, Cao J, Sai Y. PGC-1ɑ Mediated-EXOG, a Specific Repair Enzyme for Mitochondrial DNA, Plays an Essential Role in the Rotenone-Induced Neurotoxicity of PC12 Cells. J Mol Neurosci 2021. [PMID: 33515431 DOI: 10.1007/s12031-020-01775-6] [Reference Citation Analysis]
177 Fisher JJ, Bartho LA, Perkins AV, Holland OJ. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy. Clin Exp Pharmacol Physiol 2020;47:176-84. [PMID: 31469913 DOI: 10.1111/1440-1681.13172] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
178 Zhang J, Xiang H, Liu J, Chen Y, He RR, Liu B. Mitochondrial Sirtuin 3: New emerging biological function and therapeutic target. Theranostics 2020;10:8315-42. [PMID: 32724473 DOI: 10.7150/thno.45922] [Cited by in Crossref: 63] [Cited by in F6Publishing: 48] [Article Influence: 31.5] [Reference Citation Analysis]
179 Lee MTW, Mahy W, Rackham MD. The medicinal chemistry of mitochondrial dysfunction: a critical overview of efforts to modulate mitochondrial health. RSC Med Chem 2021;12:1281-311. [PMID: 34458736 DOI: 10.1039/d1md00113b] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
180 Muñoz Resta I, Bedrina B, Martínez-Planes E, Minguela A, Galindo F. Detection of subcellular nitric oxide in mitochondria using a pyrylium probe: assays in cell cultures and peripheral blood. J Mater Chem B 2021;9:9885-92. [PMID: 34821904 DOI: 10.1039/d1tb02326h] [Reference Citation Analysis]
181 Millichap LE, Damiani E, Tiano L, Hargreaves IP. Targetable Pathways for Alleviating Mitochondrial Dysfunction in Neurodegeneration of Metabolic and Non-Metabolic Diseases. Int J Mol Sci 2021;22:11444. [PMID: 34768878 DOI: 10.3390/ijms222111444] [Reference Citation Analysis]
182 Li Y, Zhuang J, Lu Y, Li N, Gu M, Xia J, Zhao N, Tang BZ. High-Performance Near-Infrared Aggregation-Induced Emission Luminogen with Mitophagy Regulating Capability for Multimodal Cancer Theranostics. ACS Nano 2021;15:20453-65. [PMID: 34843216 DOI: 10.1021/acsnano.1c08928] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
183 Lin X, Li L, Li S, Li Q, Xie D, Zhou M, Huang Y. Targeting the Opening of Mitochondrial Permeability Transition Pores Potentiates Nanoparticle Drug Delivery and Mitigates Cancer Metastasis. Adv Sci (Weinh) 2021;8:2002834. [PMID: 33643797 DOI: 10.1002/advs.202002834] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
184 Liew SS, Qin X, Zhou J, Li L, Huang W, Yao SQ. Intelligentes Design von Nanomaterialien für Mitochondrien‐gerichtete Nanotherapeutika. Angew Chem 2021;133:2260-86. [DOI: 10.1002/ange.201915826] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
185 Wu X, Hu X, Zhang Y. Regulating Cellular Responses via Molecular Assembly in Cell Milieu for Cancer Therapy. Chem Lett 2021;50:405-10. [DOI: 10.1246/cl.200788] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
186 Ma D, Zong Q, Du Y, Yu F, Xiao X, Sun R, Guo Y, Wei X, Yuan Y. Sequential enzyme-activated macrotheranostic probe for selective tumor mitochondria targeting. Acta Biomater 2021;135:628-37. [PMID: 34371167 DOI: 10.1016/j.actbio.2021.08.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
187 Yin X, Li W, Zhang J, Zhao W, Cai H, Zhang C, Liu Z, Guo Y, Wang J. AMPK-Mediated Metabolic Switching Is High Effective for Phytochemical Levo-Tetrahydropalmatine (l-THP) to Reduce Hepatocellular Carcinoma Tumor Growth. Metabolites 2021;11:811. [PMID: 34940569 DOI: 10.3390/metabo11120811] [Reference Citation Analysis]
188 Wang H, Fang B, Peng B, Wang L, Xue Y, Bai H, Lu S, Voelcker NH, Li L, Fu L, Huang W. Recent Advances in Chemical Biology of Mitochondria Targeting. Front Chem 2021;9:683220. [PMID: 34012953 DOI: 10.3389/fchem.2021.683220] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
189 Clayton SA, MacDonald L, Kurowska-Stolarska M, Clark AR. Mitochondria as Key Players in the Pathogenesis and Treatment of Rheumatoid Arthritis. Front Immunol 2021;12:673916. [PMID: 33995417 DOI: 10.3389/fimmu.2021.673916] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
190 Webb M, Sideris DP, Biddle M. Modulation of mitochondrial dysfunction for treatment of disease. Bioorganic & Medicinal Chemistry Letters 2019;29:1270-7. [DOI: 10.1016/j.bmcl.2019.03.041] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
191 Flannery PJ, Trushina E. Mitochondrial Dysfunction in Alzheimer’s Disease and Progress in Mitochondria-Targeted Therapeutics. Curr Behav Neurosci Rep 2019;6:88-102. [DOI: 10.1007/s40473-019-00179-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
192 Del Rey MJ, Meroño C, Municio C, Usategui A, Mittelbrunn M, García-Consuegra I, Criado G, Pablos JL. TFAM-deficient mouse skin fibroblasts - an ex vivo model of mitochondrial dysfunction. Dis Model Mech 2021;14:dmm048995. [PMID: 34312668 DOI: 10.1242/dmm.048995] [Reference Citation Analysis]
193 Buchke S, Sharma M, Bora A, Relekar M, Bhanu P, Kumar J. Mitochondria-Targeted, Nanoparticle-Based Drug-Delivery Systems: Therapeutics for Mitochondrial Disorders. Life 2022;12:657. [DOI: 10.3390/life12050657] [Reference Citation Analysis]
194 Zhao QY, Ge LH, Zhang K, Chen HF, Zhan XX, Yang Y, Dang QL, Zheng Y, Zhou HB, Lyu JX, Fang HZ. Assessment of mitochondrial function in metabolic dysfunction-associated fatty liver disease using obese mouse models. Zool Res 2020;41:539-51. [PMID: 32786176 DOI: 10.24272/j.issn.2095-8137.2020.051] [Reference Citation Analysis]
195 Yu Z, Wang H, Chen Z, Dong X, Zhao W, Shi Y, Zhu Q. Discovery of an Amino Acid-Modified Near-Infrared Aza-BODIPY Photosensitizer as an Immune Initiator for Potent Photodynamic Therapy in Melanoma. J Med Chem . [DOI: 10.1021/acs.jmedchem.1c02154] [Reference Citation Analysis]
196 Zhu Y, Jia H, Gao G, Pan G, Jiang Y, Li P, Zhou N, Li C, She C, Ulrich NW, Chen Z, Wu F. Mitochondria-acting nanomicelles for destruction of cancer cells via excessive mitophagy/autophagy-driven lethal energy depletion and phototherapy. Biomaterials 2020;232:119668. [DOI: 10.1016/j.biomaterials.2019.119668] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 13.0] [Reference Citation Analysis]
197 Chen M, Wu J, Ning P, Wang J, Ma Z, Huang L, Plaza GR, Shen Y, Xu C, Han Y, Lesniak MS, Liu Z, Cheng Y. Remote Control of Mechanical Forces via Mitochondrial-Targeted Magnetic Nanospinners for Efficient Cancer Treatment. Small 2020;16:e1905424. [PMID: 31867877 DOI: 10.1002/smll.201905424] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
198 Marin W, Marin D, Ao X, Liu Y. Mitochondria as a therapeutic target for cardiac ischemia‑reperfusion injury (Review). Int J Mol Med 2021;47:485-99. [PMID: 33416090 DOI: 10.3892/ijmm.2020.4823] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
199 Kaya E, Smith DA, Smith C, Morris L, Bremova-Ertl T, Cortina-Borja M, Fineran P, Morten KJ, Poulton J, Boland B, Spencer J, Strupp M, Platt FM. Acetyl-leucine slows disease progression in lysosomal storage disorders. Brain Commun 2021;3:fcaa148. [PMID: 33738443 DOI: 10.1093/braincomms/fcaa148] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
200 Qin J, Xia PF, Yuan XZ, Wang SG. Chlorine disinfection elevates the toxicity of polystyrene microplastics to human cells by inducing mitochondria-dependent apoptosis. J Hazard Mater 2021;425:127842. [PMID: 34875417 DOI: 10.1016/j.jhazmat.2021.127842] [Reference Citation Analysis]
201 Williamson J, Davison G. Targeted Antioxidants in Exercise-Induced Mitochondrial Oxidative Stress: Emphasis on DNA Damage. Antioxidants (Basel) 2020;9:E1142. [PMID: 33213007 DOI: 10.3390/antiox9111142] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
202 Wang C, Gao F, Guan X, Yao X, Shi B, Zhang Y. Exposure to oxidized soybean oil induces mammary mitochondrial injury in lactating rats and alters the intestinal barrier function of progeny. Food Funct 2021;12:3705-19. [PMID: 33900354 DOI: 10.1039/d1fo00423a] [Reference Citation Analysis]
203 Zeng M, Shao C, Zhou H, He Y, Li W, Zeng J, Zhao X, Yang J, Wan H. Protocatechudehyde improves mitochondrial energy metabolism through the HIF1α/PDK1 signaling pathway to mitigate ischemic stroke-elicited internal capsule injury. J Ethnopharmacol 2021;277:114232. [PMID: 34044078 DOI: 10.1016/j.jep.2021.114232] [Reference Citation Analysis]
204 Pala L, Senn HM, Caldwell ST, Prime TA, Warrington S, Bright TP, Prag HA, Wilson C, Murphy MP, Hartley RC. Enhancing the Mitochondrial Uptake of Phosphonium Cations by Carboxylic Acid Incorporation. Front Chem 2020;8:783. [PMID: 33033715 DOI: 10.3389/fchem.2020.00783] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
205 Hicke FJ, Puerta A, Dinić J, Pešić M, Padrón JM, López Ó, Fernández-Bolaños JG. Straightforward access to novel mitochondriotropics derived from 2-arylethanol as potent and selective antiproliferative agents. Eur J Med Chem 2022;228:113980. [PMID: 34847410 DOI: 10.1016/j.ejmech.2021.113980] [Reference Citation Analysis]
206 Han S, Gao H, Chen S, Wang Q, Li X, Du LJ, Li J, Luo YY, Li JX, Zhao LC, Feng J, Yang S. Procyanidin A1 Alleviates Inflammatory Response induced by LPS through NF-κB, MAPK, and Nrf2/HO-1 Pathways in RAW264.7 cells. Sci Rep 2019;9:15087. [PMID: 31636354 DOI: 10.1038/s41598-019-51614-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
207 Skuratovskaia D, Komar A, Vulf M, Litvinova L. Mitochondrial destiny in type 2 diabetes: the effects of oxidative stress on the dynamics and biogenesis of mitochondria. PeerJ 2020;8:e9741. [PMID: 32904391 DOI: 10.7717/peerj.9741] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
208 Zhang B, Zhao J, Wang Z, Guo P, Liu A, Du G. Identification of Multi-Target Anti-AD Chemical Constituents From Traditional Chinese Medicine Formulae by Integrating Virtual Screening and In Vitro Validation. Front Pharmacol 2021;12:709607. [PMID: 34335272 DOI: 10.3389/fphar.2021.709607] [Reference Citation Analysis]
209 Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020;55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
210 Gao H, Tripathi U, Trushin S, Okromelidze L, Pichurin NP, Wei L, Zhuang Y, Wang L, Trushina E. A genome-wide association study in human lymphoblastoid cells supports safety of mitochondrial complex I inhibitor. Mitochondrion 2021;58:83-94. [PMID: 33610756 DOI: 10.1016/j.mito.2021.02.005] [Reference Citation Analysis]
211 Cairns AG, McQuaker SJ, Murphy MP, Hartley RC. Insights on Targeting Small Molecules to the Mitochondrial Matrix and the Preparation of MitoB and MitoP as Exomarkers of Mitochondrial Hydrogen Peroxide. Methods Mol Biol 2021;2275:87-117. [PMID: 34118033 DOI: 10.1007/978-1-0716-1262-0_6] [Reference Citation Analysis]
212 Kim S, Lee J, Choi J, Nam HY, Seo J, Lee J. Synthesis and structure‐activity relationship of mitochondria‐targeting peptoids with varying hydrophobicity and cationic charge. Pept Sci. [DOI: 10.1002/pep2.24239] [Reference Citation Analysis]
213 Tan K, Chen Y, Ma K, Wang Q, Liu X, Wang F. Spatiotemporally Tracking the Programmable Mitochondrial Membrane Potential Evolutions by a Robust Molecular Rotor. Small 2019;15:1903266. [DOI: 10.1002/smll.201903266] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
214 Burtscher J, Pepe G, Marracino F, Capocci L, Giova S, Millet GP, Di Pardo A, Maglione V. Brain Region and Cell Compartment Dependent Regulation of Electron Transport System Components in Huntington's Disease Model Mice. Brain Sci 2021;11:1267. [PMID: 34679332 DOI: 10.3390/brainsci11101267] [Reference Citation Analysis]
215 Nödling AR, Mills EM, Li X, Cardella D, Sayers EJ, Wu SH, Jones AT, Luk LYP, Tsai YH. Cyanine dye mediated mitochondrial targeting enhances the anti-cancer activity of small-molecule cargoes. Chem Commun (Camb) 2020;56:4672-5. [PMID: 32211623 DOI: 10.1039/c9cc07931a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 6.5] [Reference Citation Analysis]
216 Li S, Li X, Chen F, Liu M, Ning L, Yan Y, Zhang S, Huang S, Tu C. Nobiletin mitigates hepatocytes death, liver inflammation, and fibrosis in a murine model of NASH through modulating hepatic oxidative stress and mitochondrial dysfunction. J Nutr Biochem 2021;100:108888. [PMID: 34695558 DOI: 10.1016/j.jnutbio.2021.108888] [Reference Citation Analysis]
217 Gaddale Devanna KK, Gawel JM, Prime TA, Cvetko F, Benincá C, Caldwell ST, Negoda A, Harrison A, James AM, Pavlov EV, Murphy MP, Hartley RC. Tetra-arylborate lipophilic anions as targeting groups. Chem Commun (Camb) 2021;57:3147-50. [PMID: 33634803 DOI: 10.1039/d0cc07924c] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
218 Abdullah-Al-Shoeb M, Sasaki K, Kikutani S, Namba N, Ueno K, Kondo Y, Maeda H, Maruyama T, Irie T, Ishitsuka Y. The Late-Stage Protective Effect of Mito-TEMPO against Acetaminophen-Induced Hepatotoxicity in Mouse and Three-Dimensional Cell Culture Models. Antioxidants (Basel) 2020;9:E965. [PMID: 33050213 DOI: 10.3390/antiox9100965] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
219 Zachari M, Ktistakis NT. Mammalian Mitophagosome Formation: A Focus on the Early Signals and Steps. Front Cell Dev Biol 2020;8:171. [PMID: 32258042 DOI: 10.3389/fcell.2020.00171] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
220 Chung I, Serreli R, Cross JB, Di Francesco ME, Marszalek JR, Hirst J. Cork-in-bottle mechanism of inhibitor binding to mammalian complex I. Sci Adv 2021;7:eabg4000. [PMID: 33990335 DOI: 10.1126/sciadv.abg4000] [Reference Citation Analysis]
221 Zhao T, Wu W, Sui L, Huang Q, Nan Y, Liu J, Ai K. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact Mater 2022;7:47-72. [PMID: 34466716 DOI: 10.1016/j.bioactmat.2021.06.006] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 30.0] [Reference Citation Analysis]
222 Bao X, Ai K, Cao X, Chen D, Zhou B, Huo C. A dual-site and dual-turn-on fluorescence probe for imaging mitochondrial HClO and SO2. Dyes and Pigments 2022;197:109928. [DOI: 10.1016/j.dyepig.2021.109928] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
223 Prag HA, Kula-Alwar D, Pala L, Caldwell ST, Beach TE, James AM, Saeb-Parsy K, Krieg T, Hartley RC, Murphy MP. Selective Delivery of Dicarboxylates to Mitochondria by Conjugation to a Lipophilic Cation via a Cleavable Linker. Mol Pharm 2020;17:3526-40. [PMID: 32692564 DOI: 10.1021/acs.molpharmaceut.0c00533] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
224 Mottis A, Herzig S, Auwerx J. Mitocellular communication: Shaping health and disease. Science 2019;366:827-32. [PMID: 31727828 DOI: 10.1126/science.aax3768] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 17.3] [Reference Citation Analysis]
225 Wasmus C, Dudek J. Metabolic Alterations Caused by Defective Cardiolipin Remodeling in Inherited Cardiomyopathies. Life (Basel) 2020;10:E277. [PMID: 33187128 DOI: 10.3390/life10110277] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
226 Xie T, Wu Z, Gu J, Guo R, Yan X, Duan H, Liu X, Liu W, Liang L, Wan H, Luo Y, Tang D, Shi H, Hu J. The global motion affecting electron transfer in Plasmodium falciparum type II NADH dehydrogenases: a novel non-competitive mechanism for quinoline ketone derivative inhibitors. Phys Chem Chem Phys 2019;21:18105-18. [PMID: 31396604 DOI: 10.1039/c9cp02645b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
227 Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Sampani K. Pathogenic mitochondrial dysfunction and metabolic abnormalities. Biochem Pharmacol 2021;193:114809. [PMID: 34673016 DOI: 10.1016/j.bcp.2021.114809] [Reference Citation Analysis]
228 Wang J, Li J, Xiao Y, Fu B, Qin Z. TPP-based mitocans: a potent strategy for anticancer drug design. RSC Med Chem 2020;11:858-75. [PMID: 33479681 DOI: 10.1039/c9md00572b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
229 Ferreira N, Perks KL, Rossetti G, Rudler DL, Hughes LA, Ermer JA, Scott LH, Kuznetsova I, Richman TR, Narayana VK, Abudulai LN, Shearwood AJ, Cserne Szappanos H, Tull D, Yeoh GC, Hool LC, Filipovska A, Rackham O. Stress signaling and cellular proliferation reverse the effects of mitochondrial mistranslation. EMBO J 2019;38:e102155. [PMID: 31721250 DOI: 10.15252/embj.2019102155] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
230 Fan Y, Cheng Z, Mao L, Xu G, Li N, Zhang M, Weng P, Zheng L, Dong X, Hu S, Wang B, Qin X, Jiang X, Chen C, Zhang J, Zou Z. PINK1/TAX1BP1-directed mitophagy attenuates vascular endothelial injury induced by copper oxide nanoparticles. J Nanobiotechnology 2022;20:149. [PMID: 35305662 DOI: 10.1186/s12951-022-01338-4] [Reference Citation Analysis]
231 Huang C, Yan S, Zhang Z. Maintaining the balance of TDP-43, mitochondria, and autophagy: a promising therapeutic strategy for neurodegenerative diseases. Transl Neurodegener 2020;9:40. [PMID: 33126923 DOI: 10.1186/s40035-020-00219-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
232 Markaki M, Tavernarakis N. Mitochondrial turnover and homeostasis in ageing and neurodegeneration. FEBS Lett 2020;594:2370-9. [PMID: 32350855 DOI: 10.1002/1873-3468.13802] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
233 Porto V, Buceta D, Domínguez B, Carneiro C, Borrajo E, Fraile M, Davila‐ferreira N, Arias IR, Blanco JM, Blanco MC, Devida JM, Giovanetti LJ, Requejo FG, Hernández‐garrido JC, Calvino JJ, López‐haro M, Barone G, James AM, García‐caballero T, González‐castaño DM, Treder M, Huber W, Vidal A, Murphy MP, López‐quintela MA, Domínguez F. Silver Clusters of Five Atoms as Highly Selective Antitumoral Agents Through Irreversible Oxidation of Thiols. Adv Funct Materials. [DOI: 10.1002/adfm.202113028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
234 Prasuhn J, Davis RL, Kumar KR. Targeting Mitochondrial Impairment in Parkinson's Disease: Challenges and Opportunities. Front Cell Dev Biol 2020;8:615461. [PMID: 33469539 DOI: 10.3389/fcell.2020.615461] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
235 Beach TE, Prag HA, Pala L, Logan A, Huang MM, Gruszczyk AV, Martin JL, Mahbubani K, Hamed MO, Hosgood SA, Nicholson ML, James AM, Hartley RC, Murphy MP, Saeb-Parsy K. Targeting succinate dehydrogenase with malonate ester prodrugs decreases renal ischemia reperfusion injury. Redox Biol 2020;36:101640. [PMID: 32863205 DOI: 10.1016/j.redox.2020.101640] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
236 Unten Y, Murai M, Sakai K, Asami Y, Yamamoto T, Masuya T, Miyoshi H. Natural tetramic acids elicit multiple inhibitory actions against mitochondrial machineries presiding over oxidative phosphorylation. Biosci Biotechnol Biochem 2021;85:2368-77. [PMID: 34625801 DOI: 10.1093/bbb/zbab176] [Reference Citation Analysis]
237 Wang Y, Zhang T, Hou C, Zu M, Lu Y, Ma X, Jia D, Xue P, Kang Y, Xu Z. Mitochondria-Specific Anticancer Drug Delivery Based on Reduction-Activated Polyprodrug for Enhancing the Therapeutic Effect of Breast Cancer Chemotherapy. ACS Appl Mater Interfaces 2019;11:29330-40. [PMID: 31329411 DOI: 10.1021/acsami.9b10211] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
238 Xiao Q, Dong X, Yang F, Zhou S, Xiang M, Lou L, Yao SQ, Gao L. Engineered Cell-Penetrating Peptides for Mitochondrion-Targeted Drug Delivery in Cancer Therapy. Chemistry 2021;27:14721-9. [PMID: 34436802 DOI: 10.1002/chem.202102523] [Reference Citation Analysis]
239 Huang W, Wang X, Zhang H, Wang G, Xie F, Liu D. Serum Mitochondrial Quality Control Related Biomarker Levels are Associated with Organ Dysfunction in Septic Patients. Shock 2021;56:412-8. [PMID: 33534397 DOI: 10.1097/SHK.0000000000001737] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
240 Wu J, Li J, Liu Y, Liao X, Wu D, Chen Y, Liang Z, Yuan Z, Li R, Yi J, Wen L. Tannic acid repair of zearalenone-induced damage by regulating the death receptor and mitochondrial apoptosis signaling pathway in mice. Environ Pollut 2021;287:117557. [PMID: 34167001 DOI: 10.1016/j.envpol.2021.117557] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
241 Li Y, Feng YF, Liu XT, Li YC, Zhu HM, Sun MR, Li P, Liu B, Yang H. Songorine promotes cardiac mitochondrial biogenesis via Nrf2 induction during sepsis. Redox Biol 2021;38:101771. [PMID: 33189984 DOI: 10.1016/j.redox.2020.101771] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
242 Wang Y, Hu LF, Zhou TJ, Qi LY, Xing L, Lee J, Wang FZ, Oh YK, Jiang HL. Gene therapy strategies for rare monogenic disorders with nuclear or mitochondrial gene mutations. Biomaterials 2021;277:121108. [PMID: 34478929 DOI: 10.1016/j.biomaterials.2021.121108] [Reference Citation Analysis]
243 Tinker RJ, Lim AZ, Stefanetti RJ, McFarland R. Current and Emerging Clinical Treatment in Mitochondrial Disease. Mol Diagn Ther 2021;25:181-206. [PMID: 33646563 DOI: 10.1007/s40291-020-00510-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
244 Qin Y, Li A, Liu B, Jiang W, Gao M, Tian X, Gong G. Mitochondrial fusion mediated by fusion promotion and fission inhibition directs adult mouse heart function toward a different direction. FASEB J 2020;34:663-75. [PMID: 31914595 DOI: 10.1096/fj.201901671R] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
245 Tabish TA, Narayan RJ. Mitochondria-targeted graphene for advanced cancer therapeutics. Acta Biomater 2021;129:43-56. [PMID: 33965624 DOI: 10.1016/j.actbio.2021.04.054] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 18.0] [Reference Citation Analysis]
246 Rokitskaya TI, Luzhkov VB, Korshunova GA, Tashlitsky VN, Antonenko YN. Effect of methyl and halogen substituents on the transmembrane movement of lipophilic ions. Phys Chem Chem Phys 2019;21:23355-63. [DOI: 10.1039/c9cp03460a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
247 Paul A, Mengji R, Bera M, Ojha M, Jana A, Singh NDP. Mitochondria-localized in situ generation of rhodamine photocage with fluorescence turn-on enabling cancer cell-specific drug delivery triggered by green light. Chem Commun 2020;56:8412-5. [DOI: 10.1039/d0cc03524f] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
248 Wu RM, Jiang B, Li H, Dang WZ, Zhang C, Zhong XZ, Hong Y, Ye G, Shen XY. Yang xin shi tablet enhances adaptability to exercise training by relieving statin-induced skeletal muscle injury. Chin Med J (Engl) 2020;133:2266-8. [PMID: 32941236 DOI: 10.1097/CM9.0000000000001028] [Reference Citation Analysis]
249 Zhao Z, He K, Zhang Y, Hua X, Feng M, Zhao Z, Sun Y, Jiang Y, Xia Q. XRCC2 repairs mitochondrial DNA damage and fuels malignant behavior in hepatocellular carcinoma. Cancer Lett 2021;512:1-14. [PMID: 33964350 DOI: 10.1016/j.canlet.2021.04.026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
250 Cao Y, Ren Q, Hao R, Sun Z. Innovative strategies to boost photothermal therapy at mild temperature mediated by functional nanomaterials. Materials & Design 2022;214:110391. [DOI: 10.1016/j.matdes.2022.110391] [Reference Citation Analysis]
251 Blázquez-Moraleja A, Sáenz-de-Santa María I, Chiara MD, Álvarez-Fernández D, García-Moreno I, Prieto-Montero R, Martínez-Martínez V, López Arbeloa I, Chiara JL. Shedding light on the mitochondrial matrix through a functional membrane transporter. Chem Sci 2019;11:1052-65. [PMID: 34084361 DOI: 10.1039/c9sc04852a] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
252 Lee JH, Shin HJ, Kim YD, Lim D. Real-time surface-enhanced Raman scattering-based live cell monitoring of the changes in mitochondrial membrane potential. Nanoscale Adv 2021;3:3470-80. [DOI: 10.1039/d0na01076f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
253 Shi J, Zhao D, Li X, Ding F, Tang X, Liu N, Huang H, Liu C. The conjugation of rhodamine B enables carrier-free mitochondrial delivery of functional proteins. Org Biomol Chem 2020;18:6829-39. [DOI: 10.1039/d0ob01305f] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
254 Potenza MA, Sgarra L, Desantis V, Nacci C, Montagnani M. Diabetes and Alzheimer's Disease: Might Mitochondrial Dysfunction Help Deciphering the Common Path? Antioxidants (Basel) 2021;10:1257. [PMID: 34439505 DOI: 10.3390/antiox10081257] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
255 Rokitskaya TI, Kotova EA, Luzhkov VB, Kirsanov RS, Aleksandrova EV, Korshunova GA, Tashlitsky VN, Antonenko YN. Lipophilic ion aromaticity is not important for permeability across lipid membranes. Biochim Biophys Acta Biomembr 2021;1863:183483. [PMID: 33002452 DOI: 10.1016/j.bbamem.2020.183483] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
256 Chen Q, Liu X, Fan J, Peng S, Wang J, Wang X, Zhang C, Liu C, Zhang X. Self‐Mineralized Photothermal Bacteria Hybridizing with Mitochondria‐Targeted Metal–Organic Frameworks for Augmenting Photothermal Tumor Therapy. Adv Funct Mater 2020;30:1909806. [DOI: 10.1002/adfm.201909806] [Cited by in Crossref: 56] [Cited by in F6Publishing: 47] [Article Influence: 28.0] [Reference Citation Analysis]
257 Koc S, Erdogan MA, Erdogan E, Yalcin A, Turk A, Erdogan MM. Protective effect of benfotiamine on methotrexate induced gastric damage in rats. Biotech Histochem 2020;:1-8. [PMID: 33325753 DOI: 10.1080/10520295.2020.1853237] [Reference Citation Analysis]
258 Gu YQ, Zhong YJ, Hu MQ, Li HQ, Yang K, Dong Q, Liang H, Chen ZF. Terpyridine copper(II) complexes as potential anticancer agents by inhibiting cell proliferation, blocking the cell cycle and inducing apoptosis in BEL-7402 cells. Dalton Trans 2022. [PMID: 35023532 DOI: 10.1039/d1dt02988f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]