BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chal J, Al Tanoury Z, Hestin M, Gobert B, Aivio S, Hick A, Cherrier T, Nesmith AP, Parker KK, Pourquié O. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat Protoc 2016;11:1833-50. [PMID: 27583644 DOI: 10.1038/nprot.2016.110] [Cited by in Crossref: 163] [Cited by in F6Publishing: 168] [Article Influence: 23.3] [Reference Citation Analysis]
Number Citing Articles
1 Gartz M, Haberman M, Sutton J, Slick RA, Luttrell SM, Mack DL, Lawlor MW. ACTA1 H40Y mutant iPSC-derived skeletal myocytes display mitochondrial defects in an in vitro model of nemaline myopathy. Exp Cell Res 2023;424:113507. [PMID: 36796746 DOI: 10.1016/j.yexcr.2023.113507] [Reference Citation Analysis]
2 Pinton L, Khedr M, Lionello VM, Sarcar S, Maffioletti SM, Dastidar S, Negroni E, Choi S, Khokhar N, Bigot A, Counsell JR, Bernardo AS, Zammit PS, Tedesco FS. 3D human induced pluripotent stem cell-derived bioengineered skeletal muscles for tissue, disease and therapy modeling. Nat Protoc 2023. [PMID: 36792780 DOI: 10.1038/s41596-022-00790-8] [Reference Citation Analysis]
3 Ostrovidov S, Ramalingam M, Bae H, Orive G, Fujie T, Shi X, Kaji H. Latest developments in engineered skeletal muscle tissues for drug discovery and development. Expert Opin Drug Discov 2023;18:47-63. [PMID: 36535280 DOI: 10.1080/17460441.2023.2160438] [Reference Citation Analysis]
4 Chuai M, Serrano Nájera G, Serra M, Mahadevan L, Weijer CJ. Reconstruction of distinct vertebrate gastrulation modes via modulation of key cell behaviors in the chick embryo. Sci Adv 2023;9:eabn5429. [PMID: 36598979 DOI: 10.1126/sciadv.abn5429] [Reference Citation Analysis]
5 Diaz-Cuadros M, Miettinen TP, Skinner OS, Sheedy D, Díaz-García CM, Gapon S, Hubaud A, Yellen G, Manalis SR, Oldham WM, Pourquié O. Metabolic regulation of species-specific developmental rates. Nature 2023;613:550-7. [PMID: 36599986 DOI: 10.1038/s41586-022-05574-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
6 Bomkamp C, Musgrove L, Marques DMC, Fernando GF, Ferreira FC, Specht EA. Differentiation and Maturation of Muscle and Fat Cells in Cultivated Seafood: Lessons from Developmental Biology. Mar Biotechnol (NY) 2023;25:1-29. [PMID: 36374393 DOI: 10.1007/s10126-022-10174-4] [Reference Citation Analysis]
7 Cesare E, Urciuolo A, Stuart HT, Torchio E, Gesualdo A, Laterza C, Gagliano O, Martewicz S, Cui M, Manfredi A, Di Filippo L, Sabatelli P, Squarzoni S, Zorzan I, Betto RM, Martello G, Cacchiarelli D, Luni C, Elvassore N. 3D ECM-rich environment sustains the identity of naive human iPSCs. Cell Stem Cell 2022;29:1703-1717.e7. [PMID: 36459970 DOI: 10.1016/j.stem.2022.11.011] [Reference Citation Analysis]
8 Pantazis CB, Yang A, Lara E, McDonough JA, Blauwendraat C, Peng L, Oguro H, Kanaujiya J, Zou J, Sebesta D, Pratt G, Cross E, Blockwick J, Buxton P, Kinner-Bibeau L, Medura C, Tompkins C, Hughes S, Santiana M, Faghri F, Nalls MA, Vitale D, Ballard S, Qi YA, Ramos DM, Anderson KM, Stadler J, Narayan P, Papademetriou J, Reilly L, Nelson MP, Aggarwal S, Rosen LU, Kirwan P, Pisupati V, Coon SL, Scholz SW, Priebe T, Öttl M, Dong J, Meijer M, Janssen LJM, Lourenco VS, van der Kant R, Crusius D, Paquet D, Raulin AC, Bu G, Held A, Wainger BJ, Gabriele RMC, Casey JM, Wray S, Abu-Bonsrah D, Parish CL, Beccari MS, Cleveland DW, Li E, Rose IVL, Kampmann M, Calatayud Aristoy C, Verstreken P, Heinrich L, Chen MY, Schüle B, Dou D, Holzbaur ELF, Zanellati MC, Basundra R, Deshmukh M, Cohen S, Khanna R, Raman M, Nevin ZS, Matia M, Van Lent J, Timmerman V, Conklin BR, Johnson Chase K, Zhang K, Funes S, Bosco DA, Erlebach L, Welzer M, Kronenberg-Versteeg D, Lyu G, Arenas E, Coccia E, Sarrafha L, Ahfeldt T, Marioni JC, Skarnes WC, Cookson MR, Ward ME, Merkle FT. A reference human induced pluripotent stem cell line for large-scale collaborative studies. Cell Stem Cell 2022;29:1685-1702.e22. [PMID: 36459969 DOI: 10.1016/j.stem.2022.11.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
9 Shahriyari M, Islam MR, Sakib SM, Rinn M, Rika A, Krüger D, Kaurani L, Gisa V, Winterhoff M, Anandakumar H, Shomroni O, Schmidt M, Salinas G, Unger A, Linke WA, Zschüntzsch J, Schmidt J, Bassel-Duby R, Olson EN, Fischer A, Zimmermann WH, Tiburcy M. Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy. J Cachexia Sarcopenia Muscle 2022;13:3106-21. [PMID: 36254806 DOI: 10.1002/jcsm.13094] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Morera C, Kim J, Paredes-Redondo A, Nobles M, Rybin D, Moccia R, Kowala A, Meng J, Garren S, Liu P, Morgan JE, Muntoni F, Christoforou N, Owens J, Tinker A, Lin YY. CRISPR-mediated correction of skeletal muscle Ca(2+) handling in a novel DMD patient-derived pluripotent stem cell model. Neuromuscul Disord 2022;32:908-22. [PMID: 36418198 DOI: 10.1016/j.nmd.2022.10.007] [Reference Citation Analysis]
11 Strickland JB, Davis-Anderson K, Micheva-Viteva S, Twary S, Iyer R, Harris JF, Solomon EA. Optimization of Application-Driven Development of In Vitro Neuromuscular Junction Models. Tissue Eng Part B Rev 2022;28:1180-91. [PMID: 35018825 DOI: 10.1089/ten.TEB.2021.0204] [Reference Citation Analysis]
12 Badu-Mensah A, Valinski P, Parsaud H, Hickman JJ, Guo X. Hyperglycemia Negatively Affects IPSC-Derived Myoblast Proliferation and Skeletal Muscle Regeneration and Function. Cells 2022;11. [PMID: 36429100 DOI: 10.3390/cells11223674] [Reference Citation Analysis]
13 Choi S, Ferrari G, Moyle LA, Mackinlay K, Naouar N, Jalal S, Benedetti S, Wells C, Muntoni F, Tedesco FS. Assessing and enhancing migration of human myogenic progenitors using directed iPS cell differentiation and advanced tissue modelling. EMBO Mol Med 2022;14:e14526. [PMID: 36161772 DOI: 10.15252/emmm.202114526] [Reference Citation Analysis]
14 Hanson B, Conceição M, Lomonsova Y, Mäger I, Puri PL, Andaloussi SE, Wood MJ, Roberts TC. Extracellular vesicle-mediated promotion of myogenic differentiation is dependent on dose, collection media composition, and isolation method.. [DOI: 10.1101/2022.08.22.504734] [Reference Citation Analysis]
15 Badu-mensah A, Guo X, Nimbalkar S, Cai Y, Hickman JJ. ALS mutations in both human skeletal muscle and motoneurons differentially affects neuromuscular junction integrity and function. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121752] [Reference Citation Analysis]
16 Carraro E, Rossi L, Maghin E, Canton M, Piccoli M. 3D in vitro Models of Pathological Skeletal Muscle: Which Cells and Scaffolds to Elect? Front Bioeng Biotechnol 2022;10:941623. [DOI: 10.3389/fbioe.2022.941623] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Kim H, Perlingeiro RCR. Generation of human myogenic progenitors from pluripotent stem cells for in vivo regeneration. Cell Mol Life Sci 2022;79:406. [PMID: 35802202 DOI: 10.1007/s00018-022-04434-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Marchioretti C, Zuccaro E, Pandey UB, Rosati J, Basso M, Pennuto M. Skeletal Muscle Pathogenesis in Polyglutamine Diseases. Cells 2022;11:2105. [DOI: 10.3390/cells11132105] [Reference Citation Analysis]
19 Bruge C, Geoffroy M, Benabides M, Pellier E, Gicquel E, Dhiab J, Hoch L, Richard I, Nissan X. Skeletal Muscle Cells Derived from Induced Pluripotent Stem Cells: A Platform for Limb Girdle Muscular Dystrophies. Biomedicines 2022;10:1428. [DOI: 10.3390/biomedicines10061428] [Reference Citation Analysis]
20 Mashinchian O, De Franceschi F, Nassiri S, Michaud J, Migliavacca E, Aouad P, Metairon S, Pruvost S, Karaz S, Fabre P, Molina T, Stuelsatz P, Hegde N, Le Moal E, Dammone G, Dumont NA, Lutolf MP, Feige JN, Bentzinger CF. An engineered multicellular stem cell niche for the 3D derivation of human myogenic progenitors from iPSCs. EMBO J 2022;:e110655. [PMID: 35703167 DOI: 10.15252/embj.2022110655] [Reference Citation Analysis]
21 Rao J, Chal J, Marchianò F, Wang C, Al Tanoury Z, Gapon S, Djeffal Y, Mayeuf-louchart A, Glass I, Sefton EM, Habermann B, Kardon G, Watt FM, Tseng Y, Pourquié O. Reconstructing human Brown Fat developmental trajectory in vitro.. [DOI: 10.1101/2022.06.01.494355] [Reference Citation Analysis]
22 Ramirez-Martinez A, Zhang Y, van den Boogaard MJ, McAnally JR, Rodriguez-Caycedo C, Chai AC, Chemello F, Massink MP, Cuppen I, Elferink MG, van Es RJ, Janssen NG, Walraven-van Oijen LP, Liu N, Bassel-Duby R, van Jaarsveld RH, Olson EN. Impaired activity of the fusogenic micropeptide Myomixer causes myopathy resembling Carey-Fineman-Ziter syndrome. J Clin Invest 2022;132:e159002. [PMID: 35642635 DOI: 10.1172/JCI159002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Metzler E, Escobar H, Sunaga-franze DY, Sauer S, Diecke S, Spuler S. Generation of hiPSC-Derived Skeletal Muscle Cells: Exploiting the Potential of Skeletal Muscle-Derived hiPSCs. Biomedicines 2022;10:1204. [DOI: 10.3390/biomedicines10051204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Smith AS, Luttrell SM, Dupont J, Gray K, Lih D, Fleming JW, Cunningham NJ, Jepson S, Hesson J, Mathieu J, Maves L, Berry BJ, Fisher EC, Sniadecki NJ, Geisse NA, Mack DL. High-throughput, real-time monitoring of engineered skeletal muscle function using magnetic sensing.. [DOI: 10.1101/2022.05.20.492879] [Reference Citation Analysis]
25 Pappas MP, Xie N, Penaloza JS, Chan SSK. Defining the Skeletal Myogenic Lineage in Human Pluripotent Stem Cell-Derived Teratomas. Cells 2022;11:1589. [PMID: 35563894 DOI: 10.3390/cells11091589] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Bruge C, Geoffroy M, Benabidès M, Pellier E, Gicquel E, Dhiab J, Hoch L, Richard I, Nissan X. Skeletal muscle cells derived from induced pluripotent stem cells: A platform for limb girdle muscular dystrophies.. [DOI: 10.1101/2022.05.08.489343] [Reference Citation Analysis]
27 Shin MK, Bang JS, Lee JE, Tran HD, Park G, Lee DR, Jo J. Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells to Model Myogenesis and Muscle Regeneration. Int J Mol Sci 2022;23:5108. [PMID: 35563499 DOI: 10.3390/ijms23095108] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Shirakawa T, Toyono T, Inoue A, Matsubara T, Kawamoto T, Kokabu S. Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells 2022;11:1493. [DOI: 10.3390/cells11091493] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Iberite F, Gruppioni E, Ricotti L. Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges. NPJ Regen Med 2022;7:23. [PMID: 35393412 DOI: 10.1038/s41536-022-00216-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Zschüntzsch J, Meyer S, Shahriyari M, Kummer K, Schmidt M, Kummer S, Tiburcy M. The Evolution of Complex Muscle Cell In Vitro Models to Study Pathomechanisms and Drug Development of Neuromuscular Disease. Cells 2022;11:1233. [PMID: 35406795 DOI: 10.3390/cells11071233] [Reference Citation Analysis]
31 Jiang Y, Torun T, Maffioletti SM, Serio A, Tedesco FS. Bioengineering human skeletal muscle models: Recent advances, current challenges and future perspectives. Experimental Cell Research 2022. [DOI: 10.1016/j.yexcr.2022.113133] [Reference Citation Analysis]
32 Khateb M, Perovanovic J, Ko KD, Jiang K, Feng X, Acevedo-luna N, Chal J, Ciuffoli V, Genzor P, Simone J, Haase AD, Pourquié O, Dell’orso S, Sartorelli V. Transcriptomics, Regulatory Syntax, and Enhancer Identification in Heterogenous Populations of Mesoderm-Induced ESCs at Single-Cell Resolution.. [DOI: 10.1101/2022.03.29.486247] [Reference Citation Analysis]
33 Pazhouhnia Z, Beheshtizadeh N, Namini MS, Lotfibakhshaiesh N. Portable hand‐held bioprinters promote in situ tissue regeneration. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10307] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Morera C, Kim J, Paredes-redondo A, Nobles M, Rybin D, Moccia R, Kowala A, Meng J, Garren S, Liu P, Morgan JE, Muntoni F, Christoforou N, Owens J, Tinker A, Lin Y. CRISPR-mediated correction of skeletal muscle Ca2+ handling in a novel DMD patient-derived pluripotent stem cell model.. [DOI: 10.1101/2022.02.17.480850] [Reference Citation Analysis]
35 Hardeland R. Melatonin and the Programming of Stem Cells. Int J Mol Sci 2022;23:1971. [PMID: 35216086 DOI: 10.3390/ijms23041971] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Badu-Mensah A, Guo X, Hickman JJ. ALS Skeletal Muscle: Victim or Culprit. Neurosci Chron 2021;2:31-3. [PMID: 35098252 DOI: 10.46439/neuroscience.2.012] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Pourquié O. A brief history of the segmentation clock. Developmental Biology 2022. [DOI: 10.1016/j.ydbio.2022.02.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Guo D, Daman K, Chen JJ, Shi M, Yan J, Matijasevic Z, Rickard AM, Bennett MH, Kiselyov A, Zhou H, Bang AG, Wagner KR, Maehr R, King OD, Hayward LJ, Emerson CP. iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease modeling. eLife 2022;11:e70341. [DOI: 10.7554/elife.70341] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
39 Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022;74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
40 Smith AS, Luttrell SM, Dupont JB, Gray K, Lih D, Fleming JW, Cunningham NJ, Jepson S, Hesson J, Mathieu J, Maves L, Berry BJ, Fisher EC, Sniadecki NJ, Geisse NA, Mack DL. High-throughput, real-time monitoring of engineered skeletal muscle function using magnetic sensing. J Tissue Eng 2022;13:20417314221122127. [PMID: 36082311 DOI: 10.1177/20417314221122127] [Reference Citation Analysis]
41 Breuls N, Giarratana N, Yedigaryan L, Sampaolesi M. Epigenetic modifications in induced pluripotent stem cells to boost myogenic commitment. Current Topics in iPSCs Technology 2022. [DOI: 10.1016/b978-0-323-99892-5.00019-0] [Reference Citation Analysis]
42 Samandari M, Quint J, Tamayol A. 3D printing for soft musculoskeletal tissue engineering. Musculoskeletal Tissue Engineering 2022. [DOI: 10.1016/b978-0-12-823893-6.00010-3] [Reference Citation Analysis]
43 de Lamotte JD, Polentes J, Roussange F, Lesueur L, Feurgard P, Perrier A, Nicoleau C, Martinat C. Optogenetically controlled human functional motor endplate for testing botulinum neurotoxins. Stem Cell Res Ther 2021;12:599. [PMID: 34865655 DOI: 10.1186/s13287-021-02665-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
44 Kinoshita M, Kobayashi T, Planells B, Klisch D, Spindlow D, Masaki H, Bornelöv S, Stirparo GG, Matsunari H, Uchikura A, Lamas-Toranzo I, Nichols J, Nakauchi H, Nagashima H, Alberio R, Smith A. Pluripotent stem cells related to embryonic disc exhibit common self-renewal requirements in diverse livestock species. Development 2021;148:dev199901. [PMID: 34874452 DOI: 10.1242/dev.199901] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
45 Hörner SJ, Couturier N, Bruch R, Koch P, Hafner M, Rudolf R. hiPSC-Derived Schwann Cells Influence Myogenic Differentiation in Neuromuscular Cocultures. Cells 2021;10:3292. [PMID: 34943800 DOI: 10.3390/cells10123292] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
46 Rashid MI, Ito T, Shimojo D, Arimoto K, Onodera K, Okada R, Nagashima T, Yamamoto K, Khatun Z, Okano H, Sakurai H, Shimizu K, Doyu M, Okada Y. Simple and efficient differentiation of human iPSCs into contractible skeletal muscles for muscular disease modeling.. [DOI: 10.1101/2021.11.22.468571] [Reference Citation Analysis]
47 Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021;9:764732. [PMID: 34778273 DOI: 10.3389/fcell.2021.764732] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
48 Mao Q, Acharya A, Rodríguez-delarosa A, Marchiano F, Dehapiot B, Tanoury ZA, Rao J, Díaz-cuadros M, Mansur A, Wagner E, Chardes C, Gupta VA, Lenne P, Habermann BH, Theodoly O, Pourquie O, Schnorrer F. Tension-driven multi-scale self-organisation in human iPSC-derived muscle fibers.. [DOI: 10.1101/2021.10.24.465614] [Reference Citation Analysis]
49 Chuai M, Serrano Nájera G, Serra M, Mahadevan L, Weijer CJ. Reconstruction of distinct vertebrate gastrulation modes via modulation of key cell behaviours in the chick embryo.. [DOI: 10.1101/2021.10.03.462938] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
50 Esteves de Lima J, Relaix F. Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation. Cell Regen 2021;10:31. [PMID: 34595600 DOI: 10.1186/s13619-021-00093-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
51 Dehner CA, Armstrong AE, Yohe M, Shern JF, Hirbe AC. Genetic Characterization, Current Model Systems and Prognostic Stratification in PAX Fusion-Negative vs. PAX Fusion-Positive Rhabdomyosarcoma. Genes (Basel) 2021;12:1500. [PMID: 34680895 DOI: 10.3390/genes12101500] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Ebrahimi M, Lad H, Fusto A, Tiper Y, Datye A, Nguyen CT, Jacques E, Moyle LA, Nguyen T, Musgrave B, Chávez-Madero C, Bigot A, Chen C, Turner S, Stewart BA, Pegoraro E, Vitiello L, Gilbert PM. De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle. Acta Biomater 2021;132:227-44. [PMID: 34048976 DOI: 10.1016/j.actbio.2021.05.020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
53 Paredes-Redondo A, Harley P, Maniati E, Ryan D, Louzada S, Meng J, Kowala A, Fu B, Yang F, Liu P, Marino S, Pourquié O, Muntoni F, Wang J, Lieberam I, Lin YY. Optogenetic modeling of human neuromuscular circuits in Duchenne muscular dystrophy with CRISPR and pharmacological corrections. Sci Adv 2021;7:eabi8787. [PMID: 34516770 DOI: 10.1126/sciadv.abi8787] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
54 Boukhatmi H. Drosophila, an Integrative Model to Study the Features of Muscle Stem Cells in Development and Regeneration. Cells 2021;10:2112. [PMID: 34440881 DOI: 10.3390/cells10082112] [Reference Citation Analysis]
55 Jalal S, Dastidar S, Tedesco FS. Advanced models of human skeletal muscle differentiation, development and disease: Three-dimensional cultures, organoids and beyond. Curr Opin Cell Biol 2021;73:92-104. [PMID: 34384976 DOI: 10.1016/j.ceb.2021.06.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
56 Pereira JA, Gerber J, Ghidinelli M, Gerber D, Tortola L, Ommer A, Bachofner S, Santarella F, Tinelli E, Lin S, Rüegg MA, Kopf M, Toyka KV, Suter U. Mice carrying an analogous heterozygous dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy. Hum Mol Genet 2020;29:1253-73. [PMID: 32129442 DOI: 10.1093/hmg/ddaa034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
57 Sato T. Induction of Skeletal Muscle Progenitors and Stem Cells from human induced Pluripotent Stem Cells. J Neuromuscul Dis 2020;7:395-405. [PMID: 32538862 DOI: 10.3233/JND-200497] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
58 Shahriyari M, Islam MR, Sakib MS, Rika A, Krüger D, Kaurani L, Anandakumar H, Shomroni O, Schmidt M, Salinas G, Unger A, Linke WA, Zschüntzsch J, Schmidt J, Fischer A, Zimmermann W, Tiburcy M. Human engineered skeletal muscle of hypaxial origin from pluripotent stem cells with advanced function and regenerative capacity.. [DOI: 10.1101/2021.07.12.452030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Al Tanoury Z, Zimmerman JF, Rao J, Sieiro D, McNamara HM, Cherrier T, Rodríguez-delaRosa A, Hick-Colin A, Bousson F, Fugier-Schmucker C, Marchiano F, Habermann B, Chal J, Nesmith AP, Gapon S, Wagner E, Gupta VA, Bassel-Duby R, Olson EN, Cohen AE, Parker KK, Pourquié O. Prednisolone rescues Duchenne muscular dystrophy phenotypes in human pluripotent stem cell-derived skeletal muscle in vitro. Proc Natl Acad Sci U S A 2021;118:e2022960118. [PMID: 34260377 DOI: 10.1073/pnas.2022960118] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
60 Alarcin E, Bal-Öztürk A, Avci H, Ghorbanpoor H, Dogan Guzel F, Akpek A, Yesiltas G, Canak-Ipek T, Avci-Adali M. Current Strategies for the Regeneration of Skeletal Muscle Tissue. Int J Mol Sci 2021;22:5929. [PMID: 34072959 DOI: 10.3390/ijms22115929] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
61 Jeong J, Choi KH, Kim SH, Lee DK, Oh JN, Lee M, Choe GC, Lee CK. Combination of cell signaling molecules can facilitate MYOD1-mediated myogenic transdifferentiation of pig fibroblasts. J Anim Sci Biotechnol 2021;12:64. [PMID: 33980301 DOI: 10.1186/s40104-021-00583-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
62 Brunetti J, Koenig S, Monnier A, Frieden M. Nanopattern surface improves cultured human myotube maturation. Skelet Muscle 2021;11:12. [PMID: 33952323 DOI: 10.1186/s13395-021-00268-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Yan L, Rodríguez-delaRosa A, Pourquié O. Human muscle production in vitro from pluripotent stem cells: Basic and clinical applications. Semin Cell Dev Biol 2021:S1084-9521(21)00090-2. [PMID: 33941447 DOI: 10.1016/j.semcdb.2021.04.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
64 Cappella M, Elouej S, Biferi MG. The Potential of Induced Pluripotent Stem Cells to Test Gene Therapy Approaches for Neuromuscular and Motor Neuron Disorders. Front Cell Dev Biol 2021;9:662837. [PMID: 33937264 DOI: 10.3389/fcell.2021.662837] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
65 Nayak P, Colas A, Mercola M, Varghese S, Subramaniam S. Temporal mechanisms of myogenic specification in human induced pluripotent stem cells. Sci Adv 2021;7:eabf7412. [PMID: 33731358 DOI: 10.1126/sciadv.abf7412] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
66 Vrbský J, Vinarský V, Perestrelo AR, De La Cruz JO, Martino F, Pompeiano A, Izzi V, Hlinomaz O, Rotrekl V, Sudol M, Pagliari S, Forte G. Evidence for discrete modes of YAP1 signaling via mRNA splice isoforms in development and diseases. Genomics 2021;113:1349-65. [PMID: 33713822 DOI: 10.1016/j.ygeno.2021.03.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
67 Diaz-Cuadros M, Pourquie O. In vitro systems: A new window to the segmentation clock. Dev Growth Differ 2021;63:140-53. [PMID: 33460448 DOI: 10.1111/dgd.12710] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
68 Kinoshita M, Barber M, Mansfield W, Cui Y, Spindlow D, Stirparo GG, Dietmann S, Nichols J, Smith A. Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency. Cell Stem Cell 2021;28:453-471.e8. [PMID: 33271069 DOI: 10.1016/j.stem.2020.11.005] [Cited by in Crossref: 83] [Cited by in F6Publishing: 81] [Article Influence: 41.5] [Reference Citation Analysis]
69 Ferrari G, Choi S, Moyle LA, Mackinlay K, Naouar N, Wells C, Muntoni F, Tedesco FS. DLL4 and PDGF-BB regulate migration of human iPSC-derived skeletal myogenic progenitors.. [DOI: 10.1101/2021.02.28.431778] [Reference Citation Analysis]
70 Biressi S, Filareto A, Rando TA. Stem cell therapy for muscular dystrophies. J Clin Invest 2020;130:5652-64. [PMID: 32946430 DOI: 10.1172/JCI142031] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 13.5] [Reference Citation Analysis]
71 Wymeersch FJ, Wilson V, Tsakiridis A. Understanding axial progenitor biology in vivo and in vitro. Development 2021;148:dev180612. [PMID: 33593754 DOI: 10.1242/dev.180612] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
72 Costantini M, Testa S, Fornetti E, Fuoco C, Sanchez Riera C, Nie M, Bernardini S, Rainer A, Baldi J, Zoccali C, Biagini R, Castagnoli L, Vitiello L, Blaauw B, Seliktar D, Święszkowski W, Garstecki P, Takeuchi S, Cesareni G, Cannata S, Gargioli C. Biofabricating murine and human myo-substitutes for rapid volumetric muscle loss restoration. EMBO Mol Med 2021;13:e12778. [PMID: 33587336 DOI: 10.15252/emmm.202012778] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
73 Jarrige M, Frank E, Herardot E, Martineau S, Darle A, Benabides M, Domingues S, Chose O, Habeler W, Lorant J, Baldeschi C, Martinat C, Monville C, Morizur L, Ben M'Barek K. The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells 2021;10:240. [PMID: 33513719 DOI: 10.3390/cells10020240] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
74 Barruet E, Garcia SM, Wu J, Morales BM, Tamaki S, Moody T, Pomerantz JH, Hsiao EC. ACVR1R206H increases osteogenic/ECM gene expression and impairs myofiber formation in human skeletal muscle stem cells.. [DOI: 10.1101/2021.01.18.427082] [Reference Citation Analysis]
75 Tey S, Robertson S, Suzuki M. Skeletal muscle engineering using human induced pluripotent stem cells for in vitro disease modeling. iPSCs in Tissue Engineering 2021. [DOI: 10.1016/b978-0-12-823809-7.00006-2] [Reference Citation Analysis]
76 Engquist EN, Zammit PS. The Satellite Cell at 60: The Foundation Years. J Neuromuscul Dis 2021;8:S183-203. [PMID: 34459412 DOI: 10.3233/JND-210705] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
77 Andersen J, Revah O, Miura Y, Thom N, Amin ND, Kelley KW, Singh M, Chen X, Thete MV, Walczak EM, Vogel H, Fan HC, Paşca SP. Generation of Functional Human 3D Cortico-Motor Assembloids. Cell 2020;183:1913-1929.e26. [PMID: 33333020 DOI: 10.1016/j.cell.2020.11.017] [Cited by in Crossref: 135] [Cited by in F6Publishing: 145] [Article Influence: 45.0] [Reference Citation Analysis]
78 Kim H, Selvaraj S, Kiley J, Azzag K, Garay BI, Perlingeiro RCR. Genomic Safe Harbor Expression of PAX7 for the Generation of Engraftable Myogenic Progenitors. Stem Cell Reports 2021;16:10-9. [PMID: 33275879 DOI: 10.1016/j.stemcr.2020.11.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
79 Choi S, Ferrari G, Tedesco FS. Cellular dynamics of myogenic cell migration: molecular mechanisms and implications for skeletal muscle cell therapies. EMBO Mol Med 2020;12:e12357. [PMID: 33210465 DOI: 10.15252/emmm.202012357] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
80 Gheibi S, Singh T, da Cunha JPMCM, Fex M, Mulder H. Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes. Cells 2020;9:E2465. [PMID: 33198288 DOI: 10.3390/cells9112465] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
81 Cho KW, Lee WH, Kim B, Kim D. Sensors in heart-on-a-chip: A review on recent progress. Talanta 2020;219:121269. [DOI: 10.1016/j.talanta.2020.121269] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
82 Desai D, Khanna A, Pethe P. PRC1 catalytic unit RING1B regulates early neural differentiation of human pluripotent stem cells. Exp Cell Res 2020;396:112294. [PMID: 32971117 DOI: 10.1016/j.yexcr.2020.112294] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
83 Tanoury ZA, Zimmermann JF, Rao J, Sieiro D, Mcnamara H, Cherrier T, Hick A, Bousson F, Fugier C, Marchiano F, Habermann B, Chal J, Nesmith AP, Gapon S, Wagner E, Bassel-duby R, Olson E, Cohen AE, Parker KK, Pourquié O. Prednisolone rescues Duchenne Muscular Dystrophy phenotypes in human pluripotent stem cells-derived skeletal muscle in vitro.. [DOI: 10.1101/2020.10.29.360826] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
84 Guo X, Badu-Mensah A, Thomas MC, McAleer CW, Hickman JJ. Characterization of Functional Human Skeletal Myotubes and Neuromuscular Junction Derived-From the Same Induced Pluripotent Stem Cell Source. Bioengineering (Basel) 2020;7:E133. [PMID: 33105732 DOI: 10.3390/bioengineering7040133] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
85 Speciale AA, Ellerington R, Goedert T, Rinaldi C. Modelling Neuromuscular Diseases in the Age of Precision Medicine. J Pers Med 2020;10:E178. [PMID: 33080928 DOI: 10.3390/jpm10040178] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
86 Reid G, Magarotto F, Marsano A, Pozzobon M. Next Stage Approach to Tissue Engineering Skeletal Muscle. Bioengineering (Basel) 2020;7:E118. [PMID: 33007935 DOI: 10.3390/bioengineering7040118] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
87 Kinoshita M, Barber M, Mansfield W, Cui Y, Spindlow D, Stirparo GG, Dietmann S, Nichols J, Smith A. Capture of mouse and human stem cells with features of formative pluripotency.. [DOI: 10.1101/2020.09.04.283218] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
88 Badu-Mensah A, Guo X, McAleer CW, Rumsey JW, Hickman JJ. Functional skeletal muscle model derived from SOD1-mutant ALS patient iPSCs recapitulates hallmarks of disease progression. Sci Rep 2020;10:14302. [PMID: 32868812 DOI: 10.1038/s41598-020-70510-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
89 Santoso JW, McCain ML. Neuromuscular disease modeling on a chip. Dis Model Mech 2020;13:dmm044867. [PMID: 32817118 DOI: 10.1242/dmm.044867] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
90 Zhao M, Tazumi A, Takayama S, Takenaka-Ninagawa N, Nalbandian M, Nagai M, Nakamura Y, Nakasa M, Watanabe A, Ikeya M, Hotta A, Ito Y, Sato T, Sakurai H. Induced Fetal Human Muscle Stem Cells with High Therapeutic Potential in a Mouse Muscular Dystrophy Model. Stem Cell Reports 2020;15:80-94. [PMID: 32619494 DOI: 10.1016/j.stemcr.2020.06.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
91 Selvaraj S, Kyba M, Perlingeiro RCR. Pluripotent Stem Cell-Based Therapeutics for Muscular Dystrophies. Trends Mol Med 2019;25:803-16. [PMID: 31473142 DOI: 10.1016/j.molmed.2019.07.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
92 Al Tanoury Z, Rao J, Tassy O, Gobert B, Gapon S, Garnier JM, Wagner E, Hick A, Hall A, Gussoni E, Pourquié O. Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage in vitro. Development 2020;147:dev187344. [PMID: 32541004 DOI: 10.1242/dev.187344] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
93 Oginuma M, Harima Y, Tarazona OA, Diaz-Cuadros M, Michaut A, Ishitani T, Xiong F, Pourquié O. Intracellular pH controls WNT downstream of glycolysis in amniote embryos. Nature 2020;584:98-101. [PMID: 32581357 DOI: 10.1038/s41586-020-2428-0] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 17.7] [Reference Citation Analysis]
94 Spehar K, Pan A, Beerman I. Restoring aged stem cell functionality: Current progress and future directions. Stem Cells 2020;38:1060-77. [PMID: 32473067 DOI: 10.1002/stem.3234] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
95 Florkowska A, Meszka I, Zawada M, Legutko D, Proszynski TJ, Janczyk-Ilach K, Streminska W, Ciemerych MA, Grabowska I. Pax7 as molecular switch regulating early and advanced stages of myogenic mouse ESC differentiation in teratomas. Stem Cell Res Ther 2020;11:238. [PMID: 32552916 DOI: 10.1186/s13287-020-01742-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
96 Costantini M, Testa S, Fornetti E, Fuoco C, Nie M, Bernardini S, Rainer A, Baldi J, Zoccali C, Biagini R, Castagnoli L, Vitiello L, Blaauw B, Seliktar D, Święszkowski W, Garstecki P, Takeuchi S, Cesareni G, Cannata S, Gargioli C. Biofabricating murine and human myo-substitutes for rapid volumetric muscle loss restoration.. [DOI: 10.1101/2020.05.25.114819] [Reference Citation Analysis]
97 He R, Li H, Wang L, Li Y, Zhang Y, Chen M, Zhu Y, Zhang C. Engraftment of human induced pluripotent stem cell-derived myogenic progenitors restores dystrophin in mice with duchenne muscular dystrophy. Biol Res 2020;53:22. [PMID: 32430065 DOI: 10.1186/s40659-020-00288-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
98 Xi H, Langerman J, Sabri S, Chien P, Young CS, Younesi S, Hicks M, Gonzalez K, Fujiwara W, Marzi J, Liebscher S, Spencer M, Van Handel B, Evseenko D, Schenke-Layland K, Plath K, Pyle AD. A Human Skeletal Muscle Atlas Identifies the Trajectories of Stem and Progenitor Cells across Development and from Human Pluripotent Stem Cells. Cell Stem Cell 2020;27:158-176.e10. [PMID: 32396864 DOI: 10.1016/j.stem.2020.04.017] [Cited by in Crossref: 46] [Cited by in F6Publishing: 31] [Article Influence: 15.3] [Reference Citation Analysis]
99 Judson RN, Rossi FMV. Towards stem cell therapies for skeletal muscle repair. NPJ Regen Med 2020;5:10. [PMID: 32411395 DOI: 10.1038/s41536-020-0094-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
100 Afshar ME, Abraha HY, Bakooshli MA, Davoudi S, Thavandiran N, Tung K, Ahn H, Ginsberg HJ, Zandstra PW, Gilbert PM. A 96-well culture platform enables longitudinal analyses of engineered human skeletal muscle microtissue strength. Sci Rep 2020;10:6918. [PMID: 32332853 DOI: 10.1038/s41598-020-62837-8] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 15.0] [Reference Citation Analysis]
101 Kim E, Wu F, Wu X, Choo HJ. Generation of craniofacial myogenic progenitor cells from human induced pluripotent stem cells for skeletal muscle tissue regeneration. Biomaterials 2020;248:119995. [PMID: 32283390 DOI: 10.1016/j.biomaterials.2020.119995] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
102 Matsuda M, Yamanaka Y, Uemura M, Osawa M, Saito MK, Nagahashi A, Nishio M, Guo L, Ikegawa S, Sakurai S, Kihara S, Maurissen TL, Nakamura M, Matsumoto T, Yoshitomi H, Ikeya M, Kawakami N, Yamamoto T, Woltjen K, Ebisuya M, Toguchida J, Alev C. Recapitulating the human segmentation clock with pluripotent stem cells. Nature 2020;580:124-9. [PMID: 32238941 DOI: 10.1038/s41586-020-2144-9] [Cited by in Crossref: 97] [Cited by in F6Publishing: 99] [Article Influence: 32.3] [Reference Citation Analysis]
103 Colón A, Badu-Mensah A, Guo X, Goswami A, Hickman JJ. Differentiation of Intrafusal Fibers from Human Induced Pluripotent Stem Cells. ACS Chem Neurosci 2020;11:1085-92. [PMID: 32159941 DOI: 10.1021/acschemneuro.0c00055] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
104 Russell CS, Mostafavi A, Quint JP, Panayi AC, Baldino K, Williams TJ, Daubendiek JG, Hugo Sánchez V, Bonick Z, Trujillo-miranda M, Shin SR, Pourquie O, Salehi S, Sinha I, Tamayol A. In Situ Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries. ACS Appl Bio Mater 2020;3:1568-79. [DOI: 10.1021/acsabm.9b01176] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 19.3] [Reference Citation Analysis]
105 McNamara HM, Salegame R, Al Tanoury Z, Xu H, Begum S, Ortiz G, Pourquie O, Cohen AE. Bioelectrical domain walls in homogeneous tissues. Nat Phys 2020;16:357-64. [PMID: 33790984 DOI: 10.1038/s41567-019-0765-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
106 Faustino Martins JM, Fischer C, Urzi A, Vidal R, Kunz S, Ruffault PL, Kabuss L, Hube I, Gazzerro E, Birchmeier C, Spuler S, Sauer S, Gouti M. Self-Organizing 3D Human Trunk Neuromuscular Organoids. Cell Stem Cell 2020;26:172-186.e6. [PMID: 31956040 DOI: 10.1016/j.stem.2019.12.007] [Cited by in Crossref: 106] [Cited by in F6Publishing: 111] [Article Influence: 35.3] [Reference Citation Analysis]
107 Diaz-Cuadros M, Wagner DE, Budjan C, Hubaud A, Tarazona OA, Donelly S, Michaut A, Al Tanoury Z, Yoshioka-Kobayashi K, Niino Y, Kageyama R, Miyawaki A, Touboul J, Pourquié O. In vitro characterization of the human segmentation clock. Nature 2020;580:113-8. [PMID: 31915384 DOI: 10.1038/s41586-019-1885-9] [Cited by in Crossref: 89] [Cited by in F6Publishing: 93] [Article Influence: 29.7] [Reference Citation Analysis]
108 Pruller J, Zammit PS. Overview of Cell Types Capable of Contributing to Skeletal Muscle Repair and Regeneration. Cell Engineering and Regeneration 2020. [DOI: 10.1007/978-3-319-08831-0_2] [Reference Citation Analysis]
109 Brand-saberi B, Offei EB. Skeletal Muscle Stem Cells. Essential Current Concepts in Stem Cell Biology 2020. [DOI: 10.1007/978-3-030-33923-4_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
110 Vilquin JT, Braun S. [Cell therapy in muscular disorders: the future lies in comparisons of progenitors]. Med Sci (Paris) 2019;35 Hors série n° 2:7-10. [PMID: 31859623 DOI: 10.1051/medsci/2019188] [Reference Citation Analysis]
111 Ortuño-Costela MDC, Cerrada V, García-López M, Gallardo ME. The Challenge of Bringing iPSCs to the Patient. Int J Mol Sci 2019;20:E6305. [PMID: 31847153 DOI: 10.3390/ijms20246305] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 7.0] [Reference Citation Analysis]
112 Sato M, Takizawa H, Nakamura A, Turner BJ, Shabanpoor F, Aoki Y. Application of Urine-Derived Stem Cells to Cellular Modeling in Neuromuscular and Neurodegenerative Diseases. Front Mol Neurosci 2019;12:297. [PMID: 31920531 DOI: 10.3389/fnmol.2019.00297] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
113 Tiburcy M, Markov A, Kraemer LK, Christalla P, Rave-Fraenk M, Fischer HJ, Reichardt HM, Zimmermann WH. Regeneration competent satellite cell niches in rat engineered skeletal muscle. FASEB Bioadv 2019;1:731-46. [PMID: 32123818 DOI: 10.1096/fba.2019-00013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
114 Xu B, Zhang M, Perlingeiro RCR, Shen W. Skeletal Muscle Constructs Engineered from Human Embryonic Stem Cell Derived Myogenic Progenitors Exhibit Enhanced Contractile Forces When Differentiated in a Medium Containing EGM‐2 Supplements. Adv Biosys 2019;3:1900005. [DOI: 10.1002/adbi.201900005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
115 MacQueen LA, Alver CG, Chantre CO, Ahn S, Cera L, Gonzalez GM, O'Connor BB, Drennan DJ, Peters MM, Motta SE, Zimmerman JF, Parker KK. Muscle tissue engineering in fibrous gelatin: implications for meat analogs. NPJ Sci Food 2019;3:20. [PMID: 31646181 DOI: 10.1038/s41538-019-0054-8] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 14.8] [Reference Citation Analysis]
116 Sun C, Serra C, Lee G, Wagner KR. Stem cell-based therapies for Duchenne muscular dystrophy. Exp Neurol 2020;323:113086. [PMID: 31639376 DOI: 10.1016/j.expneurol.2019.113086] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 13.5] [Reference Citation Analysis]
117 Kim J, Lana B, Torelli S, Ryan D, Catapano F, Ala P, Luft C, Stevens E, Konstantinidis E, Louzada S, Fu B, Paredes-Redondo A, Chan AE, Yang F, Stemple DL, Liu P, Ketteler R, Selwood DL, Muntoni F, Lin YY. A new patient-derived iPSC model for dystroglycanopathies validates a compound that increases glycosylation of α-dystroglycan. EMBO Rep 2019;20:e47967. [PMID: 31566294 DOI: 10.15252/embr.201947967] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
118 Jiwlawat N, Lynch EM, Napiwocki BN, Stempien A, Ashton RS, Kamp TJ, Crone WC, Suzuki M. Micropatterned substrates with physiological stiffness promote cell maturation and Pompe disease phenotype in human induced pluripotent stem cell-derived skeletal myocytes. Biotechnol Bioeng 2019;116:2377-92. [PMID: 31131875 DOI: 10.1002/bit.27075] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
119 Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019;37:1246-62. [PMID: 30604468 DOI: 10.1002/jor.24212] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 11.5] [Reference Citation Analysis]
120 Piga D, Salani S, Magri F, Brusa R, Mauri E, Comi GP, Bresolin N, Corti S. Human induced pluripotent stem cell models for the study and treatment of Duchenne and Becker muscular dystrophies. Ther Adv Neurol Disord 2019;12:1756286419833478. [PMID: 31105767 DOI: 10.1177/1756286419833478] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
121 Ostrovidov S, Salehi S, Costantini M, Suthiwanich K, Ebrahimi M, Sadeghian RB, Fujie T, Shi X, Cannata S, Gargioli C, Tamayol A, Dokmeci MR, Orive G, Swieszkowski W, Khademhosseini A. 3D Bioprinting in Skeletal Muscle Tissue Engineering. Small 2019;15:e1805530. [PMID: 31012262 DOI: 10.1002/smll.201805530] [Cited by in Crossref: 119] [Cited by in F6Publishing: 126] [Article Influence: 29.8] [Reference Citation Analysis]
122 Toepfer CN, Sharma A, Cicconet M, Garfinkel AC, Mücke M, Neyazi M, Willcox JAL, Agarwal R, Schmid M, Rao J, Ewoldt J, Pourquié O, Chopra A, Chen CS, Seidman JG, Seidman CE. SarcTrack. Circ Res 2019;124:1172-83. [PMID: 30700234 DOI: 10.1161/CIRCRESAHA.118.314505] [Cited by in Crossref: 75] [Cited by in F6Publishing: 71] [Article Influence: 18.8] [Reference Citation Analysis]
123 Rostovskaya M, Stirparo GG, Smith A. Capacitation of human naïve pluripotent stem cells for multi-lineage differentiation. Development 2019;146:dev172916. [PMID: 30944104 DOI: 10.1242/dev.172916] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 15.0] [Reference Citation Analysis]
124 Del Carmen Ortuño-Costela M, García-López M, Cerrada V, Gallardo ME. iPSCs: A powerful tool for skeletal muscle tissue engineering. J Cell Mol Med 2019;23:3784-94. [PMID: 30933431 DOI: 10.1111/jcmm.14292] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
125 Li WJ, Jiao H, Walczak BE. Emerging opportunities for induced pluripotent stem cells in orthopaedics. J Orthop Translat 2019;17:73-81. [PMID: 31194067 DOI: 10.1016/j.jot.2019.03.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
126 Wang Y, Hao L, Li H, Cleary JD, Tomac MP, Thapa A, Guo X, Zeng D, Wang H, McRae M, Jastrzemski O, Smith-Fassler AM, Xu Y, Xia G. Abnormal nuclear aggregation and myotube degeneration in myotonic dystrophy type 1. Neurol Sci 2019;40:1255-65. [PMID: 30891637 DOI: 10.1007/s10072-019-03783-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
127 Mcnamara HM, Salegame R, Tanoury ZA, Xu H, Begum S, Ortiz G, Pourquie O, Cohen AE. Bioelectrical signaling via domain wall migration.. [DOI: 10.1101/570440] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
128 Afshar ME, Abraha HY, Bakooshli MA, Davoudi S, Thavandiran N, Tung K, Ahn H, Ginsberg H, Zandstra PW, Gilbert PM. A 96-well culture platform enables longitudinal analyses of engineered human skeletal muscle microtissue strength.. [DOI: 10.1101/562819] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
129 Matsuda M, Yamanaka Y, Uemura M, Osawa M, Saito MK, Nagahashi A, Nishio M, Guo L, Ikegawa S, Sakurai S, Kihara S, Nakamura M, Matsumoto T, Yoshitomi H, Ikeya M, Yamamoto T, Woltjen K, Ebisuya M, Toguchida J, Alev C. Modeling the Human Segmentation Clock with Pluripotent Stem Cells.. [DOI: 10.1101/562447] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
130 Truskey GA. Development and application of human skeletal muscle microphysiological systems. Lab Chip 2018;18:3061-73. [PMID: 30183050 DOI: 10.1039/c8lc00553b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
131 Pruller J, Zammit PS. Overview of Cell Types Capable of Contributing to Skeletal Muscle Repair and Regeneration. Cell Engineering and Regeneration 2019. [DOI: 10.1007/978-3-319-37076-7_2-1] [Reference Citation Analysis]
132 Partridge T. Muscle Stem Cell Biology and Implications in Gene Therapy. Muscle Gene Therapy 2019. [DOI: 10.1007/978-3-030-03095-7_4] [Reference Citation Analysis]
133 Yucel N, Blau HM. Skeletal Muscle Stem Cells. Principles of Regenerative Medicine 2019. [DOI: 10.1016/b978-0-12-809880-6.00018-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
134 Danisovic L, Culenova M, Csobonyeiova M. Induced Pluripotent Stem Cells for Duchenne Muscular Dystrophy Modeling and Therapy. Cells 2018;7:E253. [PMID: 30544588 DOI: 10.3390/cells7120253] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
135 Oginuma M, Harima Y, Xiong F, Pourquié O. Intracellular pH controls Wnt signaling downstream of glycolysis in the vertebrate embryo.. [DOI: 10.1101/481259] [Reference Citation Analysis]
136 Diaz-cuadros M, Wagner DE, Budjan C, Hubaud A, Touboul J, Michaut A, Tanoury ZA, Yoshioka-kobayashi K, Niino Y, Kageyama R, Miyawaki A, Pourquié O. In vitro characterization of the human segmentation clock.. [DOI: 10.1101/461822] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
137 Toral-ojeda I, Aldanondo G, Lasa-elgarresta J, Lasa-fernandez H, Vesga-castro C, Mouly V, Munain ALD, Vallejo-illarramendi A. A Novel Functional In Vitro Model that Recapitulates Human Muscle Disorders. Muscle Cell and Tissue - Current Status of Research Field 2018. [DOI: 10.5772/intechopen.75903] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
138 Nogami K, Blanc M, Takemura F, Takeda S, Miyagoe-suzuki Y. Making Skeletal Muscle from Human Pluripotent Stem Cells. Muscle Cell and Tissue - Current Status of Research Field 2018. [DOI: 10.5772/intechopen.77263] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
139 Xia G, Terada N, Ashizawa T. Human iPSC Models to Study Orphan Diseases: Muscular Dystrophies. Curr Stem Cell Rep 2018;4:299-309. [PMID: 30524939 DOI: 10.1007/s40778-018-0145-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
140 Janesick A, Tang W, Shioda T, Blumberg B. RARγ is required for mesodermal gene expression prior to gastrulation in Xenopus. Development 2018;145:dev147769. [PMID: 30111657 DOI: 10.1242/dev.147769] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
141 Amilon KR, Cortes-Araya Y, Moore B, Lee S, Lillico S, Breton A, Esteves CL, Donadeu FX. Generation of Functional Myocytes from Equine Induced Pluripotent Stem Cells. Cell Reprogram. 2018;20:275-281. [PMID: 30207795 DOI: 10.1089/cell.2018.0023] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
142 Wang Y, Hao L, Wang H, Santostefano K, Thapa A, Cleary J, Li H, Guo X, Terada N, Ashizawa T, Xia G. Therapeutic Genome Editing for Myotonic Dystrophy Type 1 Using CRISPR/Cas9. Mol Ther 2018;26:2617-30. [PMID: 30274788 DOI: 10.1016/j.ymthe.2018.09.003] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 7.2] [Reference Citation Analysis]
143 Nakajima T, Shibata M, Nishio M, Nagata S, Alev C, Sakurai H, Toguchida J, Ikeya M. Modeling human somite development and fibrodysplasia ossificans progressiva with induced pluripotent stem cells. Development 2018;145:dev165431. [PMID: 30139810 DOI: 10.1242/dev.165431] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
144 Magli A, Perlingeiro RRC. Myogenic progenitor specification from pluripotent stem cells. Semin Cell Dev Biol 2017;72:87-98. [PMID: 29107681 DOI: 10.1016/j.semcdb.2017.10.031] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 4.2] [Reference Citation Analysis]
145 Suh GC, Bettadapur A, Santoso JW, McCain ML. Fabrication of Micromolded Gelatin Hydrogels for Long-Term Culture of Aligned Skeletal Myotubes. Methods Mol Biol 2017;1668:147-63. [PMID: 28842908 DOI: 10.1007/978-1-4939-7283-8_11] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
146 van der Wal E, Herrero-Hernandez P, Wan R, Broeders M, In 't Groen SLM, van Gestel TJM, van IJcken WFJ, Cheung TH, van der Ploeg AT, Schaaf GJ, Pijnappel WWMP. Large-Scale Expansion of Human iPSC-Derived Skeletal Muscle Cells for Disease Modeling and Cell-Based Therapeutic Strategies. Stem Cell Reports 2018;10:1975-90. [PMID: 29731431 DOI: 10.1016/j.stemcr.2018.04.002] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 11.4] [Reference Citation Analysis]
147 Sakai-Takemura F, Narita A, Masuda S, Wakamatsu T, Watanabe N, Nishiyama T, Nogami K, Blanc M, Takeda S, Miyagoe-Suzuki Y. Premyogenic progenitors derived from human pluripotent stem cells expand in floating culture and differentiate into transplantable myogenic progenitors. Sci Rep 2018;8:6555. [PMID: 29700358 DOI: 10.1038/s41598-018-24959-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
148 Magli A, Incitti T, Kiley J, Swanson SA, Darabi R, Rinaldi F, Selvaraj S, Yamamoto A, Tolar J, Yuan C, Stewart R, Thomson JA, Perlingeiro RCR. PAX7 Targets, CD54, Integrin α9β1, and SDC2, Allow Isolation of Human ESC/iPSC-Derived Myogenic Progenitors. Cell Rep 2017;19:2867-77. [PMID: 28658631 DOI: 10.1016/j.celrep.2017.06.005] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 9.6] [Reference Citation Analysis]
149 Pantelic MN, Larkin LM. Stem Cells for Skeletal Muscle Tissue Engineering. Tissue Eng Part B Rev 2018;24:373-91. [PMID: 29652595 DOI: 10.1089/ten.TEB.2017.0451] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 8.0] [Reference Citation Analysis]
150 Pourquié O, Al Tanoury Z, Chal J. The Long Road to Making Muscle In Vitro. Curr Top Dev Biol 2018;129:123-42. [PMID: 29801528 DOI: 10.1016/bs.ctdb.2018.03.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
151 Jiwlawat N, Lynch E, Jeffrey J, Van Dyke JM, Suzuki M. Current Progress and Challenges for Skeletal Muscle Differentiation from Human Pluripotent Stem Cells Using Transgene-Free Approaches. Stem Cells Int 2018;2018:6241681. [PMID: 29760730 DOI: 10.1155/2018/6241681] [Cited by in Crossref: 44] [Cited by in F6Publishing: 49] [Article Influence: 8.8] [Reference Citation Analysis]
152 Jevons LA, Houghton FD, Tare RS. Augmentation of musculoskeletal regeneration: role for pluripotent stem cells. Regen Med 2018;13:189-206. [PMID: 29557248 DOI: 10.2217/rme-2017-0113] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
153 Chal J, Al Tanoury Z, Oginuma M, Moncuquet P, Gobert B, Miyanari A, Tassy O, Guevara G, Hubaud A, Bera A, Sumara O, Garnier J, Kennedy L, Knockaert M, Gayraud-morel B, Tajbakhsh S, Pourquié O. Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm in vitro. Development 2018;145:dev157339. [DOI: 10.1242/dev.157339] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 8.8] [Reference Citation Analysis]
154 Rao L, Qian Y, Khodabukus A, Ribar T, Bursac N. Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nat Commun 2018;9:126. [PMID: 29317646 DOI: 10.1038/s41467-017-02636-4] [Cited by in Crossref: 178] [Cited by in F6Publishing: 184] [Article Influence: 35.6] [Reference Citation Analysis]
155 A. Patrón L, ICAGEN, 2090 E. Innovation Park Dr., Oro Valley, Arizona USA 85755, R. August P. Modeling neuromuscular junctions <em>in vitro</em>: A review of the current progress employing human induced pluripotent stem cells. AIMS Cell and Tissue Engineering 2018;2:91-118. [DOI: 10.3934/celltissue.2018.2.91] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
156 Archacka K, Brzoska E, Ciemerych MA, Czerwinska AM, Grabowska I, Kowalski KK, Zimowska M. Pluripotent and Mesenchymal Stem Cells—Challenging Sources for Derivation of Myoblast. Cardiac Cell Culture Technologies 2018. [DOI: 10.1007/978-3-319-70685-6_6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
157 Hicks MR, Hiserodt J, Paras K, Fujiwara W, Eskin A, Jan M, Xi H, Young CS, Evseenko D, Nelson SF, Spencer MJ, Handel BV, Pyle AD. ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs. Nat Cell Biol 2018;20:46-57. [PMID: 29255171 DOI: 10.1038/s41556-017-0010-2] [Cited by in Crossref: 119] [Cited by in F6Publishing: 123] [Article Influence: 19.8] [Reference Citation Analysis]
158 Chal J, Pourquié O. Making muscle: skeletal myogenesis in vivo and in vitro. Development 2017;144:2104-22. [PMID: 28634270 DOI: 10.1242/dev.151035] [Cited by in Crossref: 375] [Cited by in F6Publishing: 390] [Article Influence: 62.5] [Reference Citation Analysis]
159 Twigger A, Scheel CH. Advances in stem cells and regenerative medicine: single-cell dynamics, new models and translational perspectives. Development 2017;144:3007-11. [DOI: 10.1242/dev.153569] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
160 Jiwlawat S, Lynch E, Glaser J, Smit-Oistad I, Jeffrey J, Van Dyke JM, Suzuki M. Differentiation and sarcomere formation in skeletal myocytes directly prepared from human induced pluripotent stem cells using a sphere-based culture. Differentiation 2017;96:70-81. [PMID: 28915407 DOI: 10.1016/j.diff.2017.07.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
161 Barruet E, Hsiao EC. Application of human induced pluripotent stem cells to model fibrodysplasia ossificans progressiva. Bone 2018;109:162-7. [PMID: 28716551 DOI: 10.1016/j.bone.2017.07.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
162 Kim J, Oliveira VKP, Yamamoto A, Perlingeiro RCR. Generation of skeletal myogenic progenitors from human pluripotent stem cells using non-viral delivery of minicircle DNA. Stem Cell Res 2017;23:87-94. [PMID: 28732241 DOI: 10.1016/j.scr.2017.07.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
163 Reza M, Cox D, Phillips L, Johnson D, Manoharan V, Grieves M, Davis B, Roos A, Morgan J, Hanna MG, Muntoni F, Lochmüller H. MRC Centre Neuromuscular Biobank (Newcastle and London): Supporting and facilitating rare and neuromuscular disease research worldwide. Neuromuscul Disord 2017;27:1054-64. [PMID: 28864117 DOI: 10.1016/j.nmd.2017.07.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
164 Miyagoe-Suzuki Y, Takeda S. Skeletal muscle generated from induced pluripotent stem cells - induction and application. World J Stem Cells 2017;9:89-97. [PMID: 28717411 DOI: 10.4252/wjsc.v9.i6.89] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
165 Haynes P, Kernan K, Zhou SL, Miller DG. Expression patterns of FSHD-causing DUX4 and myogenic transcription factors PAX3 and PAX7 are spatially distinct in differentiating human stem cell cultures. Skelet Muscle 2017;7:13. [PMID: 28637492 DOI: 10.1186/s13395-017-0130-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
166 Shimizu K, Genma R, Gotou Y, Nagasaka S, Honda H. Three-Dimensional Culture Model of Skeletal Muscle Tissue with Atrophy Induced by Dexamethasone. Bioengineering (Basel) 2017;4:E56. [PMID: 28952535 DOI: 10.3390/bioengineering4020056] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
167 Chal J, Al Tanoury Z, Oginuma M, Moncuquet P, Gobert B, Miyanari A, Tassy O, Guevara G, Bera A, Sumara O, Garnier J, Kennedy L, Knockaert M, Gayraud-morel B, Tajbakhsh S, Pourquié O. Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesodermin vitro.. [DOI: 10.1101/140574] [Reference Citation Analysis]
168 Kim J, Magli A, Chan SSK, Oliveira VKP, Wu J, Darabi R, Kyba M, Perlingeiro RCR. Expansion and Purification Are Critical for the Therapeutic Application of Pluripotent Stem Cell-Derived Myogenic Progenitors. Stem Cell Reports 2017;9:12-22. [PMID: 28528701 DOI: 10.1016/j.stemcr.2017.04.022] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
169 Kodaka Y, Rabu G, Asakura A. Skeletal Muscle Cell Induction from Pluripotent Stem Cells. Stem Cells Int 2017;2017:1376151. [PMID: 28529527 DOI: 10.1155/2017/1376151] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 6.7] [Reference Citation Analysis]
170 Lana B, Kim J, Ryan D, Konstantinidis E, Louzada S, Fu B, Yang F, Stemple DL, Liu P, Muntoni F, Lin Y. Targeted gene correction of FKRP by CRISPR/Cas9 restores functional glycosylation of α-dystroglycan in cortical neurons derived from human induced pluripotent stem cells.. [DOI: 10.1101/101352] [Reference Citation Analysis]
171 Craft AM, Johnson M. From stem cells to human development: a distinctly human perspective on early embryology, cellular differentiation and translational research. Development 2017;144:12-6. [DOI: 10.1242/dev.142778] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
172 Crist C. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease. J Pathol 2017;241:264-72. [PMID: 27762447 DOI: 10.1002/path.4830] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]