BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B, Huffnagle GB, Z Li J, Young VB. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014;5:3114. [PMID: 24445449 DOI: 10.1038/ncomms4114] [Cited by in Crossref: 520] [Cited by in F6Publishing: 455] [Article Influence: 74.3] [Reference Citation Analysis]
Number Citing Articles
1 Tremblay YD, Dupuy B. The blueprint for building a biofilm the Clostridioides difficile way. Curr Opin Microbiol 2021;66:39-45. [PMID: 34933207 DOI: 10.1016/j.mib.2021.12.002] [Reference Citation Analysis]
2 Shah T, Baloch Z, Shah Z, Cui X, Xia X. The Intestinal Microbiota: Impacts of Antibiotics Therapy, Colonization Resistance, and Diseases. Int J Mol Sci 2021;22:6597. [PMID: 34202945 DOI: 10.3390/ijms22126597] [Reference Citation Analysis]
3 Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol. 2017;101:47-64. [PMID: 27888332 DOI: 10.1007/s00253-016-8006-6] [Cited by in Crossref: 184] [Cited by in F6Publishing: 159] [Article Influence: 30.7] [Reference Citation Analysis]
4 Griffiths SM, Harrison XA, Weldon C, Wood MD, Pretorius A, Hopkins K, Fox G, Preziosi RF, Antwis RE. Genetic variability and ontogeny predict microbiome structure in a disease-challenged montane amphibian. ISME J 2018;12:2506-17. [PMID: 29942072 DOI: 10.1038/s41396-018-0167-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
5 Kan A, Gelfat I, Emani S, Praveschotinunt P, Joshi NS. Plasmid Vectors for in Vivo Selection-Free Use with the Probiotic E. coli Nissle 1917. ACS Synth Biol 2021;10:94-106. [PMID: 33301298 DOI: 10.1021/acssynbio.0c00466] [Reference Citation Analysis]
6 Eng A, Borenstein E. Microbial community design: methods, applications, and opportunities. Curr Opin Biotechnol 2019;58:117-28. [PMID: 30952088 DOI: 10.1016/j.copbio.2019.03.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
7 Han H, Xiao H, Lu Z. Short-term toxicity assessments of an antibiotic metabolite in Wistar rats and its metabonomics analysis by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Toxicol Appl Pharmacol 2016;293:1-9. [PMID: 26780399 DOI: 10.1016/j.taap.2016.01.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
8 Dong TS, Gupta A. Influence of Early Life, Diet, and the Environment on the Microbiome. Clin Gastroenterol Hepatol. 2019;17:231-242. [PMID: 30196160 DOI: 10.1016/j.cgh.2018.08.067] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 11.8] [Reference Citation Analysis]
9 Minamoto Y, Otoni CC, Steelman SM, Büyükleblebici O, Steiner JM, Jergens AE, Suchodolski JS. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes 2015;6:33-47. [PMID: 25531678 DOI: 10.1080/19490976.2014.997612] [Cited by in Crossref: 155] [Cited by in F6Publishing: 146] [Article Influence: 22.1] [Reference Citation Analysis]
10 Zhang Y, Li CX, Zhang XZ. Bacteriophage-mediated modulation of microbiota for diseases treatment. Adv Drug Deliv Rev 2021;:113856. [PMID: 34237403 DOI: 10.1016/j.addr.2021.113856] [Reference Citation Analysis]
11 Mishra S, Lin Z, Pang S, Zhang W, Bhatt P, Chen S. Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial Communities. Front Bioeng Biotechnol 2021;9:632059. [PMID: 33644024 DOI: 10.3389/fbioe.2021.632059] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
12 Thanissery R, Zeng D, Doyle RG, Theriot CM. A Small Molecule-Screening Pipeline to Evaluate the Therapeutic Potential of 2-Aminoimidazole Molecules Against Clostridium difficile. Front Microbiol 2018;9:1206. [PMID: 29928268 DOI: 10.3389/fmicb.2018.01206] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
13 Ghimire S, Roy C, Wongkuna S, Antony L, Maji A, Keena MC, Foley A, Scaria J. Identification of Clostridioides difficile-Inhibiting Gut Commensals Using Culturomics, Phenotyping, and Combinatorial Community Assembly. mSystems 2020;5:e00620-19. [PMID: 32019832 DOI: 10.1128/mSystems.00620-19] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
14 Popoff MR. Clostridium difficile and Clostridium sordellii toxins, proinflammatory versus anti-inflammatory response. Toxicon 2018;149:54-64. [DOI: 10.1016/j.toxicon.2017.11.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
15 Ortigão R, Pimentel-Nunes P, Dinis-Ribeiro M, Libânio D. Gastrointestinal Microbiome - What We Need to Know in Clinical Practice. GE Port J Gastroenterol 2020;27:336-51. [PMID: 32999906 DOI: 10.1159/000505036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Ernst M, Rogers S, Lausten-Thomsen U, Björkbom A, Laursen SS, Courraud J, Børglum A, Nordentoft M, Werge T, Mortensen PB, Hougaard DM, Cohen AS. Gestational age-dependent development of the neonatal metabolome. Pediatr Res 2021;89:1396-404. [PMID: 32942288 DOI: 10.1038/s41390-020-01149-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 McNally CP, Eng A, Noecker C, Gagne-Maynard WC, Borenstein E. BURRITO: An Interactive Multi-Omic Tool for Visualizing Taxa-Function Relationships in Microbiome Data. Front Microbiol 2018;9:365. [PMID: 29545787 DOI: 10.3389/fmicb.2018.00365] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
18 Battaglioli EJ, Hale VL, Chen J, Jeraldo P, Ruiz-Mojica C, Schmidt BA, Rekdal VM, Till LM, Huq L, Smits SA, Moor WJ, Jones-Hall Y, Smyrk T, Khanna S, Pardi DS, Grover M, Patel R, Chia N, Nelson H, Sonnenburg JL, Farrugia G, Kashyap PC. Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Sci Transl Med. 2018;10:eaam7019. [PMID: 30355801 DOI: 10.1126/scitranslmed.aam7019] [Cited by in Crossref: 58] [Cited by in F6Publishing: 50] [Article Influence: 19.3] [Reference Citation Analysis]
19 Smith AD, Foss ED, Zhang I, Hastie JL, Giordano NP, Gasparyan L, VinhNguyen LP, Schubert AM, Prasad D, McMichael HL, Sun J, Beger RD, Simonyan V, Cowley SC, Carlson PE Jr. Microbiota of MR1 deficient mice confer resistance against Clostridium difficile infection. PLoS One 2019;14:e0223025. [PMID: 31560732 DOI: 10.1371/journal.pone.0223025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
20 Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 2019;7:e7502. [PMID: 31440436 DOI: 10.7717/peerj.7502] [Cited by in Crossref: 95] [Cited by in F6Publishing: 77] [Article Influence: 31.7] [Reference Citation Analysis]
21 Fischer N, Relman DA. Clostridium difficile, Aging, and the Gut: Can Microbiome Rejuvenation Keep Us Young and Healthy? J Infect Dis 2018;217:174-6. [PMID: 28968708 DOI: 10.1093/infdis/jix417] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
22 Zhou P, Zhou N, Shao L, Li J, Liu S, Meng X, Duan J, Xiong X, Huang X, Chen Y, Fan X, Zheng Y, Ma S, Li C, Wu A. Diagnosis of Clostridium difficile infection using an UPLC-MS based metabolomics method. Metabolomics. 2018;14:102. [PMID: 30830376 DOI: 10.1007/s11306-018-1397-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
23 Li J, Butcher J, Mack D, Stintzi A. Functional Impacts of the Intestinal Microbiome in the Pathogenesis of Inflammatory Bowel Disease: . Inflammatory Bowel Diseases 2015;21:139-53. [DOI: 10.1097/mib.0000000000000215] [Cited by in Crossref: 68] [Cited by in F6Publishing: 35] [Article Influence: 9.7] [Reference Citation Analysis]
24 Wang Z, Qi Q. Gut microbial metabolites associated with HIV infection. Future Virol 2019;14:335-47. [PMID: 31263508 DOI: 10.2217/fvl-2019-0002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
25 Rogers AWL, Tsolis RM, Bäumler AJ. Salmonella versus the Microbiome. Microbiol Mol Biol Rev 2021;85:e00027-19. [PMID: 33361269 DOI: 10.1128/MMBR.00027-19] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
26 Kopp BT, McCulloch S, Shrestha CL, Zhang S, Sarzynski L, Woodley FW, Hayes D Jr. Metabolomic responses to lumacaftor/ivacaftor in cystic fibrosis. Pediatr Pulmonol 2018;53:583-91. [PMID: 29461009 DOI: 10.1002/ppul.23972] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
27 Yang JH, Bhargava P, McCloskey D, Mao N, Palsson BO, Collins JJ. Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function. Cell Host Microbe 2017;22:757-765.e3. [PMID: 29199098 DOI: 10.1016/j.chom.2017.10.020] [Cited by in Crossref: 101] [Cited by in F6Publishing: 88] [Article Influence: 20.2] [Reference Citation Analysis]
28 Arrieta-Ortiz ML, Immanuel SRC, Turkarslan S, Wu WJ, Girinathan BP, Worley JN, DiBenedetto N, Soutourina O, Peltier J, Dupuy B, Bry L, Baliga NS. Predictive regulatory and metabolic network models for systems analysis of Clostridioides difficile. Cell Host Microbe 2021;29:1709-1723.e5. [PMID: 34637780 DOI: 10.1016/j.chom.2021.09.008] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Rauseo AM, Olsen MA, Reske KA, Dubberke ER. Strategies to prevent adverse outcomes following Clostridioides difficile infection in the elderly. Expert Rev Anti Infect Ther 2020;18:203-17. [PMID: 31976779 DOI: 10.1080/14787210.2020.1717950] [Reference Citation Analysis]
30 Purcell EB, McKee RW, Courson DS, Garrett EM, McBride SM, Cheney RE, Tamayo R. A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium difficile Biofilm and Toxin Production during Stationary Phase. Infect Immun 2017;85:e00347-17. [PMID: 28652311 DOI: 10.1128/IAI.00347-17] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 5.2] [Reference Citation Analysis]
31 McKee RW, Aleksanyan N, Garrett EM, Tamayo R. Type IV Pili Promote Clostridium difficile Adherence and Persistence in a Mouse Model of Infection. Infect Immun 2018;86:e00943-17. [PMID: 29483294 DOI: 10.1128/IAI.00943-17] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
32 Nawrocki KL, Wetzel D, Jones JB, Woods EC, McBride SM. Ethanolamine is a valuable nutrient source that impacts Clostridium difficile pathogenesis. Environ Microbiol 2018;20:1419-35. [PMID: 29349925 DOI: 10.1111/1462-2920.14048] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
33 Sit B, Crowley SM, Bhullar K, Lai CC, Tang C, Hooda Y, Calmettes C, Khambati H, Ma C, Brumell JH, Schryvers AB, Vallance BA, Moraes TF. Active Transport of Phosphorylated Carbohydrates Promotes Intestinal Colonization and Transmission of a Bacterial Pathogen. PLoS Pathog 2015;11:e1005107. [PMID: 26295949 DOI: 10.1371/journal.ppat.1005107] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
34 McLaren MR, Callahan BJ. Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philos Trans R Soc Lond B Biol Sci 2020;375:20190592. [PMID: 32772671 DOI: 10.1098/rstb.2019.0592] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
35 Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, Wishart D. Systems Biology and Multi-Omics Integration: Viewpoints from the Metabolomics Research Community. Metabolites 2019;9:E76. [PMID: 31003499 DOI: 10.3390/metabo9040076] [Cited by in Crossref: 166] [Cited by in F6Publishing: 126] [Article Influence: 55.3] [Reference Citation Analysis]
36 Donnelly ML, Li W, Li YQ, Hinkel L, Setlow P, Shen A. A Clostridium difficile-Specific, Gel-Forming Protein Required for Optimal Spore Germination. mBio 2017;8:e02085-16. [PMID: 28096487 DOI: 10.1128/mBio.02085-16] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
37 Jenior ML, Papin JA. Computational approaches to understanding Clostridioides difficile metabolism and virulence. Curr Opin Microbiol 2021;65:108-15. [PMID: 34839237 DOI: 10.1016/j.mib.2021.11.002] [Reference Citation Analysis]
38 Baloh M, Sorg JA. Clostridioides difficile spore germination: initiation to DPA release. Curr Opin Microbiol 2021;65:101-7. [PMID: 34808546 DOI: 10.1016/j.mib.2021.11.001] [Reference Citation Analysis]
39 Hsu BB, Gibson TE, Yeliseyev V, Liu Q, Lyon L, Bry L, Silver PA, Gerber GK. Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model. Cell Host Microbe 2019;25:803-814.e5. [PMID: 31175044 DOI: 10.1016/j.chom.2019.05.001] [Cited by in Crossref: 127] [Cited by in F6Publishing: 112] [Article Influence: 42.3] [Reference Citation Analysis]
40 Schmidt V, Gomez-Chiarri M, Roy C, Smith K, Amaral-Zettler L. Subtle Microbiome Manipulation Using Probiotics Reduces Antibiotic-Associated Mortality in Fish. mSystems 2017;2:e00133-17. [PMID: 29124129 DOI: 10.1128/mSystems.00133-17] [Cited by in Crossref: 28] [Cited by in F6Publishing: 10] [Article Influence: 5.6] [Reference Citation Analysis]
41 Greathouse KL, Harris CC, Bultman SJ. Dysfunctional families: Clostridium scindens and secondary bile acids inhibit the growth of Clostridium difficile. Cell Metab. 2015;21:9-10. [PMID: 25565200 DOI: 10.1016/j.cmet.2014.12.016] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
42 Shi Y, Zhai Q, Li D, Mao B, Liu X, Zhao J, Zhang H, Chen W. Restoration of cefixime-induced gut microbiota changes by Lactobacillus cocktails and fructooligosaccharides in a mouse model. Microbiological Research 2017;200:14-24. [DOI: 10.1016/j.micres.2017.04.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
43 Passmore IJ, Letertre MPM, Preston MD, Bianconi I, Harrison MA, Nasher F, Kaur H, Hong HA, Baines SD, Cutting SM, Swann JR, Wren BW, Dawson LF. Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria. PLoS Pathog 2018;14:e1007191. [PMID: 30208103 DOI: 10.1371/journal.ppat.1007191] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 11.5] [Reference Citation Analysis]
44 Wang S, Xue N, Li W, Zhang D, Pan X, Luo Y. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters. Science of The Total Environment 2020;708:134594. [DOI: 10.1016/j.scitotenv.2019.134594] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 16.0] [Reference Citation Analysis]
45 Mooyottu S, Flock G, Upadhyay A, Upadhyaya I, Maas K, Venkitanarayanan K. Protective Effect of Carvacrol against Gut Dysbiosis and Clostridium difficile Associated Disease in a Mouse Model. Front Microbiol 2017;8:625. [PMID: 28484429 DOI: 10.3389/fmicb.2017.00625] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
46 Beebe K, Kennedy AD. Sharpening Precision Medicine by a Thorough Interrogation of Metabolic Individuality. Comput Struct Biotechnol J 2016;14:97-105. [PMID: 26929792 DOI: 10.1016/j.csbj.2016.01.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
47 Nagao-Kitamoto H, Kitamoto S, Kuffa P, Kamada N. Pathogenic role of the gut microbiota in gastrointestinal diseases. Intest Res. 2016;14:127-138. [PMID: 27175113 DOI: 10.5217/ir.2016.14.2.127] [Cited by in Crossref: 72] [Cited by in F6Publishing: 61] [Article Influence: 12.0] [Reference Citation Analysis]
48 Zhang LS, Davies SS. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med. 2016;8:46. [PMID: 27102537 DOI: 10.1186/s13073-016-0296-x] [Cited by in Crossref: 238] [Cited by in F6Publishing: 221] [Article Influence: 39.7] [Reference Citation Analysis]
49 Swick MC, Koehler TM, Driks A. Surviving Between Hosts: Sporulation and Transmission. In: Kudva IT, Cornick NA, Plummer PJ, Zhang Q, Nicholson TL, Bannantine JP, Bellaire BH, editors. Virulence Mechanisms of Bacterial Pathogens. Washington: ASM Press; 2016. pp. 567-91. [DOI: 10.1128/9781555819286.ch20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
50 Tam J, Icho S, Utama E, Orrell KE, Gómez-Biagi RF, Theriot CM, Kroh HK, Rutherford SA, Lacy DB, Melnyk RA. Intestinal bile acids directly modulate the structure and function of C. difficile TcdB toxin. Proc Natl Acad Sci U S A 2020;117:6792-800. [PMID: 32152097 DOI: 10.1073/pnas.1916965117] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
51 Weingarden AR, Chen C, Zhang N, Graiziger CT, Dosa PI, Steer CJ, Shaughnessy MK, Johnson JR, Sadowsky MJ, Khoruts A. Ursodeoxycholic Acid Inhibits Clostridium difficile Spore Germination and Vegetative Growth, and Prevents the Recurrence of Ileal Pouchitis Associated With the Infection. J Clin Gastroenterol 2016;50:624-30. [PMID: 26485102 DOI: 10.1097/MCG.0000000000000427] [Cited by in Crossref: 54] [Cited by in F6Publishing: 31] [Article Influence: 10.8] [Reference Citation Analysis]
52 Girinathan BP, DiBenedetto N, Worley JN, Peltier J, Arrieta-Ortiz ML, Immanuel SRC, Lavin R, Delaney ML, Cummins CK, Hoffman M, Luo Y, Gonzalez-Escalona N, Allard M, Onderdonk AB, Gerber GK, Sonenshein AL, Baliga NS, Dupuy B, Bry L. In vivo commensal control of Clostridioides difficile virulence. Cell Host Microbe 2021;29:1693-1708.e7. [PMID: 34637781 DOI: 10.1016/j.chom.2021.09.007] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Schulfer A, Blaser MJ. Risks of Antibiotic Exposures Early in Life on the Developing Microbiome. PLoS Pathog 2015;11:e1004903. [PMID: 26135581 DOI: 10.1371/journal.ppat.1004903] [Cited by in Crossref: 59] [Cited by in F6Publishing: 53] [Article Influence: 8.4] [Reference Citation Analysis]
54 Kullar R, Tran MN, Goldstein EJC. Investigational Treatment Agents for Recurrent Clostridioides difficile Infection (rCDI). J Exp Pharmacol 2020;12:371-84. [PMID: 33116952 DOI: 10.2147/JEP.S242959] [Reference Citation Analysis]
55 Littmann ER, Lee JJ, Denny JE, Alam Z, Maslanka JR, Zarin I, Matsuda R, Carter RA, Susac B, Saffern MS, Fett B, Mattei LM, Bittinger K, Abt MC. Host immunity modulates the efficacy of microbiota transplantation for treatment of Clostridioides difficile infection. Nat Commun 2021;12:755. [PMID: 33531483 DOI: 10.1038/s41467-020-20793-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
56 Maiti KS, Apolonski A. Monitoring the Reaction of the Body State to Antibiotic Treatment against Helicobacter pylori via Infrared Spectroscopy: A Case Study. Molecules 2021;26:3474. [PMID: 34200454 DOI: 10.3390/molecules26113474] [Reference Citation Analysis]
57 Antharam VC, McEwen DC, Garrett TJ, Dossey AT, Li EC, Kozlov AN, Mesbah Z, Wang GP. An Integrated Metabolomic and Microbiome Analysis Identified Specific Gut Microbiota Associated with Fecal Cholesterol and Coprostanol in Clostridium difficile Infection. PLoS One 2016;11:e0148824. [PMID: 26871580 DOI: 10.1371/journal.pone.0148824] [Cited by in Crossref: 62] [Cited by in F6Publishing: 53] [Article Influence: 10.3] [Reference Citation Analysis]
58 Mu C, Yang Y, Yu K, Yu M, Zhang C, Su Y, Zhu W. Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics. Amino Acids 2017;49:771-81. [DOI: 10.1007/s00726-017-2379-4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
59 Vickers RJ, Tillotson G, Goldstein EJ, Citron DM, Garey KW, Wilcox MH. Ridinilazole: a novel therapy for Clostridium difficile infection. Int J Antimicrob Agents 2016;48:137-43. [PMID: 27283730 DOI: 10.1016/j.ijantimicag.2016.04.026] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
60 Nowinski SM, Solmonson A, Rundhaug JE, Rho O, Cho J, Lago CU, Riley CL, Lee S, Kohno S, Dao CK, Nikawa T, Bratton SB, Wright CW, Fischer SM, DiGiovanni J, Mills EM. Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis. Nat Commun 2015;6:8137. [PMID: 26310111 DOI: 10.1038/ncomms9137] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
61 Jones ML, Tomaro-Duchesneau C, Prakash S. The gut microbiome, probiotics, bile acids axis, and human health. Trends Microbiol 2014;22:306-8. [PMID: 24836108 DOI: 10.1016/j.tim.2014.04.010] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 4.9] [Reference Citation Analysis]
62 Argüello H, Estellé J, Leonard FC, Crispie F, Cotter PD, O'Sullivan O, Lynch H, Walia K, Duffy G, Lawlor PG, Gardiner GE. Influence of the Intestinal Microbiota on Colonization Resistance to Salmonella and the Shedding Pattern of Naturally Exposed Pigs. mSystems 2019;4:e00021-19. [PMID: 31020042 DOI: 10.1128/mSystems.00021-19] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
63 Yang L, Bajinka O, Jarju PO, Tan Y, Taal AM, Ozdemir G. The varying effects of antibiotics on gut microbiota. AMB Express 2021;11:116. [PMID: 34398323 DOI: 10.1186/s13568-021-01274-w] [Reference Citation Analysis]
64 Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, Gonzalez A, Kosciolek T, Mccall L, Mcdonald D, Melnik AV, Morton JT, Navas J, Quinn RA, Sanders JG, Swafford AD, Thompson LR, Tripathi A, Xu ZZ, Zaneveld JR, Zhu Q, Caporaso JG, Dorrestein PC. Best practices for analysing microbiomes. Nat Rev Microbiol 2018;16:410-22. [DOI: 10.1038/s41579-018-0029-9] [Cited by in Crossref: 529] [Cited by in F6Publishing: 443] [Article Influence: 132.3] [Reference Citation Analysis]
65 El-Zaatari M, Chang YM, Zhang M, Franz M, Shreiner A, McDermott AJ, van der Sluijs KF, Lutter R, Grasberger H, Kamada N, Young VB, Huffnagle GB, Kao JY. Tryptophan catabolism restricts IFN-γ-expressing neutrophils and Clostridium difficile immunopathology. J Immunol 2014;193:807-16. [PMID: 24935925 DOI: 10.4049/jimmunol.1302913] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 4.9] [Reference Citation Analysis]
66 Mefferd CC, Bhute SS, Phan JR, Villarama JV, Do DM, Alarcia S, Abel-Santos E, Hedlund BP. A High-Fat/High-Protein, Atkins-Type Diet Exacerbates Clostridioides (Clostridium) difficile Infection in Mice, whereas a High-Carbohydrate Diet Protects. mSystems 2020;5:e00765-19. [PMID: 32047064 DOI: 10.1128/mSystems.00765-19] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
67 Džunková M, Moya A, Vázquez-Castellanos JF, Artacho A, Chen X, Kelly C, D'Auria G. Active and Secretory IgA-Coated Bacterial Fractions Elucidate Dysbiosis in Clostridium difficile Infection. mSphere 2016;1:e00101-16. [PMID: 27303742 DOI: 10.1128/mSphere.00101-16] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
68 Swick MC, Koehler TM, Driks A. Surviving Between Hosts: Sporulation and Transmission. Microbiol Spectr 2016;4. [PMID: 27726794 DOI: 10.1128/microbiolspec.VMBF-0029-2015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
69 Pakpour S, Bhanvadia A, Zhu R, Amarnani A, Gibbons SM, Gurry T, Alm EJ, Martello LA. Identifying predictive features of Clostridium difficile infection recurrence before, during, and after primary antibiotic treatment. Microbiome 2017;5:148. [PMID: 29132405 DOI: 10.1186/s40168-017-0368-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 4.2] [Reference Citation Analysis]
70 Kho ZY, Lal SK. The Human Gut Microbiome - A Potential Controller of Wellness and Disease. Front Microbiol 2018;9:1835. [PMID: 30154767 DOI: 10.3389/fmicb.2018.01835] [Cited by in Crossref: 285] [Cited by in F6Publishing: 221] [Article Influence: 71.3] [Reference Citation Analysis]
71 Candel-pérez C, Ros-berruezo G, Martínez-graciá C. A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiology 2019;77:118-29. [DOI: 10.1016/j.fm.2018.08.012] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 8.7] [Reference Citation Analysis]
72 Crobach MJT, Ducarmon QR, Terveer EM, Harmanus C, Sanders IMJG, Verduin KM, Kuijper EJ, Zwittink RD. The Bacterial Gut Microbiota of Adult Patients Infected, Colonized or Noncolonized by Clostridioides difficile. Microorganisms 2020;8:E677. [PMID: 32384826 DOI: 10.3390/microorganisms8050677] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
73 Voorhies AA, Lorenzi HA. The Challenge of Maintaining a Healthy Microbiome during Long-Duration Space Missions. Front Astron Space Sci 2016;3. [DOI: 10.3389/fspas.2016.00023] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
74 Chi L, Gao B, Tu P, Liu CW, Xue J, Lai Y, Ru H, Lu K. Individual susceptibility to arsenic-induced diseases: the role of host genetics, nutritional status, and the gut microbiome. Mamm Genome 2018;29:63-79. [PMID: 29429126 DOI: 10.1007/s00335-018-9736-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
75 Howerton A, Seymour CO, Murugapiran SK, Liao Z, Phan JR, Estrada A, Wagner AJ, Mefferd CC, Hedlund BP, Abel-Santos E. Effect of the Synthetic Bile Salt Analog CamSA on the Hamster Model of Clostridium difficile Infection. Antimicrob Agents Chemother 2018;62:e02251-17. [PMID: 30012758 DOI: 10.1128/AAC.02251-17] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
76 Seekatz AM, Aas J, Gessert CE, Rubin TA, Saman DM, Bakken JS, Young VB. Recovery of the gut microbiome following fecal microbiota transplantation. mBio. 2014;5:e00893-e00814. [PMID: 24939885 DOI: 10.1128/mbio.00893-14] [Cited by in Crossref: 201] [Cited by in F6Publishing: 117] [Article Influence: 25.1] [Reference Citation Analysis]
77 Ho SW, Yeh CB, Yang SF, Yeh HW, Huang JY, Teng YH. Pneumonia is an independent risk factor for pyogenic liver abscess: A population-based, nested, case-control study. PLoS One 2017;12:e0178571. [PMID: 28570670 DOI: 10.1371/journal.pone.0178571] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
78 Dubois T, Dancer-Thibonnier M, Monot M, Hamiot A, Bouillaut L, Soutourina O, Martin-Verstraete I, Dupuy B. Control of Clostridium difficile Physiopathology in Response to Cysteine Availability. Infect Immun 2016;84:2389-405. [PMID: 27297391 DOI: 10.1128/IAI.00121-16] [Cited by in Crossref: 47] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
79 Oludiran A, Courson DS, Stuart MD, Radwan AR, Poutsma JC, Cotten ML, Purcell EB. How Oxygen Availability Affects the Antimicrobial Efficacy of Host Defense Peptides: Lessons Learned from Studying the Copper-Binding Peptides Piscidins 1 and 3. Int J Mol Sci 2019;20:E5289. [PMID: 31653020 DOI: 10.3390/ijms20215289] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
80 Engevik MA, Engevik AC, Engevik KA, Auchtung JM, Chang-Graham AL, Ruan W, Luna RA, Hyser JM, Spinler JK, Versalovic J. Mucin-Degrading Microbes Release Monosaccharides That Chemoattract Clostridioides difficile and Facilitate Colonization of the Human Intestinal Mucus Layer. ACS Infect Dis 2021;7:1126-42. [PMID: 33176423 DOI: 10.1021/acsinfecdis.0c00634] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
81 Dunphy LJ, Papin JA. Biomedical applications of genome-scale metabolic network reconstructions of human pathogens. Curr Opin Biotechnol 2018;51:70-9. [PMID: 29223465 DOI: 10.1016/j.copbio.2017.11.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
82 Chong J, Xia J. Computational Approaches for Integrative Analysis of the Metabolome and Microbiome. Metabolites 2017;7:E62. [PMID: 29156542 DOI: 10.3390/metabo7040062] [Cited by in Crossref: 50] [Cited by in F6Publishing: 38] [Article Influence: 10.0] [Reference Citation Analysis]
83 Pellissery AJ, Vinayamohan PG, Kuttappan DA, Mishra N, Fragomeni BO, Maas K, Mooyottu S, Venkitanarayanan K. Protective Effect of Baicalin against Clostridioides difficile Infection in Mice. Antibiotics (Basel) 2021;10:926. [PMID: 34438975 DOI: 10.3390/antibiotics10080926] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Wuethrich I, W Pelzer B, Khodamoradi Y, Vehreschild MJGT. The role of the human gut microbiota in colonization and infection with multidrug-resistant bacteria. Gut Microbes 2021;13:1-13. [PMID: 33870869 DOI: 10.1080/19490976.2021.1911279] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Fachi JL, Sécca C, Rodrigues PB, Mato FCP, Di Luccia B, Felipe JS, Pral LP, Rungue M, Rocha VM, Sato FT, Sampaio U, Clerici MTPS, Rodrigues HG, Câmara NOS, Consonni SR, Vieira AT, Oliveira SC, Mackay CR, Layden BT, Bortoluci KR, Colonna M, Vinolo MAR. Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2. J Exp Med 2020;217:e20190489. [PMID: 31876919 DOI: 10.1084/jem.20190489] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 17.5] [Reference Citation Analysis]
86 Bushman FD, Conrad M, Ren Y, Zhao C, Gu C, Petucci C, Kim MS, Abbas A, Downes KJ, Devas N, Mattei LM, Breton J, Kelsen J, Marakos S, Galgano A, Kachelries K, Erlichman J, Hart JL, Moraskie M, Kim D, Zhang H, Hofstaedter CE, Wu GD, Lewis JD, Zackular JP, Li H, Bittinger K, Baldassano R. Multi-omic Analysis of the Interaction between Clostridioides difficile Infection and Pediatric Inflammatory Bowel Disease. Cell Host Microbe 2020;28:422-433.e7. [PMID: 32822584 DOI: 10.1016/j.chom.2020.07.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
87 McCarville JL, Caminero A, Verdu EF. Novel perspectives on therapeutic modulation of the gut microbiota. Therap Adv Gastroenterol. 2016;9:580-593. [PMID: 27366225 DOI: 10.1177/1756283X16637819] [Cited by in Crossref: 52] [Cited by in F6Publishing: 25] [Article Influence: 8.7] [Reference Citation Analysis]
88 Trexel J, Yoon GS, Keswani RK, McHugh C, Yeomans L, Vitvitsky V, Banerjee R, Sud S, Sun Y, Rosania GR, Stringer KA. Macrophage-Mediated Clofazimine Sequestration Is Accompanied by a Shift in Host Energy Metabolism. J Pharm Sci 2017;106:1162-74. [PMID: 28007559 DOI: 10.1016/j.xphs.2016.12.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
89 Zhang J, Zhao X, Cappiello JR, Yang Y, Cheng Y, Liu G, Fang W, Luo Y, Zhang Y, Dong J, Zhang L, Sharpless KB. Identification of simple arylfluorosulfates as potent agents against resistant bacteria. Proc Natl Acad Sci U S A 2021;118:e2103513118. [PMID: 34244433 DOI: 10.1073/pnas.2103513118] [Reference Citation Analysis]
90 Segal JP, Mullish BH, Quraishi MN, Acharjee A, Williams HRT, Iqbal T, Hart AL, Marchesi JR. The application of omics techniques to understand the role of the gut microbiota in inflammatory bowel disease. Therap Adv Gastroenterol 2019;12:1756284818822250. [PMID: 30719076 DOI: 10.1177/1756284818822250] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 8.7] [Reference Citation Analysis]
91 Forster SC, Lawley TD. Systematic discovery of probiotics. Nat Biotechnol 2015;33:47-9. [PMID: 25574637 DOI: 10.1038/nbt.3111] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
92 McClements DJ, DeLoid G, Pyrgiotakis G, Shatkin JA, Xiao H, Demokritou P. The Role of the Food Matrix and Gastrointestinal Tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NanoImpact 2016;3-4:47-57. [PMID: 29568810 DOI: 10.1016/j.impact.2016.10.002] [Cited by in Crossref: 75] [Cited by in F6Publishing: 58] [Article Influence: 12.5] [Reference Citation Analysis]
93 Giordano N, Hastie JL, Carlson PE. Transcriptomic profiling of Clostridium difficile grown under microaerophillic conditions. Pathogens and Disease 2018;76. [DOI: 10.1093/femspd/fty010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
94 Ma X, Xu T, Qian M, Zhang Y, Yang Z, Han X. Faecal microbiota transplantation alleviates early-life antibiotic-induced gut microbiota dysbiosis and mucosa injuries in a neonatal piglet model. Microbiol Res 2021;255:126942. [PMID: 34915267 DOI: 10.1016/j.micres.2021.126942] [Reference Citation Analysis]
95 Jukes CA, Ijaz UZ, Buckley A, Spencer J, Irvine J, Candlish D, Li JV, Marchesi JR, Douce G. Bile salt metabolism is not the only factor contributing to Clostridioides (Clostridium) difficile disease severity in the murine model of disease. Gut Microbes 2020;11:481-96. [PMID: 31793403 DOI: 10.1080/19490976.2019.1678996] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
96 Ducarmon QR, Zwittink RD, Hornung BVH, van Schaik W, Young VB, Kuijper EJ. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol Mol Biol Rev 2019;83:e00007-19. [PMID: 31167904 DOI: 10.1128/MMBR.00007-19] [Cited by in Crossref: 78] [Cited by in F6Publishing: 48] [Article Influence: 26.0] [Reference Citation Analysis]
97 Wang J, Ishfaq M, Li J. Lactobacillus salivarius ameliorated Mycoplasma gallisepticum-induced inflammatory injury and secondary Escherichia coli infection in chickens: Involvement of intestinal microbiota. Vet Immunol Immunopathol 2021;233:110192. [PMID: 33476924 DOI: 10.1016/j.vetimm.2021.110192] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
98 Cui M, Xiao H, Li Y, Zhou L, Zhao S, Luo D, Zheng Q, Dong J, Zhao Y, Zhang X, Zhang J, Lu L, Wang H, Fan S. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol Med 2017;9:448-61. [PMID: 28242755 DOI: 10.15252/emmm.201606932] [Cited by in Crossref: 88] [Cited by in F6Publishing: 81] [Article Influence: 17.6] [Reference Citation Analysis]
99 Kusstatscher P, Cernava T, Liebminger S, Berg G. Replacing conventional decontamination of hatching eggs with a natural defense strategy based on antimicrobial, volatile pyrazines. Sci Rep 2017;7:13253. [PMID: 29038499 DOI: 10.1038/s41598-017-13579-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
100 Shelton AN, Lyu X, Taga ME. Flexible Cobamide Metabolism in Clostridioides (Clostridium) difficile 630 Δerm. J Bacteriol 2020;202:e00584-19. [PMID: 31685533 DOI: 10.1128/JB.00584-19] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
101 Jose S, Mukherjee A, Horrigan O, Setchell KDR, Zhang W, Moreno-Fernandez ME, Andersen H, Sharma D, Haslam DB, Divanovic S, Madan R. Obeticholic acid ameliorates severity of Clostridioides difficile infection in high fat diet-induced obese mice. Mucosal Immunol 2021;14:500-10. [PMID: 32811993 DOI: 10.1038/s41385-020-00338-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
102 Ochoa-Repáraz J, Kasper LH. The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders? Curr Obes Rep 2016;5:51-64. [PMID: 26865085 DOI: 10.1007/s13679-016-0191-1] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 7.4] [Reference Citation Analysis]
103 Xia Y. Correlation and association analyses in microbiome study integrating multiomics in health and disease. Prog Mol Biol Transl Sci 2020;171:309-491. [PMID: 32475527 DOI: 10.1016/bs.pmbts.2020.04.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
104 Knutie SA, Gabor CR, Kohl KD, Rohr JR. Do host-associated gut microbiota mediate the effect of an herbicide on disease risk in frogs? J Anim Ecol 2018;87:489-99. [PMID: 29030867 DOI: 10.1111/1365-2656.12769] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
105 Durack J, Lynch SV. The gut microbiome: Relationships with disease and opportunities for therapy. J Exp Med. 2019;216:20-40. [PMID: 30322864 DOI: 10.1084/jem.20180448] [Cited by in Crossref: 182] [Cited by in F6Publishing: 147] [Article Influence: 45.5] [Reference Citation Analysis]
106 Castro-Córdova P, Mora-Uribe P, Reyes-Ramírez R, Cofré-Araneda G, Orozco-Aguilar J, Brito-Silva C, Mendoza-León MJ, Kuehne SA, Minton NP, Pizarro-Guajardo M, Paredes-Sabja D. Entry of spores into intestinal epithelial cells contributes to recurrence of Clostridioides difficile infection. Nat Commun 2021;12:1140. [PMID: 33602902 DOI: 10.1038/s41467-021-21355-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
107 Harrison XA, Price SJ, Hopkins K, Leung WTM, Sergeant C, Garner TWJ. Diversity-Stability Dynamics of the Amphibian Skin Microbiome and Susceptibility to a Lethal Viral Pathogen. Front Microbiol 2019;10:2883. [PMID: 31956320 DOI: 10.3389/fmicb.2019.02883] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
108 Ramakrishnan VR, Hauser LJ, Frank DN. The sinonasal bacterial microbiome in health and disease. Curr Opin Otolaryngol Head Neck Surg 2016;24:20-5. [PMID: 26575518 DOI: 10.1097/MOO.0000000000000221] [Cited by in Crossref: 37] [Cited by in F6Publishing: 18] [Article Influence: 6.2] [Reference Citation Analysis]
109 Stewart DB Sr, Wright JR, Fowler M, McLimans CJ, Tokarev V, Amaniera I, Baker O, Wong HT, Brabec J, Drucker R, Lamendella R. Integrated Meta-omics Reveals a Fungus-Associated Bacteriome and Distinct Functional Pathways in Clostridioides difficile Infection. mSphere 2019;4:e00454-19. [PMID: 31462412 DOI: 10.1128/mSphere.00454-19] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
110 Bornbusch SL, Harris RL, Grebe NM, Roche K, Dimac-Stohl K, Drea CM. Antibiotics and fecal transfaunation differentially affect microbiota recovery, associations, and antibiotic resistance in lemur guts. Anim Microbiome 2021;3:65. [PMID: 34598739 DOI: 10.1186/s42523-021-00126-z] [Reference Citation Analysis]
111 Pérez-Cobas AE, Artacho A, Ott SJ, Moya A, Gosalbes MJ, Latorre A. Structural and functional changes in the gut microbiota associated to Clostridium difficile infection. Front Microbiol 2014;5:335. [PMID: 25309515 DOI: 10.3389/fmicb.2014.00335] [Cited by in Crossref: 31] [Cited by in F6Publishing: 49] [Article Influence: 3.9] [Reference Citation Analysis]
112 Verdier J, Luedde T, Sellge G. Biliary Mucosal Barrier and Microbiome. Viszeralmedizin. 2015;31:156-161. [PMID: 26468308 DOI: 10.1159/000431071] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
113 Lopez CA, McNeely TP, Nurmakova K, Beavers WN, Skaar EP. Clostridioides difficile proline fermentation in response to commensal clostridia. Anaerobe 2020;63:102210. [PMID: 32422411 DOI: 10.1016/j.anaerobe.2020.102210] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
114 Seekatz AM, Theriot CM, Rao K, Chang YM, Freeman AE, Kao JY, Young VB. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe 2018;53:64-73. [PMID: 29654837 DOI: 10.1016/j.anaerobe.2018.04.001] [Cited by in Crossref: 71] [Cited by in F6Publishing: 60] [Article Influence: 17.8] [Reference Citation Analysis]
115 Strati F, Pujolassos M, Burrello C, Giuffrè MR, Lattanzi G, Caprioli F, Troisi J, Facciotti F. Antibiotic-associated dysbiosis affects the ability of the gut microbiota to control intestinal inflammation upon fecal microbiota transplantation in experimental colitis models. Microbiome 2021;9:39. [PMID: 33549144 DOI: 10.1186/s40168-020-00991-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
116 Lewis BB, Carter RA, Ling L, Leiner I, Taur Y, Kamboj M, Dubberke ER, Xavier J, Pamer EG. Pathogenicity Locus, Core Genome, and Accessory Gene Contributions to Clostridium difficile Virulence. mBio 2017;8:e00885-17. [PMID: 28790208 DOI: 10.1128/mBio.00885-17] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 5.6] [Reference Citation Analysis]
117 Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31:69-75. [PMID: 25394236 DOI: 10.1097/mog.0000000000000139] [Cited by in Crossref: 586] [Cited by in F6Publishing: 317] [Article Influence: 83.7] [Reference Citation Analysis]
118 Paknikar R, Pekow J. Fecal Microbiota Transplantation for the Management of Clostridium difficile Infection. Surg Infect (Larchmt). 2018;19:785-791. [PMID: 30300561 DOI: 10.1089/sur.2018.221] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
119 Brauer M, Lassek C, Hinze C, Hoyer J, Becher D, Jahn D, Sievers S, Riedel K. What's a Biofilm?-How the Choice of the Biofilm Model Impacts the Protein Inventory of Clostridioides difficile. Front Microbiol 2021;12:682111. [PMID: 34177868 DOI: 10.3389/fmicb.2021.682111] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
120 Xie C, Zeng H, Wang C, Xu Z, Qin L. Volatile flavour components, microbiota and their correlations in different sufu, a Chinese fermented soybean food. J Appl Microbiol 2018. [PMID: 30133098 DOI: 10.1111/jam.14078] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
121 Cameron EA, Sperandio V. Frenemies: Signaling and Nutritional Integration in Pathogen-Microbiota-Host Interactions. Cell Host Microbe 2015;18:275-84. [PMID: 26355214 DOI: 10.1016/j.chom.2015.08.007] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 7.8] [Reference Citation Analysis]
122 Knutie SA, Wilkinson CL, Kohl KD, Rohr JR. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat Commun 2017;8:86. [PMID: 28729558 DOI: 10.1038/s41467-017-00119-0] [Cited by in Crossref: 65] [Cited by in F6Publishing: 48] [Article Influence: 13.0] [Reference Citation Analysis]
123 Pike CM, Theriot CM. Mechanisms of Colonization Resistance Against Clostridioides difficile. J Infect Dis 2021;223:S194-200. [PMID: 33326565 DOI: 10.1093/infdis/jiaa408] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
124 Zhang Y, Keerthisinghe TP, Han Y, Liu M, Wanjaya ER, Fang M. "Cocktail" of Xenobiotics at Human Relevant Levels Reshapes the Gut Bacterial Metabolome in a Species-Specific Manner. Environ Sci Technol 2018;52:11402-10. [PMID: 30153011 DOI: 10.1021/acs.est.8b02629] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
125 Fadda HM. The Route to Palatable Fecal Microbiota Transplantation. AAPS PharmSciTech 2020;21:114. [PMID: 32296975 DOI: 10.1208/s12249-020-1637-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
126 Rao K, Young VB. Fecal microbiota transplantation for the management of Clostridium difficile infection. Infect Dis Clin North Am 2015;29:109-22. [PMID: 25677705 DOI: 10.1016/j.idc.2014.11.009] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 7.0] [Reference Citation Analysis]
127 Winston JA, Thanissery R, Montgomery SA, Theriot CM. Cefoperazone-treated Mouse Model of Clinically-relevant Clostridium difficile Strain R20291. J Vis Exp 2016. [PMID: 28060346 DOI: 10.3791/54850] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
128 Manthey C, Eckmann L, Fuhrmann V. Therapy for Clostridium difficile infection – any news beyond Metronidazole and Vancomycin? Expert Review of Clinical Pharmacology 2017;10:1239-50. [DOI: 10.1080/17512433.2017.1362978] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
129 Knutie SA. Relationships among introduced parasites, host defenses, and gut microbiota of Galapagos birds. Ecosphere 2018;9. [DOI: 10.1002/ecs2.2286] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
130 Shen D, Guo Z, Huang K, Dai P, Jin X, Li Y, Li C. Inflammation-associated pulmonary microbiome and metabolome changes in broilers exposed to particulate matter in broiler houses. J Hazard Mater 2021;421:126710. [PMID: 34332479 DOI: 10.1016/j.jhazmat.2021.126710] [Reference Citation Analysis]
131 Nagao-Kitamoto H, Leslie JL, Kitamoto S, Jin C, Thomsson KA, Gillilland MG 3rd, Kuffa P, Goto Y, Jenq RR, Ishii C, Hirayama A, Seekatz AM, Martens EC, Eaton KA, Kao JY, Fukuda S, Higgins PDR, Karlsson NG, Young VB, Kamada N. Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nat Med 2020;26:608-17. [PMID: 32066975 DOI: 10.1038/s41591-020-0764-0] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 17.0] [Reference Citation Analysis]
132 Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev 2021;101:683-731. [PMID: 32790577 DOI: 10.1152/physrev.00049.2019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
133 Galla S, Chakraborty S, Cheng X, Yeo J, Mell B, Zhang H, Mathew AV, Vijay-Kumar M, Joe B. Disparate effects of antibiotics on hypertension. Physiol Genomics 2018;50:837-45. [PMID: 30095376 DOI: 10.1152/physiolgenomics.00073.2018] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 9.5] [Reference Citation Analysis]
134 Segal JP, Mullish BH, Quraishi MN, Iqbal T, Marchesi JR, Sokol H. Mechanisms underpinning the efficacy of faecal microbiota transplantation in treating gastrointestinal disease. Therap Adv Gastroenterol 2020;13:1756284820946904. [PMID: 32952613 DOI: 10.1177/1756284820946904] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
135 Magombedze G, Marino S. Mathematical and computational approaches in understanding the immunobiology of granulomatous diseases. Current Opinion in Systems Biology 2018;12:1-11. [DOI: 10.1016/j.coisb.2018.07.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
136 Qian X, Yanagi K, Kane AV, Alden N, Lei M, Snydman DR, Vickers RJ, Lee K, Thorpe CM. Ridinilazole, a narrow spectrum antibiotic for treatment of Clostridioides difficile infection, enhances preservation of microbiota-dependent bile acids. Am J Physiol Gastrointest Liver Physiol 2020;319:G227-37. [PMID: 32597706 DOI: 10.1152/ajpgi.00046.2020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
137 Monaghan TM. New perspectives in Clostridium difficile disease pathogenesis. Infect Dis Clin North Am. 2015;29:1-11. [PMID: 25573674 DOI: 10.1016/j.idc.2014.11.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
138 Li Q, Chen S, Liu K, Long D, Liu D, Jing Z, Huang X. Differences in Gut Microbial Diversity are Driven by Drug Use and Drug Cessation by Either Compulsory Detention or Methadone Maintenance Treatment. Microorganisms 2020;8:E411. [PMID: 32183228 DOI: 10.3390/microorganisms8030411] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
139 Freedman SN, Shahi SK, Mangalam AK. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics 2018;15:109-25. [PMID: 29204955 DOI: 10.1007/s13311-017-0588-x] [Cited by in Crossref: 62] [Cited by in F6Publishing: 58] [Article Influence: 20.7] [Reference Citation Analysis]
140 Green SI, Gu Liu C, Yu X, Gibson S, Salmen W, Rajan A, Carter HE, Clark JR, Song X, Ramig RF, Trautner BW, Kaplan HB, Maresso AW. Targeting of Mammalian Glycans Enhances Phage Predation in the Gastrointestinal Tract. mBio 2021;12:e03474-20. [PMID: 33563833 DOI: 10.1128/mBio.03474-20] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
141 Gutierrez D, Weinstock A, Antharam VC, Gu H, Jasbi P, Shi X, Dirks B, Krajmalnik-Brown R, Maldonado J, Guinan J, Thangamani S. Antibiotic-induced gut metabolome and microbiome alterations increase the susceptibility to Candida albicans colonization in the gastrointestinal tract. FEMS Microbiol Ecol 2020;96:fiz187. [PMID: 31769789 DOI: 10.1093/femsec/fiz187] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
142 Weingarden AR, Dosa PI, DeWinter E, Steer CJ, Shaughnessy MK, Johnson JR, Khoruts A, Sadowsky MJ. Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth. PLoS One 2016;11:e0147210. [PMID: 26789728 DOI: 10.1371/journal.pone.0147210] [Cited by in Crossref: 81] [Cited by in F6Publishing: 73] [Article Influence: 13.5] [Reference Citation Analysis]
143 Thorpe CM, Kane AV, Chang J, Tai A, Vickers RJ, Snydman DR. Enhanced preservation of the human intestinal microbiota by ridinilazole, a novel Clostridium difficile-targeting antibacterial, compared to vancomycin. PLoS One 2018;13:e0199810. [PMID: 30071046 DOI: 10.1371/journal.pone.0199810] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
144 Lopez CA, Beavers WN, Weiss A, Knippel RJ, Zackular JP, Chazin W, Skaar EP. The Immune Protein Calprotectin Impacts Clostridioides difficile Metabolism through Zinc Limitation. mBio 2019;10:e02289-19. [PMID: 31744916 DOI: 10.1128/mBio.02289-19] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
145 Yuzuriha K, Yakabe K, Nagai H, Li S, Zendo T, Zai K, Kishimura A, Hase K, Kim YG, Mori T, Katayama Y. Protection of gut microbiome from antibiotics: development of a vancomycin-specific adsorbent with high adsorption capacity. Biosci Microbiota Food Health 2020;39:128-36. [PMID: 32775131 DOI: 10.12938/bmfh.2020-002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
146 Jenior ML, Leslie JL, Powers DA, Garrett EM, Walker KA, Dickenson ME, Petri WA Jr, Tamayo R, Papin JA. Novel Drivers of Virulence in Clostridioides difficile Identified via Context-Specific Metabolic Network Analysis. mSystems 2021;6:e0091921. [PMID: 34609164 DOI: 10.1128/mSystems.00919-21] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
147 Whary MT, Baumgarth N, Fox JG, Barthold SW. Biology and Diseases of Mice. Laboratory Animal Medicine. Elsevier; 2015. pp. 43-149. [DOI: 10.1016/b978-0-12-409527-4.00003-1] [Cited by in Crossref: 17] [Article Influence: 2.4] [Reference Citation Analysis]
148 Collins J, Robinson C, Danhof H, Knetsch CW, van Leeuwen HC, Lawley TD, Auchtung JM, Britton RA. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature. 2018;553:291-294. [PMID: 29310122 DOI: 10.1038/nature25178] [Cited by in Crossref: 192] [Cited by in F6Publishing: 148] [Article Influence: 48.0] [Reference Citation Analysis]
149 Faber F, Tran L, Byndloss MX, Lopez CA, Velazquez EM, Kerrinnes T, Nuccio SP, Wangdi T, Fiehn O, Tsolis RM, Bäumler AJ. Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion. Nature 2016;534:697-9. [PMID: 27309805 DOI: 10.1038/nature18597] [Cited by in Crossref: 99] [Cited by in F6Publishing: 92] [Article Influence: 16.5] [Reference Citation Analysis]
150 Crouzet L, Rigottier-gois L, Serror P. Potential use of probiotic and commensal bacteria as non-antibiotic strategies against vancomycin-resistant enterococci. FEMS Microbiology Letters 2015;362. [DOI: 10.1093/femsle/fnv012] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
151 Bhattacharjee D, Francis MB, Ding X, McAllister KN, Shrestha R, Sorg JA. Reexamining the Germination Phenotypes of Several Clostridium difficile Strains Suggests Another Role for the CspC Germinant Receptor. J Bacteriol 2015;198:777-86. [PMID: 26668265 DOI: 10.1128/JB.00908-15] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
152 Ochoa-Repáraz J, Kasper LH. Gut microbiome and the risk factors in central nervous system autoimmunity. FEBS Lett 2014;588:4214-22. [PMID: 25286403 DOI: 10.1016/j.febslet.2014.09.024] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 5.4] [Reference Citation Analysis]
153 Xu M, Shen Y, Cen M, Zhu Y, Cheng F, Tang L, Zheng X, Kim JJ, Dai N, Hu W. Modulation of the Gut Microbiota-farnesoid X Receptor Axis Improves Deoxycholic Acid-induced Intestinal Inflammation in Mice. J Crohns Colitis 2021;15:1197-210. [PMID: 33417675 DOI: 10.1093/ecco-jcc/jjab003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
154 Fleming-davies A, Jabbari S, Robertson SL, Asih TSN, Lanzas C, Lenhart S, Theriot CM. Mathematical Modeling of the Effects of Nutrient Competition and Bile Acid Metabolism by the Gut Microbiota on Colonization Resistance Against Clostridium difficile. In: Layton AT, Miller LA, editors. Women in Mathematical Biology. Cham: Springer International Publishing; 2017. pp. 137-61. [DOI: 10.1007/978-3-319-60304-9_8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
155 Ross CL, Spinler JK, Savidge TC. Structural and functional changes within the gut microbiota and susceptibility to Clostridium difficile infection. Anaerobe 2016;41:37-43. [PMID: 27180006 DOI: 10.1016/j.anaerobe.2016.05.006] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 6.0] [Reference Citation Analysis]
156 Khoruts A, Staley C, Sadowsky MJ. Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol 2021;18:67-80. [PMID: 32843743 DOI: 10.1038/s41575-020-0350-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
157 El Feghaly RE, Bangar H, Haslam DB. The molecular basis of Clostridium difficile disease and host response. Curr Opin Gastroenterol 2015;31:24-9. [PMID: 25394235 DOI: 10.1097/MOG.0000000000000131] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
158 Woods EC, Edwards AN, Childress KO, Jones JB, McBride SM. The C. difficile clnRAB operon initiates adaptations to the host environment in response to LL-37. PLoS Pathog 2018;14:e1007153. [PMID: 30125334 DOI: 10.1371/journal.ppat.1007153] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
159 Frye RE, Slattery J, MacFabe DF, Allen-Vercoe E, Parker W, Rodakis J, Adams JB, Krajmalnik-Brown R, Bolte E, Kahler S, Jennings J, James J, Cerniglia CE, Midtvedt T. Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. Microb Ecol Health Dis 2015;26:26878. [PMID: 25956237 DOI: 10.3402/mehd.v26.26878] [Cited by in Crossref: 12] [Cited by in F6Publishing: 25] [Article Influence: 1.7] [Reference Citation Analysis]
160 Rosa R, Donskey CJ, Munoz-Price LS. The Intersection Between Colonization Resistance, Antimicrobial Stewardship, and Clostridium difficile. Curr Infect Dis Rep 2018;20:27. [PMID: 29882079 DOI: 10.1007/s11908-018-0631-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
161 Cray P, Sheahan BJ, Cortes JE, Dekaney CM. Doxorubicin increases permeability of murine small intestinal epithelium and cultured T84 monolayers. Sci Rep 2020;10:21486. [PMID: 33293626 DOI: 10.1038/s41598-020-78473-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
162 Stevens EJ, Bates KA, King KC. Host microbiota can facilitate pathogen infection. PLoS Pathog 2021;17:e1009514. [PMID: 33984069 DOI: 10.1371/journal.ppat.1009514] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
163 Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. Sporulation and Germination in Clostridial Pathogens. Microbiol Spectr 2019;7. [PMID: 31858953 DOI: 10.1128/microbiolspec.GPP3-0017-2018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
164 Chi L, Tu P, Ru H, Lu K. Studies of xenobiotic-induced gut microbiota dysbiosis: from correlation to mechanisms. Gut Microbes 2021;13:1921912. [PMID: 34313531 DOI: 10.1080/19490976.2021.1921912] [Reference Citation Analysis]
165 Sievers S, Metzendorf NG, Dittmann S, Troitzsch D, Gast V, Tröger SM, Wolff C, Zühlke D, Hirschfeld C, Schlüter R, Riedel K. Differential View on the Bile Acid Stress Response of Clostridioides difficile. Front Microbiol 2019;10:258. [PMID: 30833939 DOI: 10.3389/fmicb.2019.00258] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
166 Morrison PK, Newbold CJ, Jones E, Worgan HJ, Grove-White DH, Dugdale AH, Barfoot C, Harris PA, Argo CM. The Equine Gastrointestinal Microbiome: Impacts of Age and Obesity. Front Microbiol 2018;9:3017. [PMID: 30581426 DOI: 10.3389/fmicb.2018.03017] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
167 Fletcher JR, Erwin S, Lanzas C, Theriot CM. Shifts in the Gut Metabolome and Clostridium difficile Transcriptome throughout Colonization and Infection in a Mouse Model. mSphere 2018;3:e00089-18. [PMID: 29600278 DOI: 10.1128/mSphere.00089-18] [Cited by in Crossref: 51] [Cited by in F6Publishing: 36] [Article Influence: 12.8] [Reference Citation Analysis]
168 Mullish BH, Allegretti JR. The contribution of bile acid metabolism to the pathogenesis of Clostridioides difficile infection. Therap Adv Gastroenterol 2021;14:17562848211017725. [PMID: 34104212 DOI: 10.1177/17562848211017725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
169 Hudson LE, Anderson SE, Corbett AH, Lamb TJ. Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies. Clin Microbiol Rev. 2017;30:191-231. [PMID: 27856521 DOI: 10.1128/cmr.00049-16] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 7.6] [Reference Citation Analysis]
170 Meng Y, Sheng B, Meng F. Changes in nitrogen removal and microbiota of anammox biofilm reactors under tetracycline stress at environmentally and industrially relevant concentrations. Science of The Total Environment 2019;668:379-88. [DOI: 10.1016/j.scitotenv.2019.02.389] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 8.3] [Reference Citation Analysis]
171 Schmidt VT, Smith KF, Melvin DW, Amaral-zettler LA. Community assembly of a euryhaline fish microbiome during salinity acclimation. Mol Ecol 2015;24:2537-50. [DOI: 10.1111/mec.13177] [Cited by in Crossref: 117] [Cited by in F6Publishing: 94] [Article Influence: 16.7] [Reference Citation Analysis]
172 Koenigsknecht MJ, Theriot CM, Bergin IL, Schumacher CA, Schloss PD, Young VB. Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract. Infect Immun 2015;83:934-41. [PMID: 25534943 DOI: 10.1128/IAI.02768-14] [Cited by in Crossref: 93] [Cited by in F6Publishing: 70] [Article Influence: 11.6] [Reference Citation Analysis]
173 Gil F, Paredes-sabja D. Acyldepsipeptide antibiotics as a potential therapeutic agent against Clostridium difficile recurrent infections. Future Microbiology 2016;11:1179-89. [DOI: 10.2217/fmb-2016-0064] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
174 Yang M, Bose S, Lim SK, Kim H. Preventive Effects of Pyungwi-san against Dextran Sulfate Sodium- and Clostridium difficile-Induced Inflammatory Bowel Disease in Mice. Int J Mol Sci. 2019;20:6346. [PMID: 31888274 DOI: 10.3390/ijms20246346] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
175 Denny JE, Powell WL, Schmidt NW. Local and Long-Distance Calling: Conversations between the Gut Microbiota and Intra- and Extra-Gastrointestinal Tract Infections. Front Cell Infect Microbiol 2016;6:41. [PMID: 27148490 DOI: 10.3389/fcimb.2016.00041] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
176 Fachi JL, Felipe JS, Pral LP, da Silva BK, Corrêa RO, de Andrade MCP, da Fonseca DM, Basso PJ, Câmara NOS, de Sales E Souza ÉL, Dos Santos Martins F, Guima SES, Thomas AM, Setubal JC, Magalhães YT, Forti FL, Candreva T, Rodrigues HG, de Jesus MB, Consonni SR, Farias ADS, Varga-Weisz P, Vinolo MAR. Butyrate Protects Mice from Clostridium difficile-Induced Colitis through an HIF-1-Dependent Mechanism. Cell Rep 2019;27:750-761.e7. [PMID: 30995474 DOI: 10.1016/j.celrep.2019.03.054] [Cited by in Crossref: 78] [Cited by in F6Publishing: 73] [Article Influence: 39.0] [Reference Citation Analysis]
177 Asangba AE, Donohue ME, Lamb A, Wright PC, Halajian A, Leigh SR, Stumpf RM. Variations in the microbiome due to storage preservatives are not large enough to obscure variations due to factors such as host population, host species, body site, and captivity. Am J Primatol 2019;81:e23045. [PMID: 31471974 DOI: 10.1002/ajp.23045] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
178 Guinan J, Villa P, Thangamani S. Secondary bile acids inhibit Candida albicans growth and morphogenesis. Pathog Dis 2018;76. [PMID: 29648597 DOI: 10.1093/femspd/fty038] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
179 Blake S, Thanissery R, Rivera AJ, Hixon MS, Lin M, Theriot CM, Janda KD. Salicylanilide Analog Minimizes Relapse of Clostridioides difficile Infection in Mice. J Med Chem 2020;63:6898-908. [PMID: 32482070 DOI: 10.1021/acs.jmedchem.0c00123] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
180 Noecker C, McNally CP, Eng A, Borenstein E. High-resolution characterization of the human microbiome. Transl Res 2017;179:7-23. [PMID: 27513210 DOI: 10.1016/j.trsl.2016.07.012] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
181 Gemikonakli G, Mach J, Hilmer SN. Interactions Between the Aging Gut Microbiome and Common Geriatric Giants: Polypharmacy, Frailty, and Dementia. J Gerontol A Biol Sci Med Sci 2021;76:1019-28. [PMID: 32064521 DOI: 10.1093/gerona/glaa047] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
182 Schenck LP, Beck PL, MacDonald JA. Gastrointestinal dysbiosis and the use of fecal microbial transplantation in Clostridium difficile infection. World J Gastrointest Pathophysiol 2015; 6(4): 169-180 [PMID: 26600975 DOI: 10.4291/wjgp.v6.i4.169] [Cited by in CrossRef: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
183 Donskey CJ, Kundrapu S, Deshpande A. Colonization versus carriage of Clostridium difficile. Infect Dis Clin North Am. 2015;29:13-28. [PMID: 25595843 DOI: 10.1016/j.idc.2014.11.001] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 7.0] [Reference Citation Analysis]
184 Auchtung JM, Preisner EC, Collins J, Lerma AI, Britton RA. Identification of Simplified Microbial Communities That Inhibit Clostridioides difficile Infection through Dilution/Extinction. mSphere 2020;5:e00387-20. [PMID: 32727857 DOI: 10.1128/mSphere.00387-20] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
185 Tremblay YDN, Durand BAR, Hamiot A, Martin-Verstraete I, Oberkampf M, Monot M, Dupuy B. Metabolic adaption to extracellular pyruvate triggers biofilm formation in Clostridioides difficile. ISME J 2021. [PMID: 34155333 DOI: 10.1038/s41396-021-01042-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
186 Xu Q, Gu S, Chen Y, Quan J, Lv L, Chen D, Zheng B, Xu L, Li L. Protective Effect of Pediococcus pentosaceus LI05 Against Clostridium difficile Infection in a Mouse Model. Front Microbiol. 2018;9:2396. [PMID: 30356740 DOI: 10.3389/fmicb.2018.02396] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
187 [DOI: 10.1101/099457] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
188 Zischka M, Künne CT, Blom J, Wobser D, Sakιnç T, Schmidt-Hohagen K, Dabrowski PW, Nitsche A, Hübner J, Hain T, Chakraborty T, Linke B, Goesmann A, Voget S, Daniel R, Schomburg D, Hauck R, Hafez HM, Tielen P, Jahn D, Solheim M, Sadowy E, Larsen J, Jensen LB, Ruiz-Garbajosa P, Quiñones Pérez D, Mikalsen T, Bender J, Steglich M, Nübel U, Witte W, Werner G. Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40. BMC Genomics 2015;16:175. [PMID: 25887115 DOI: 10.1186/s12864-015-1367-x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
189 Sokol NS, Newton ILG. The Microbiome Sets the Stage for Cholera. Trends Microbiol 2020;28:430-2. [PMID: 32396824 DOI: 10.1016/j.tim.2020.03.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
190 Ubeda C, Djukovic A, Isaac S. Roles of the intestinal microbiota in pathogen protection. Clin Transl Immunology. 2017;6:e128. [PMID: 28243438 DOI: 10.1038/cti.2017.2] [Cited by in Crossref: 96] [Cited by in F6Publishing: 82] [Article Influence: 19.2] [Reference Citation Analysis]
191 Chang PV. Chemical Mechanisms of Colonization Resistance by the Gut Microbial Metabolome. ACS Chem Biol 2020;15:1119-26. [PMID: 31895538 DOI: 10.1021/acschembio.9b00813] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
192 Gregory AL, Pensinger DA, Hryckowian AJ. A short chain fatty acid-centric view of Clostridioides difficile pathogenesis. PLoS Pathog 2021;17:e1009959. [PMID: 34673840 DOI: 10.1371/journal.ppat.1009959] [Reference Citation Analysis]
193 Gong Y, Xia W, Wen X, Lyu W, Xiao Y, Yang H, Zou X. Early inoculation with caecal fermentation broth alters small intestine morphology, gene expression of tight junction proteins in the ileum, and the caecal metabolomic profiling of broilers. J Anim Sci Biotechnol 2020;11:8. [PMID: 31956411 DOI: 10.1186/s40104-019-0410-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
194 Miezeiewski M, Schnaufer T, Muravsky M, Wang S, Caro-Aguilar I, Secore S, Thiriot DS, Hsu C, Rogers I, DeSantis T, Kuczynski J, Probst AJ, Chehoud C, Steger R, Warrington J, Bodmer JL, Heinrichs JH. An in vitro culture model to study the dynamics of colonic microbiota in Syrian golden hamsters and their susceptibility to infection with Clostridium difficile. ISME J 2015;9:321-32. [PMID: 25036923 DOI: 10.1038/ismej.2014.127] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
195 Seekatz AM, Young VB. Clostridium difficile Infection and the Tangled Web of Interactions Among Host, Pathogen, and Microbiota. Gastroenterology 2018;154:1573-6. [PMID: 29601830 DOI: 10.1053/j.gastro.2018.03.036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
196 Theriot CM, Young VB. Interactions Between the Gastrointestinal Microbiome and Clostridium difficile. Annu Rev Microbiol 2015;69:445-61. [PMID: 26488281 DOI: 10.1146/annurev-micro-091014-104115] [Cited by in Crossref: 163] [Cited by in F6Publishing: 135] [Article Influence: 27.2] [Reference Citation Analysis]
197 Pickard JM, Núñez G. Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. Am J Pathol 2019;189:1300-10. [PMID: 31100210 DOI: 10.1016/j.ajpath.2019.03.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
198 Messer JS, Liechty ER, Vogel OA, Chang EB. Evolutionary and ecological forces that shape the bacterial communities of the human gut. Mucosal Immunol 2017;10:567-79. [PMID: 28145439 DOI: 10.1038/mi.2016.138] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
199 Baumgartner M, Bayer F, Pfrunder-Cardozo KR, Buckling A, Hall AR. Resident microbial communities inhibit growth and antibiotic-resistance evolution of Escherichia coli in human gut microbiome samples. PLoS Biol 2020;18:e3000465. [PMID: 32310938 DOI: 10.1371/journal.pbio.3000465] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
200 DiGiandomenico A, Sellman BR. Antibacterial monoclonal antibodies: the next generation? Curr Opin Microbiol 2015;27:78-85. [PMID: 26302478 DOI: 10.1016/j.mib.2015.07.014] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 7.3] [Reference Citation Analysis]
201 Cameron EA, Kwiatkowski KJ, Lee BH, Hamaker BR, Koropatkin NM, Martens EC. Multifunctional nutrient-binding proteins adapt human symbiotic bacteria for glycan competition in the gut by separately promoting enhanced sensing and catalysis. mBio 2014;5:e01441-14. [PMID: 25205092 DOI: 10.1128/mBio.01441-14] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]
202 Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 2016;8:39. [PMID: 27074706 DOI: 10.1186/s13073-016-0294-z] [Cited by in Crossref: 394] [Cited by in F6Publishing: 328] [Article Influence: 65.7] [Reference Citation Analysis]
203 Schubert AM, Sinani H, Schloss PD. Antibiotic-Induced Alterations of the Murine Gut Microbiota and Subsequent Effects on Colonization Resistance against Clostridium difficile. mBio 2015;6:e00974. [PMID: 26173701 DOI: 10.1128/mBio.00974-15] [Cited by in Crossref: 154] [Cited by in F6Publishing: 92] [Article Influence: 22.0] [Reference Citation Analysis]
204 Gao P, Hou Q, Kwok L, Huo D, Feng S, Zhang H. Effect of feeding Lactobacillus plantarum P-8 on the faecal microbiota of broiler chickens exposed to lincomycin. Science Bulletin 2017;62:105-13. [DOI: 10.1016/j.scib.2017.01.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
205 Garland M, Hryckowian AJ, Tholen M, Bender KO, Van Treuren WW, Loscher S, Sonnenburg JL, Bogyo M. The Clinical Drug Ebselen Attenuates Inflammation and Promotes Microbiome Recovery in Mice after Antibiotic Treatment for CDI. Cell Rep Med 2020;1:100005. [PMID: 32483557 DOI: 10.1016/j.xcrm.2020.100005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
206 Ojima MN, Gotoh A, Takada H, Odamaki T, Xiao JZ, Katoh T, Katayama T. Bifidobacterium bifidum Suppresses Gut Inflammation Caused by Repeated Antibiotic Disturbance Without Recovering Gut Microbiome Diversity in Mice. Front Microbiol 2020;11:1349. [PMID: 32625197 DOI: 10.3389/fmicb.2020.01349] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
207 Romo JA, Markey L, Kumamoto CA. Lipid Species in the GI Tract are Increased by the Commensal Fungus Candida albicans and Decrease the Virulence of Clostridioides difficile. J Fungi (Basel) 2020;6:E100. [PMID: 32635220 DOI: 10.3390/jof6030100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
208 Jose S, Mukherjee A, Abhyankar MM, Leng L, Bucala R, Sharma D, Madan R. Neutralization of macrophage migration inhibitory factor improves host survival after Clostridium difficile infection. Anaerobe 2018;53:56-63. [PMID: 29944928 DOI: 10.1016/j.anaerobe.2018.06.014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
209 Webb BJ, Brunner A, Lewis J, Ford CD, Lopansri BK. Repurposing an Old Drug for a New Epidemic: Ursodeoxycholic Acid to Prevent Recurrent Clostridioides difficile Infection. Clin Infect Dis 2019;68:498-500. [PMID: 30020421 DOI: 10.1093/cid/ciy568] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
210 Qian Y, Lan F, Venturelli OS. Towards a deeper understanding of microbial communities: integrating experimental data with dynamic models. Curr Opin Microbiol 2021;62:84-92. [PMID: 34098512 DOI: 10.1016/j.mib.2021.05.003] [Reference Citation Analysis]
211 Heinzinger LR, Johnson A, Wurster JI, Nilson R, Penumutchu S, Belenky P. Oxygen and Metabolism: Digesting Determinants of Antibiotic Susceptibility in the Gut. iScience 2020;23:101875. [PMID: 33354661 DOI: 10.1016/j.isci.2020.101875] [Reference Citation Analysis]
212 You JS, Yong JH, Kim GH, Moon S, Nam KT, Ryu JH, Yoon MY, Yoon SS. Commensal-derived metabolites govern Vibrio cholerae pathogenesis in host intestine. Microbiome 2019;7:132. [PMID: 31521198 DOI: 10.1186/s40168-019-0746-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
213 Zackular JP, Moore JL, Jordan AT, Juttukonda LJ, Noto MJ, Nicholson MR, Crews JD, Semler MW, Zhang Y, Ware LB, Washington MK, Chazin WJ, Caprioli RM, Skaar EP. Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nat Med 2016;22:1330-4. [PMID: 27668938 DOI: 10.1038/nm.4174] [Cited by in Crossref: 112] [Cited by in F6Publishing: 99] [Article Influence: 18.7] [Reference Citation Analysis]
214 Jenior ML, Leslie JL, Young VB, Schloss PD. Clostridium difficile Colonizes Alternative Nutrient Niches during Infection across Distinct Murine Gut Microbiomes. mSystems 2017;2:e00063-17. [PMID: 28761936 DOI: 10.1128/mSystems.00063-17] [Cited by in Crossref: 74] [Cited by in F6Publishing: 55] [Article Influence: 14.8] [Reference Citation Analysis]
215 Horvat S, Mahnic A, Breskvar M, Dzeroski S, Rupnik M. Evaluating the effect of Clostridium difficile conditioned medium on fecal microbiota community structure. Sci Rep 2017;7:16448. [PMID: 29180685 DOI: 10.1038/s41598-017-15434-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
216 Ling Z, Liu X, Jia X, Cheng Y, Luo Y, Yuan L, Wang Y, Zhao C, Guo S, Li L, Xu X, Xiang C. Impacts of infection with different toxigenic Clostridium difficile strains on faecal microbiota in children. Sci Rep 2014;4:7485. [PMID: 25501371 DOI: 10.1038/srep07485] [Cited by in Crossref: 90] [Cited by in F6Publishing: 89] [Article Influence: 11.3] [Reference Citation Analysis]
217 Pereira FC, Berry D. Microbial nutrient niches in the gut. Environ Microbiol 2017;19:1366-78. [PMID: 28035742 DOI: 10.1111/1462-2920.13659] [Cited by in Crossref: 127] [Cited by in F6Publishing: 103] [Article Influence: 25.4] [Reference Citation Analysis]
218 Cleary DW, Clarke SC. The nasopharyngeal microbiome. Emerg Top Life Sci 2017;1:297-312. [PMID: 33525776 DOI: 10.1042/ETLS20170041] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
219 Choo JM, Trim PJ, Leong LEX, Abell GCJ, Brune C, Jeffries N, Wesselingh S, Dear TN, Snel MF, Rogers GB. Inbred Mouse Populations Exhibit Intergenerational Changes in Intestinal Microbiota Composition and Function Following Introduction to a Facility. Front Microbiol 2017;8:608. [PMID: 28443082 DOI: 10.3389/fmicb.2017.00608] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
220 van Eijk E, Wittekoek B, Kuijper EJ, Smits WK. DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens. J Antimicrob Chemother 2017;72:1275-84. [PMID: 28073967 DOI: 10.1093/jac/dkw548] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
221 Kint N, Janoir C, Monot M, Hoys S, Soutourina O, Dupuy B, Martin-Verstraete I. The alternative sigma factor σB plays a crucial role in adaptive strategies of Clostridium difficile during gut infection. Environ Microbiol 2017;19:1933-58. [PMID: 28198085 DOI: 10.1111/1462-2920.13696] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 6.8] [Reference Citation Analysis]
222 Kevorkian Y, Shirley DJ, Shen A. Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Biochimie 2016;122:243-54. [PMID: 26231446 DOI: 10.1016/j.biochi.2015.07.023] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 6.6] [Reference Citation Analysis]
223 Björkqvist O, Rangel I, Serrander L, Magnusson C, Halfvarson J, Norén T, Bergman-Jungeström M. Faecalibacterium prausnitzii increases following fecal microbiota transplantation in recurrent Clostridioides difficile infection. PLoS One 2021;16:e0249861. [PMID: 33836037 DOI: 10.1371/journal.pone.0249861] [Reference Citation Analysis]
224 Jiang Y, Chowdhury S, Xu BH, Meybodi MA, Damiris K, Devalaraju S, Pyrsopoulos N. Nonalcoholic fatty liver disease is associated with worse intestinal complications in patients hospitalized for Clostridioides difficile infection. World J Hepatol 2021; 13(11): 1777-1790 [PMID: 34904045 DOI: 10.4254/wjh.v13.i11.1777] [Reference Citation Analysis]
225 Galley JD, Yu Z, Kumar P, Dowd SE, Lyte M, Bailey MT. The structures of the colonic mucosa-associated and luminal microbial communities are distinct and differentially affected by a prolonged murine stressor. Gut Microbes 2014;5:748-60. [PMID: 25536463 DOI: 10.4161/19490976.2014.972241] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 9.3] [Reference Citation Analysis]
226 Jeong JH. Inducible Mouse Models for Cancer Drug Target Validation. J Cancer Prev 2016;21:243-8. [PMID: 28053958 DOI: 10.15430/JCP.2016.21.4.243] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
227 Vrbanac A, Patras KA, Jarmusch AK, Mills RH, Shing SR, Quinn RA, Vargas F, Gonzalez DJ, Dorrestein PC, Knight R, Nizet V. Evaluating Organism-Wide Changes in the Metabolome and Microbiome following a Single Dose of Antibiotic. mSystems 2020;5:e00340-20. [PMID: 33024048 DOI: 10.1128/mSystems.00340-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
228 Sangster W, Hegarty JP, Schieffer KM, Wright JR, Hackman J, Toole DR, Lamendella R, Stewart DB Sr. Bacterial and Fungal Microbiota Changes Distinguish C. difficile Infection from Other Forms of Diarrhea: Results of a Prospective Inpatient Study. Front Microbiol 2016;7:789. [PMID: 27252696 DOI: 10.3389/fmicb.2016.00789] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 5.2] [Reference Citation Analysis]
229 Collins J, Auchtung JM. Control of Clostridium difficile Infection by Defined Microbial Communities. Microbiol Spectr 2017;5. [PMID: 28936948 DOI: 10.1128/microbiolspec.BAD-0009-2016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
230 Sun L, Pfeifer JD. Pitfalls in molecular diagnostics. Seminars in Diagnostic Pathology 2019;36:342-54. [DOI: 10.1053/j.semdp.2019.06.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
231 Perino A, Schoonjans K. TGR5 and Immunometabolism: Insights from Physiology and Pharmacology. Trends Pharmacol Sci. 2015;36:847-857. [PMID: 26541439 DOI: 10.1016/j.tips.2015.08.002] [Cited by in Crossref: 72] [Cited by in F6Publishing: 69] [Article Influence: 10.3] [Reference Citation Analysis]
232 Matsumoto N, Park J, Tomizawa R, Kawashima H, Hosomi K, Mizuguchi K, Honda C, Ozaki R, Iwatani Y, Watanabe M, Kunisawa J. Relationship between Nutrient Intake and Human Gut Microbiota in Monozygotic Twins. Medicina (Kaunas) 2021;57:275. [PMID: 33809761 DOI: 10.3390/medicina57030275] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
233 Ranjbar R, Vahdati SN, Tavakoli S, Khodaie R, Behboudi H. Immunomodulatory roles of microbiota-derived short-chain fatty acids in bacterial infections. Biomed Pharmacother 2021;141:111817. [PMID: 34126349 DOI: 10.1016/j.biopha.2021.111817] [Reference Citation Analysis]
234 Shen A. A Gut Odyssey: The Impact of the Microbiota on Clostridium difficile Spore Formation and Germination. PLoS Pathog 2015;11:e1005157. [PMID: 26468647 DOI: 10.1371/journal.ppat.1005157] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
235 Daquigan N, Seekatz AM, Greathouse KL, Young VB, White JR. High-resolution profiling of the gut microbiome reveals the extent of Clostridium difficile burden. NPJ Biofilms Microbiomes 2017;3:35. [PMID: 29214047 DOI: 10.1038/s41522-017-0043-0] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
236 Ren W, Yin J, Xiao H, Chen S, Liu G, Tan B, Li N, Peng Y, Li T, Zeng B, Li W, Wei H, Yin Z, Wu G, Hardwidge PR, Yin Y. Intestinal Microbiota-Derived GABA Mediates Interleukin-17 Expression during Enterotoxigenic Escherichia coli Infection. Front Immunol 2016;7:685. [PMID: 28138329 DOI: 10.3389/fimmu.2016.00685] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 6.4] [Reference Citation Analysis]
237 Courson DS, Pokhrel A, Scott C, Madrill M, Rinehold AJ, Tamayo R, Cheney RE, Purcell EB. Single cell analysis of nutrient regulation of Clostridioides (Clostridium) difficile motility. Anaerobe 2019;59:205-11. [PMID: 31386902 DOI: 10.1016/j.anaerobe.2019.102080] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
238 Krueger E, Brown AC. Inhibition of bacterial toxin recognition of membrane components as an anti-virulence strategy. J Biol Eng 2019;13:4. [PMID: 30820243 DOI: 10.1186/s13036-018-0138-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
239 Julliard W, De Wolfe TJ, Fechner JH, Safdar N, Agni R, Mezrich JD. Amelioration of Clostridium difficile Infection in Mice by Dietary Supplementation With Indole-3-carbinol. Ann Surg 2017;265:1183-91. [PMID: 27280500 DOI: 10.1097/SLA.0000000000001830] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
240 Strous M, Sharp C. Designer microbiomes for environmental, energy and health biotechnology. Current Opinion in Microbiology 2018;43:117-23. [DOI: 10.1016/j.mib.2017.12.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
241 Petrosillo N, Granata G, Cataldo MA. Novel Antimicrobials for the Treatment of Clostridium difficile Infection. Front Med (Lausanne) 2018;5:96. [PMID: 29713630 DOI: 10.3389/fmed.2018.00096] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 6.8] [Reference Citation Analysis]
242 Lin Q, Tan X, Wang W, Zeng W, Gui L, Su M, Liu C, Jia W, Xu L, Lan K. Species Differences of Bile Acid Redox Metabolism: Tertiary Oxidation of Deoxycholate is Conserved in Preclinical Animals. Drug Metab Dispos 2020;48:499-507. [PMID: 32193215 DOI: 10.1124/dmd.120.090464] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
243 Engevik MA, Danhof HA, Shrestha R, Chang-Graham AL, Hyser JM, Haag AM, Mohammad MA, Britton RA, Versalovic J, Sorg JA, Spinler JK. Reuterin disrupts Clostridioides difficile metabolism and pathogenicity through reactive oxygen species generation. Gut Microbes 2020;12:1788898. [PMID: 32804011 DOI: 10.1080/19490976.2020.1795388] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
244 Sun J, Cao Z, Smith AD, Carlson PE Jr, Coryell M, Chen H, Beger RD. Bile Acid Profile and its Changes in Response to Cefoperazone Treatment in MR1 Deficient Mice. Metabolites 2020;10:E127. [PMID: 32225042 DOI: 10.3390/metabo10040127] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
245 Maslanka JR, Gu CH, Zarin I, Denny JE, Broadaway S, Fett B, Mattei LM, Walk ST, Abt MC. Detection and elimination of a novel non-toxigenic Clostridioides difficile strain from the microbiota of a mouse colony. Gut Microbes 2020;12:1-15. [PMID: 33305657 DOI: 10.1080/19490976.2020.1851999] [Reference Citation Analysis]
246 Adamovsky O, Buerger AN, Wormington AM, Ector N, Griffitt RJ, Bisesi JH, Martyniuk CJ. The gut microbiome and aquatic toxicology: An emerging concept for environmental health: The microbiome and aquatic toxicology. Environ Toxicol Chem 2018;37:2758-75. [DOI: 10.1002/etc.4249] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 10.5] [Reference Citation Analysis]
247 Pérez-Cobas AE, Moya A, Gosalbes MJ, Latorre A. Colonization Resistance of the Gut Microbiota against Clostridium difficile. Antibiotics (Basel) 2015;4:337-57. [PMID: 27025628 DOI: 10.3390/antibiotics4030337] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
248 Faner R, Sibila O, Agustí A, Bernasconi E, Chalmers JD, Huffnagle GB, Manichanh C, Molyneaux PL, Paredes R, Pérez Brocal V, Ponomarenko J, Sethi S, Dorca J, Monsó E. The microbiome in respiratory medicine: current challenges and future perspectives. Eur Respir J 2017;49:1602086. [PMID: 28404649 DOI: 10.1183/13993003.02086-2016] [Cited by in Crossref: 101] [Cited by in F6Publishing: 96] [Article Influence: 20.2] [Reference Citation Analysis]
249 Wang M, An Y, Gao L, Dong S, Zhou X, Feng Y, Wang P, Dimopoulos G, Tang H, Wang J. Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH. Cell Rep 2021;35:108992. [PMID: 33882310 DOI: 10.1016/j.celrep.2021.108992] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
250 Khan TJ, Hasan MN, Azhar EI, Yasir M. Association of gut dysbiosis with intestinal metabolites in response to antibiotic treatment. Human Microbiome Journal 2019;11:100054. [DOI: 10.1016/j.humic.2018.11.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
251 Pursey E, Sünderhauf D, Gaze WH, Westra ER, van Houte S. CRISPR-Cas antimicrobials: Challenges and future prospects. PLoS Pathog 2018;14:e1006990. [PMID: 29902258 DOI: 10.1371/journal.ppat.1006990] [Cited by in Crossref: 54] [Cited by in F6Publishing: 38] [Article Influence: 13.5] [Reference Citation Analysis]
252 Trindade BC, Theriot CM, Leslie JL, Carlson PE Jr, Bergin IL, Peters-Golden M, Young VB, Aronoff DM. Clostridium difficile-induced colitis in mice is independent of leukotrienes. Anaerobe 2014;30:90-8. [PMID: 25230329 DOI: 10.1016/j.anaerobe.2014.09.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
253 Ruiz MJ, Sirini NE, Signorini ML, Etcheverría A, Zbrun MV, Soto LP, Zimmermann JA, Frizzo LS. Protective effect of Lactiplantibacillus plantarum LP5 in a murine model of colonisation by Campylobacter coli DSPV458. Benef Microbes 2021;12:553-65. [PMID: 34590533 DOI: 10.3920/BM2021.0010] [Reference Citation Analysis]
254 Rao K, Safdar N. Fecal microbiota transplantation for the treatment of Clostridium difficile infection. J Hosp Med 2016;11:56-61. [PMID: 26344412 DOI: 10.1002/jhm.2449] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
255 Hale VL, Jeraldo P, Mundy M, Yao J, Keeney G, Scott N, Cheek EH, Davidson J, Greene M, Martinez C, Lehman J, Pettry C, Reed E, Lyke K, White BA, Diener C, Resendis-Antonio O, Gransee J, Dutta T, Petterson XM, Boardman L, Larson D, Nelson H, Chia N. Synthesis of multi-omic data and community metabolic models reveals insights into the role of hydrogen sulfide in colon cancer. Methods 2018;149:59-68. [PMID: 29704665 DOI: 10.1016/j.ymeth.2018.04.024] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
256 Ciabattini A, Olivieri R, Lazzeri E, Medaglini D. Role of the Microbiota in the Modulation of Vaccine Immune Responses. Front Microbiol. 2019;10:1305. [PMID: 31333592 DOI: 10.3389/fmicb.2019.01305] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 13.0] [Reference Citation Analysis]
257 Kufel WD, Devanathan AS, Marx AH, Weber DJ, Daniels LM. Bezlotoxumab: A Novel Agent for the Prevention of Recurrent Clostridium difficile Infection. Pharmacotherapy 2017;37:1298-308. [PMID: 28730660 DOI: 10.1002/phar.1990] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
258 McDonald JAK, Mullish BH, Pechlivanis A, Liu Z, Brignardello J, Kao D, Holmes E, Li JV, Clarke TB, Thursz MR, Marchesi JR. Inhibiting Growth of Clostridioides difficile by Restoring Valerate, Produced by the Intestinal Microbiota. Gastroenterology 2018;155:1495-1507.e15. [PMID: 30025704 DOI: 10.1053/j.gastro.2018.07.014] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 13.0] [Reference Citation Analysis]
259 Noecker C, Chiu HC, McNally CP, Borenstein E. Defining and Evaluating Microbial Contributions to Metabolite Variation in Microbiome-Metabolome Association Studies. mSystems 2019;4:e00579-19. [PMID: 31848305 DOI: 10.1128/mSystems.00579-19] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 7.3] [Reference Citation Analysis]
260 Theriot CM, Fletcher JR. Human fecal metabolomic profiling could inform Clostridioides difficile infection diagnosis and treatment. J Clin Invest 2019;129:3539-41. [PMID: 31403467 DOI: 10.1172/JCI130008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
261 Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med. 2017;49:e338. [PMID: 28546564 DOI: 10.1038/emm.2017.20] [Cited by in Crossref: 188] [Cited by in F6Publishing: 182] [Article Influence: 37.6] [Reference Citation Analysis]
262 Sorg JA. Microbial bile acid metabolic clusters: the bouncers at the bar. Cell Host Microbe 2014;16:551-2. [PMID: 25525784 DOI: 10.1016/j.chom.2014.10.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
263 Downs IA, Aroniadis OC, Kelly L, Brandt LJ. Postinfection Irritable Bowel Syndrome: The Links Between Gastroenteritis, Inflammation, the Microbiome, and Functional Disease. J Clin Gastroenterol 2017;51:869-77. [PMID: 28885302 DOI: 10.1097/MCG.0000000000000924] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
264 Aguirre AM, Yalcinkaya N, Wu Q, Swennes A, Tessier ME, Roberts P, Miyajima F, Savidge T, Sorg JA. Bile acid-independent protection against Clostridioides difficile infection. PLoS Pathog 2021;17:e1010015. [PMID: 34665847 DOI: 10.1371/journal.ppat.1010015] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
265 Campbell LJ, Garner TWJ, Hopkins K, Griffiths AGF, Harrison XA. Outbreaks of an Emerging Viral Disease Covary With Differences in the Composition of the Skin Microbiome of a Wild United Kingdom Amphibian. Front Microbiol 2019;10:1245. [PMID: 31281291 DOI: 10.3389/fmicb.2019.01245] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
266 Guinan J, Thangamani S. Antibiotic-induced alterations in taurocholic acid levels promote gastrointestinal colonization of Candida albicans. FEMS Microbiol Lett 2018;365. [PMID: 30137306 DOI: 10.1093/femsle/fny196] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
267 Lee JA, Chico TJA, Renshaw SA. The triune of intestinal microbiome, genetics and inflammatory status and its impact on the healing of lower gastrointestinal anastomoses. FEBS J. 2018;285:1212-1225. [PMID: 29193751 DOI: 10.1111/febs.14346] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
268 Manor O, Levy R, Borenstein E. Mapping the inner workings of the microbiome: genomic- and metagenomic-based study of metabolism and metabolic interactions in the human microbiome. Cell Metab 2014;20:742-52. [PMID: 25176148 DOI: 10.1016/j.cmet.2014.07.021] [Cited by in Crossref: 57] [Cited by in F6Publishing: 45] [Article Influence: 7.1] [Reference Citation Analysis]
269 Baloh M, Sorg JA. Clostridioides difficile SpoVAD and SpoVAE Interact and Are Required for Dipicolinic Acid Uptake into Spores. J Bacteriol 2021;203:e0039421. [PMID: 34424035 DOI: 10.1128/JB.00394-21] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
270 Heidebrecht HJ, Lagkouvardos I, Reitmeier S, Hengst C, Kulozik U, Pfaffl MW. Alteration of Intestinal Microbiome of Clostridioides difficile-Infected Hamsters during the Treatment with Specific Cow Antibodies. Antibiotics (Basel) 2021;10:724. [PMID: 34208527 DOI: 10.3390/antibiotics10060724] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
271 Kešnerová L, Mars RAT, Ellegaard KM, Troilo M, Sauer U, Engel P. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol 2017;15:e2003467. [PMID: 29232373 DOI: 10.1371/journal.pbio.2003467] [Cited by in Crossref: 126] [Cited by in F6Publishing: 96] [Article Influence: 25.2] [Reference Citation Analysis]
272 Kim PK, Zhao P, Teperman S. Evolving Treatment Strategies for Severe Clostridium difficile Colitis: Defining the Therapeutic Window. In: Sartelli M, Bassetti M, Martin-loeches I, editors. Abdominal Sepsis. Cham: Springer International Publishing; 2018. pp. 225-39. [DOI: 10.1007/978-3-319-59704-1_15] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
273 Khan Mirzaei M, Deng L. Sustainable Microbiome: a symphony orchestrated by synthetic phages. Microb Biotechnol 2021;14:45-50. [PMID: 33171009 DOI: 10.1111/1751-7915.13697] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
274 Geng S, Cheng S, Li Y, Wen Z, Ma X, Jiang X, Wang Y, Han X. Faecal Microbiota Transplantation Reduces Susceptibility to Epithelial Injury and Modulates Tryptophan Metabolism of the Microbial Community in a Piglet Model. J Crohns Colitis 2018;12:1359-74. [PMID: 30010734 DOI: 10.1093/ecco-jcc/jjy103] [Cited by in Crossref: 8] [Cited by in F6Publishing: 21] [Article Influence: 2.7] [Reference Citation Analysis]
275 Li S, Zhang H, Xiao J, Yuan T, Shu Z, Min Y, Xu W, Yin Y, Zhang X. Streptococcus pneumoniae Endopeptidase O Promotes the Clearance of Staphylococcus aureus and Streptococcus pneumoniae via SH2 Domain-Containing Inositol Phosphatase 1-Mediated Complement Receptor 3 Upregulation. Front Cell Infect Microbiol 2020;10:358. [PMID: 32766168 DOI: 10.3389/fcimb.2020.00358] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
276 Leung JM, Budischak SA, Chung The H, Hansen C, Bowcutt R, Neill R, Shellman M, Loke P, Graham AL. Rapid environmental effects on gut nematode susceptibility in rewilded mice. PLoS Biol 2018;16:e2004108. [PMID: 29518091 DOI: 10.1371/journal.pbio.2004108] [Cited by in Crossref: 51] [Cited by in F6Publishing: 38] [Article Influence: 12.8] [Reference Citation Analysis]
277 Leslie JL, Vendrov KC, Jenior ML, Young VB. The Gut Microbiota Is Associated with Clearance of Clostridium difficile Infection Independent of Adaptive Immunity. mSphere 2019;4:e00698-18. [PMID: 30700514 DOI: 10.1128/mSphereDirect.00698-18] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 6.3] [Reference Citation Analysis]
278 Guery B, Galperine T, Barbut F. Clostridioides difficile: diagnosis and treatments. BMJ. 2019;366:l4609. [PMID: 31431428 DOI: 10.1136/bmj.l4609] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 9.3] [Reference Citation Analysis]
279 Girinathan BP, Braun S, Sirigireddy AR, Lopez JE, Govind R. Importance of Glutamate Dehydrogenase (GDH) in Clostridium difficile Colonization In Vivo. PLoS One 2016;11:e0160107. [PMID: 27467167 DOI: 10.1371/journal.pone.0160107] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
280 Ganda EK, Gaeta N, Sipka A, Pomeroy B, Oikonomou G, Schukken YH, Bicalho RC. Normal milk microbiome is reestablished following experimental infection with Escherichia coli independent of intramammary antibiotic treatment with a third-generation cephalosporin in bovines. Microbiome 2017;5:74. [PMID: 28701174 DOI: 10.1186/s40168-017-0291-5] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 6.2] [Reference Citation Analysis]
281 Hill DR, Spence JR. Gastrointestinal Organoids: Understanding the Molecular Basis of the Host-Microbe Interface. Cell Mol Gastroenterol Hepatol 2017;3:138-49. [PMID: 28275681 DOI: 10.1016/j.jcmgh.2016.11.007] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 8.0] [Reference Citation Analysis]
282 Serajian S, Ahmadpour E, Oliveira SMR, Pereira ML, Heidarzadeh S. CRISPR-Cas Technology: Emerging Applications in Clinical Microbiology and Infectious Diseases. Pharmaceuticals (Basel) 2021;14:1171. [PMID: 34832953 DOI: 10.3390/ph14111171] [Reference Citation Analysis]
283 Yang X, Li D, Yu Z, Meng Y, Zheng X, Zhao S, Meng F. Biochemical characteristics and membrane fouling behaviors of soluble microbial products during the lifecycle of Escherichia coli. Water Res 2021;192:116835. [PMID: 33486289 DOI: 10.1016/j.watres.2021.116835] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
284 Hagihara M, Ariyoshi T, Kuroki Y, Eguchi S, Higashi S, Mori T, Nonogaki T, Iwasaki K, Yamashita M, Asai N, Koizumi Y, Oka K, Takahashi M, Yamagishi Y, Mikamo H. Clostridium butyricum enhances colonization resistance against Clostridioides difficile by metabolic and immune modulation. Sci Rep 2021;11:15007. [PMID: 34294848 DOI: 10.1038/s41598-021-94572-z] [Reference Citation Analysis]
285 Semenyuk EG, Poroyko VA, Johnston PF, Jones SE, Knight KL, Gerding DN, Driks A. Analysis of Bacterial Communities during Clostridium difficile Infection in the Mouse. Infect Immun 2015;83:4383-91. [PMID: 26324536 DOI: 10.1128/IAI.00145-15] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 5.9] [Reference Citation Analysis]
286 Thanissery R, Winston JA, Theriot CM. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 2017;45:86-100. [PMID: 28279860 DOI: 10.1016/j.anaerobe.2017.03.004] [Cited by in Crossref: 81] [Cited by in F6Publishing: 66] [Article Influence: 16.2] [Reference Citation Analysis]
287 Kaiko GE, Stappenbeck TS. Host-microbe interactions shaping the gastrointestinal environment. Trends Immunol 2014;35:538-48. [PMID: 25220948 DOI: 10.1016/j.it.2014.08.002] [Cited by in Crossref: 80] [Cited by in F6Publishing: 73] [Article Influence: 10.0] [Reference Citation Analysis]
288 Gomez SY, Patel J, Lopez CA. What's metal got to do with it? Transition metals in Clostridioides difficile infection. Curr Opin Microbiol 2021;65:116-22. [PMID: 34839238 DOI: 10.1016/j.mib.2021.11.004] [Reference Citation Analysis]
289 Mekonnen SA, Merenstein D, Fraser CM, Marco ML. Molecular mechanisms of probiotic prevention of antibiotic-associated diarrhea. Curr Opin Biotechnol 2020;61:226-34. [PMID: 32087535 DOI: 10.1016/j.copbio.2020.01.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 8.5] [Reference Citation Analysis]
290 Choo JM, Kanno T, Zain NM, Leong LE, Abell GC, Keeble JE, Bruce KD, Mason AJ, Rogers GB. Divergent Relationships between Fecal Microbiota and Metabolome following Distinct Antibiotic-Induced Disruptions. mSphere 2017;2:e00005-17. [PMID: 28194448 DOI: 10.1128/mSphere.00005-17] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
291 Zhu D, Xiao S, Yu J, Ai Q, He Y, Cheng C, Zhang Y, Pan Y. Effects of One-Week Empirical Antibiotic Therapy on the Early Development of Gut Microbiota and Metabolites in Preterm Infants. Sci Rep 2017;7:8025. [PMID: 28808302 DOI: 10.1038/s41598-017-08530-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
292 Wotzka SY, Kreuzer M, Maier L, Arnoldini M, Nguyen BD, Brachmann AO, Berthold DL, Zünd M, Hausmann A, Bakkeren E, Hoces D, Gül E, Beutler M, Dolowschiak T, Zimmermann M, Fuhrer T, Moor K, Sauer U, Typas A, Piel J, Diard M, Macpherson AJ, Stecher B, Sunagawa S, Slack E, Hardt WD. Escherichia coli limits Salmonella Typhimurium infections after diet shifts and fat-mediated microbiota perturbation in mice. Nat Microbiol 2019;4:2164-74. [PMID: 31591555 DOI: 10.1038/s41564-019-0568-5] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 12.7] [Reference Citation Analysis]
293 Chan, Friedman, Wu, Maranas. Predicting the Longitudinally and Radially Varying Gut Microbiota Composition Using Multi-Scale Microbial Metabolic Modeling. Processes 2019;7:394. [DOI: 10.3390/pr7070394] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
294 Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 2017;279:70-89. [PMID: 28856738 DOI: 10.1111/imr.12567] [Cited by in Crossref: 344] [Cited by in F6Publishing: 329] [Article Influence: 86.0] [Reference Citation Analysis]
295 Gu W, Li W, Wang W, Kuang D, Zhang W, Lu C, Li N, Tong P, Han Y, Sun X, Lu J, Wu Y, Dai J. Response of the gut microbiota during the Clostridioides difficile infection in tree shrews mimics those in humans. BMC Microbiol 2020;20:260. [PMID: 32819295 DOI: 10.1186/s12866-020-01943-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
296 Salvato F, Hettich RL, Kleiner M. Five key aspects of metaproteomics as a tool to understand functional interactions in host-associated microbiomes. PLoS Pathog 2021;17:e1009245. [PMID: 33630960 DOI: 10.1371/journal.ppat.1009245] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
297 Milani C, Ticinesi A, Gerritsen J, Nouvenne A, Lugli GA, Mancabelli L, Turroni F, Duranti S, Mangifesta M, Viappiani A, Ferrario C, Maggio M, Lauretani F, De Vos W, van Sinderen D, Meschi T, Ventura M. Gut microbiota composition and Clostridium difficile infection in hospitalized elderly individuals: a metagenomic study. Sci Rep 2016;6:25945. [PMID: 27166072 DOI: 10.1038/srep25945] [Cited by in Crossref: 118] [Cited by in F6Publishing: 105] [Article Influence: 19.7] [Reference Citation Analysis]
298 Cameron SJ, Takáts Z. Mass spectrometry approaches to metabolic profiling of microbial communities within the human gastrointestinal tract. Methods 2018;149:13-24. [DOI: 10.1016/j.ymeth.2018.04.027] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
299 Vogt SL, Peña-Díaz J, Finlay BB. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe 2015;34:106-15. [PMID: 25958185 DOI: 10.1016/j.anaerobe.2015.05.002] [Cited by in Crossref: 66] [Cited by in F6Publishing: 55] [Article Influence: 9.4] [Reference Citation Analysis]
300 Wipperman MF, Fitzgerald DW, Juste MAJ, Taur Y, Namasivayam S, Sher A, Bean JM, Bucci V, Glickman MS. Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci Rep 2017;7:10767. [PMID: 28883399 DOI: 10.1038/s41598-017-10346-6] [Cited by in Crossref: 67] [Cited by in F6Publishing: 59] [Article Influence: 13.4] [Reference Citation Analysis]
301 Shashkova T, Popenko A, Tyakht A, Peskov K, Kosinsky Y, Bogolubsky L, Raigorodskii A, Ischenko D, Alexeev D, Govorun V. Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations. PLoS One 2016;11:e0148386. [PMID: 26894828 DOI: 10.1371/journal.pone.0148386] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
302 Domínguez-Santos R, Pérez-Cobas AE, Artacho A, Castro JA, Talón I, Moya A, García-Ferris C, Latorre A. Unraveling Assemblage, Functions and Stability of the Gut Microbiota of Blattella germanica by Antibiotic Treatment. Front Microbiol 2020;11:487. [PMID: 32269557 DOI: 10.3389/fmicb.2020.00487] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
303 Jump RL, Polinkovsky A, Hurless K, Sitzlar B, Eckart K, Tomas M, Deshpande A, Nerandzic MM, Donskey CJ. Metabolomics analysis identifies intestinal microbiota-derived biomarkers of colonization resistance in clindamycin-treated mice. PLoS One. 2014;9:e101267. [PMID: 24988418 DOI: 10.1371/journal.pone.0101267] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 5.8] [Reference Citation Analysis]
304 Mills S, Ross RP, Hill C. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiol Rev 2017;41:S129-53. [PMID: 28830091 DOI: 10.1093/femsre/fux022] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 9.8] [Reference Citation Analysis]
305 Chi L, Bian X, Gao B, Tu P, Ru H, Lu K. The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome. Toxicol Sci 2017;160:193-204. [PMID: 28973555 DOI: 10.1093/toxsci/kfx174] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 10.8] [Reference Citation Analysis]
306 Mishra K, Bukavina L, Ghannoum M. Symbiosis and Dysbiosis of the Human Mycobiome. Front Microbiol 2021;12:636131. [PMID: 34630340 DOI: 10.3389/fmicb.2021.636131] [Reference Citation Analysis]
307 Dissanayake U, Ukhanova M, Moye ZD, Sulakvelidze A, Mai V. Bacteriophages Reduce Pathogenic Escherichia coli Counts in Mice Without Distorting Gut Microbiota. Front Microbiol 2019;10:1984. [PMID: 31551950 DOI: 10.3389/fmicb.2019.01984] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
308 McKenney PT, Pamer EG. From hype to hope: The gut microbiota in enteric infectious disease. Cell. 2015;163:1326-1332. [PMID: 26638069 DOI: 10.1016/j.cell.2015.11.032] [Cited by in Crossref: 106] [Cited by in F6Publishing: 96] [Article Influence: 17.7] [Reference Citation Analysis]
309 Alden N, Krishnan S, Porokhin V, Raju R, McElearney K, Gilbert A, Lee K. Biologically Consistent Annotation of Metabolomics Data. Anal Chem 2017;89:13097-104. [PMID: 29156137 DOI: 10.1021/acs.analchem.7b02162] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 5.2] [Reference Citation Analysis]
310 Dutta D, Jafri F, Stuhr D, Knoll BM, Lim SH. A contemporary review of Clostridioides difficile infections in patients with haematologic diseases. J Intern Med 2021;289:293-308. [PMID: 32910532 DOI: 10.1111/joim.13173] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
311 Mathee K, Silver LL, Tatke G. 70th Anniversary Collection for the Microbiology Society: Journal of Medical Microbiology. J Med Microbiol 2015;64:1457-61. [PMID: 26689963 DOI: 10.1099/jmm.0.000186] [Reference Citation Analysis]
312 Mullish BH, McDonald JAK, Thursz MR, Marchesi JR. Antibiotic-Associated Disruption of Microbiota Composition and Function in Cirrhosis Is Restored by Fecal Transplant. Hepatology 2018;68:1205. [PMID: 29774567 DOI: 10.1002/hep.30090] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
313 Kachrimanidou M, Tsintarakis E. Insights into the Role of Human Gut Microbiota in Clostridioides difficile Infection. Microorganisms 2020;8:E200. [PMID: 32023967 DOI: 10.3390/microorganisms8020200] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
314 Zheng H, Fan K, Ji H, Jiang Q, Ning J, Xu P, Li C, Gao H. Antibiotic Exposure Disturbs the Gut Microbiota and Its Metabolic Phenotype Differently in Rats with Advanced-Stage Type 1 Diabetes and Age-Matched Controls. J Proteome Res 2019;18:3944-54. [PMID: 31553190 DOI: 10.1021/acs.jproteome.9b00402] [Reference Citation Analysis]
315 Kim S, Park H, Song W, Jo S, Yang Y, Kim Y. LC–MS/MS based observation of Clostridium difficile inhibition by Lactobacillus rhamnosus GG. Journal of Industrial and Engineering Chemistry 2020;85:161-9. [DOI: 10.1016/j.jiec.2020.01.037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
316 Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, Haribabu B, Vijay-Kumar M, Pennathur S, Joe B. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics 2015;47:187-97. [PMID: 25829393 DOI: 10.1152/physiolgenomics.00136.2014] [Cited by in Crossref: 209] [Cited by in F6Publishing: 199] [Article Influence: 29.9] [Reference Citation Analysis]
317 Hou JJ, Wang X, Wang YM, Wang BM. Interplay between gut microbiota and bile acids in diarrhoea-predominant irritable bowel syndrome: a review. Crit Rev Microbiol 2021;:1-18. [PMID: 34936854 DOI: 10.1080/1040841X.2021.2018401] [Reference Citation Analysis]
318 Pan X, Elliott CT, McGuinness B, Passmore P, Kehoe PG, Hölscher C, McClean PL, Graham SF, Green BD. Metabolomic Profiling of Bile Acids in Clinical and Experimental Samples of Alzheimer's Disease. Metabolites 2017;7:E28. [PMID: 28629125 DOI: 10.3390/metabo7020028] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 9.4] [Reference Citation Analysis]
319 Mondal SI, Akter A, Draper LA, Ross RP, Hill C. Characterization of an Endolysin Targeting Clostridioides difficile That Affects Spore Outgrowth. Int J Mol Sci 2021;22:5690. [PMID: 34073633 DOI: 10.3390/ijms22115690] [Reference Citation Analysis]
320 Mullish BH, McDonald JAK, Pechlivanis A, Allegretti JR, Kao D, Barker GF, Kapila D, Petrof EO, Joyce SA, Gahan CGM, Glegola-Madejska I, Williams HRT, Holmes E, Clarke TB, Thursz MR, Marchesi JR. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection. Gut. 2019;68:1791-1800. [PMID: 30816855 DOI: 10.1136/gutjnl-2018-317842] [Cited by in Crossref: 75] [Cited by in F6Publishing: 74] [Article Influence: 25.0] [Reference Citation Analysis]
321 Carlucci C, Jones CS, Oliphant K, Yen S, Daigneault M, Carriero C, Robinson A, Petrof EO, Weese JS, Allen-Vercoe E. Effects of defined gut microbial ecosystem components on virulence determinants of Clostridioides difficile. Sci Rep 2019;9:885. [PMID: 30696914 DOI: 10.1038/s41598-018-37547-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
322 Eng A, Borenstein E. Taxa-function robustness in microbial communities. Microbiome 2018;6:45. [PMID: 29499759 DOI: 10.1186/s40168-018-0425-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
323 Mallick H, Franzosa EA, Mclver LJ, Banerjee S, Sirota-Madi A, Kostic AD, Clish CB, Vlamakis H, Xavier RJ, Huttenhower C. Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. Nat Commun 2019;10:3136. [PMID: 31316056 DOI: 10.1038/s41467-019-10927-1] [Cited by in Crossref: 55] [Cited by in F6Publishing: 44] [Article Influence: 18.3] [Reference Citation Analysis]
324 Frisbee AL, Petri WA Jr. Considering the Immune System during Fecal Microbiota Transplantation for Clostridioides difficile Infection. Trends Mol Med 2020;26:496-507. [PMID: 32359480 DOI: 10.1016/j.molmed.2020.01.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
325 Rojo D, Gosalbes MJ, Ferrari R, Pérez-Cobas AE, Hernández E, Oltra R, Buesa J, Latorre A, Barbas C, Ferrer M, Moya A. Clostridium difficile heterogeneously impacts intestinal community architecture but drives stable metabolome responses. ISME J 2015;9:2206-20. [PMID: 25756679 DOI: 10.1038/ismej.2015.32] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
326 Fimlaid KA, Jensen O, Donnelly ML, Francis MB, Sorg JA, Shen A. Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination. PLoS Pathog 2015;11:e1005239. [PMID: 26496694 DOI: 10.1371/journal.ppat.1005239] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 6.3] [Reference Citation Analysis]
327 Kim J, Cho Y, Seo MR, Bae MH, Kim B, Rho M, Pai H. Quantitative characterization of Clostridioides difficile population in the gut microbiome of patients with C. difficile infection and their association with clinical factors. Sci Rep 2020;10:17608. [PMID: 33077744 DOI: 10.1038/s41598-020-74090-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
328 Reese AT, Kearney SM. Incorporating functional trade-offs into studies of the gut microbiota. Curr Opin Microbiol 2019;50:20-7. [PMID: 31593869 DOI: 10.1016/j.mib.2019.09.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
329 Purcell EB, McKee RW, Bordeleau E, Burrus V, Tamayo R. Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile. J Bacteriol 2016;198:565-77. [PMID: 26598364 DOI: 10.1128/JB.00816-15] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 5.1] [Reference Citation Analysis]
330 Winston JA, Theriot CM. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe 2016;41:44-50. [PMID: 27163871 DOI: 10.1016/j.anaerobe.2016.05.003] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 9.5] [Reference Citation Analysis]
331 Kochan TJ, Shoshiev MS, Hastie JL, Somers MJ, Plotnick YM, Gutierrez-Munoz DF, Foss ED, Schubert AM, Smith AD, Zimmerman SK, Carlson PE Jr, Hanna PC. Germinant Synergy Facilitates Clostridium difficile Spore Germination under Physiological Conditions. mSphere 2018;3:e00335-18. [PMID: 30185513 DOI: 10.1128/mSphere.00335-18] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
332 Theriot CM. Beyond Structure: Defining the Function of the Gut Using Omic Approaches for Rational Design of Personalized Therapeutics. mSystems 2018;3:e00173-17. [PMID: 29556548 DOI: 10.1128/mSystems.00173-17] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
333 Carlucci C, Petrof EO, Allen-Vercoe E. Fecal Microbiota-based Therapeutics for Recurrent Clostridium difficile Infection, Ulcerative Colitis and Obesity. EBioMedicine 2016;13:37-45. [PMID: 27720396 DOI: 10.1016/j.ebiom.2016.09.029] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 6.5] [Reference Citation Analysis]
334 Beale DJ, Karpe AV, Ahmed W. Beyond Metabolomics: A Review of Multi-Omics-Based Approaches. In: Beale DJ, Kouremenos KA, Palombo EA, editors. Microbial Metabolomics. Cham: Springer International Publishing; 2016. pp. 289-312. [DOI: 10.1007/978-3-319-46326-1_10] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
335 Byndloss MX, Bäumler AJ. The germ-organ theory of non-communicable diseases. Nat Rev Microbiol 2018;16:103-10. [PMID: 29307890 DOI: 10.1038/nrmicro.2017.158] [Cited by in Crossref: 61] [Cited by in F6Publishing: 55] [Article Influence: 15.3] [Reference Citation Analysis]
336 Tu P, Chi L, Bodnar W, Zhang Z, Gao B, Bian X, Stewart J, Fry R, Lu K. Gut Microbiome Toxicity: Connecting the Environment and Gut Microbiome-Associated Diseases. Toxics 2020;8:E19. [PMID: 32178396 DOI: 10.3390/toxics8010019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
337 Sogin EM, Puskás E, Dubilier N, Liebeke M. Marine Metabolomics: a Method for Nontargeted Measurement of Metabolites in Seawater by Gas Chromatography-Mass Spectrometry. mSystems 2019;4:e00638-19. [PMID: 31822601 DOI: 10.1128/mSystems.00638-19] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
338 Raffatellu M. Learning from bacterial competition in the host to develop antimicrobials. Nat Med 2018;24:1097-103. [DOI: 10.1038/s41591-018-0145-0] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
339 Kaur H, Nagamoto-Combs K, Golovko S, Golovko MY, Klug MG, Combs CK. Probiotics ameliorate intestinal pathophysiology in a mouse model of Alzheimer's disease. Neurobiol Aging 2020;92:114-34. [PMID: 32417748 DOI: 10.1016/j.neurobiolaging.2020.04.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
340 Zhu P, Zhang J, Chen Y, Yin S, Su M, Xie G, Brouwer KLR, Liu C, Lan K, Jia W. Analysis of human C24 bile acids metabolome in serum and urine based on enzyme digestion of conjugated bile acids and LC-MS determination of unconjugated bile acids. Anal Bioanal Chem 2018;410:5287-300. [PMID: 29907951 DOI: 10.1007/s00216-018-1183-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
341 Hughey MC, Walke JB, Becker MH, Umile TP, Burzynski EA, Minbiole KPC, Iannetta AA, Santiago CN, Hopkins WA, Belden LK. Short-Term Exposure to Coal Combustion Waste Has Little Impact on the Skin Microbiome of Adult Spring Peepers (Pseudacris crucifer). Appl Environ Microbiol 2016;82:3493-502. [PMID: 27037118 DOI: 10.1128/AEM.00045-16] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
342 Zhang F, Ma T, Cui P, Tamadon A, He S, Huo C, Yierfulati G, Xu X, Hu W, Li X, Shao LR, Guo H, Feng Y, Xu C. Diversity of the Gut Microbiota in Dihydrotestosterone-Induced PCOS Rats and the Pharmacologic Effects of Diane-35, Probiotics, and Berberine. Front Microbiol 2019;10:175. [PMID: 30800111 DOI: 10.3389/fmicb.2019.00175] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
343 Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci Rep 2019;9:8872. [PMID: 31222159 DOI: 10.1038/s41598-019-45467-7] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 10.3] [Reference Citation Analysis]
344 Shaffer M, Armstrong AJS, Phelan VV, Reisdorph N, Lozupone CA. Microbiome and metabolome data integration provides insight into health and disease. Transl Res 2017;189:51-64. [PMID: 28764956 DOI: 10.1016/j.trsl.2017.07.001] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
345 Cope EK, Goldberg AN, Pletcher SD, Lynch SV. Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences. Microbiome 2017;5:53. [PMID: 28494786 DOI: 10.1186/s40168-017-0266-6] [Cited by in Crossref: 80] [Cited by in F6Publishing: 74] [Article Influence: 16.0] [Reference Citation Analysis]
346 Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019;8:E70. [PMID: 31117285 DOI: 10.3390/pathogens8020070] [Cited by in Crossref: 50] [Cited by in F6Publishing: 39] [Article Influence: 16.7] [Reference Citation Analysis]
347 Jump RL, Kraft D, Hurless K, Polinkovsky A, Donskey CJ. IMPACT OF TIGECYCLINE VERSUS OTHER ANTIBIOTICS ON THE FECAL METABOLOME AND ON COLONIZATION RESISTANCE TO CLOSTRIDIUM DIFFICILE IN MICE. Pathog Immun 2017;2:1-20. [PMID: 28217763 DOI: 10.20411/pai.v2i1.159] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
348 van Leeuwen PT, van der Peet JM, Bikker FJ, Hoogenkamp MA, Oliveira Paiva AM, Kostidis S, Mayboroda OA, Smits WK, Krom BP. Interspecies Interactions between Clostridium difficile and Candida albicans. mSphere 2016;1:e00187-16. [PMID: 27840850 DOI: 10.1128/mSphere.00187-16] [Cited by in Crossref: 45] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
349 Fedorec AJH, Ozdemir T, Doshi A, Ho YK, Rosa L, Rutter J, Velazquez O, Pinheiro VB, Danino T, Barnes CP. Two New Plasmid Post-segregational Killing Mechanisms for the Implementation of Synthetic Gene Networks in Escherichia coli. iScience 2019;14:323-34. [PMID: 30954530 DOI: 10.1016/j.isci.2019.03.019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
350 Tsolis RM, Bäumler AJ. Gastrointestinal host-pathogen interaction in the age of microbiome research. Curr Opin Microbiol 2020;53:78-89. [PMID: 32344325 DOI: 10.1016/j.mib.2020.03.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
351 Pu ZJ, Zhang S, Tang YP, Shi XQ, Tao HJ, Yan H, Chen JQ, Yue SJ, Chen YY, Zhu ZH, Zhou GS, Su SL, Duan JA. Study on changes in pigment composition during the blooming period of safflower based on plant metabolomics and semi-quantitative analysis. J Sep Sci 2021. [PMID: 34514725 DOI: 10.1002/jssc.202100439] [Reference Citation Analysis]
352 Kuypers M, Despot T, Mallevaey T. Dirty mice join the immunologist's toolkit. Microbes Infect 2021;23:104817. [PMID: 33785421 DOI: 10.1016/j.micinf.2021.104817] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
353 Inoue Y, Fukui H, Xu X, Ran Y, Tomita T, Oshima T, Watari J, Miwa H. Colonic M1 macrophage is associated with the prolongation of gastrointestinal motility and obesity in mice treated with vancomycin. Mol Med Rep 2019;19:2591-8. [PMID: 30720127 DOI: 10.3892/mmr.2019.9920] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
354 Cresci GA, Bawden E. Gut Microbiome: What We Do and Don't Know. Nutr Clin Pract 2015;30:734-46. [PMID: 26449893 DOI: 10.1177/0884533615609899] [Cited by in Crossref: 106] [Cited by in F6Publishing: 95] [Article Influence: 15.1] [Reference Citation Analysis]
355 Mukherjee A, Lordan C, Ross RP, Cotter PD. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020;12:1802866. [PMID: 32835590 DOI: 10.1080/19490976.2020.1802866] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 18.0] [Reference Citation Analysis]
356 Warn P, Thommes P, Sattar A, Corbett D, Flattery A, Zhang Z, Black T, Hernandez LD, Therien AG. Disease Progression and Resolution in Rodent Models of Clostridium difficile Infection and Impact of Antitoxin Antibodies and Vancomycin. Antimicrob Agents Chemother 2016;60:6471-82. [PMID: 27527088 DOI: 10.1128/AAC.00974-16] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
357 Abbas A, Zackular JP. Microbe-microbe interactions during Clostridioides difficile infection. Curr Opin Microbiol 2020;53:19-25. [PMID: 32088581 DOI: 10.1016/j.mib.2020.01.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
358 Ferreyra JA, Wu KJ, Hryckowian AJ, Bouley DM, Weimer BC, Sonnenburg JL. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe 2014;16:770-7. [PMID: 25498344 DOI: 10.1016/j.chom.2014.11.003] [Cited by in Crossref: 187] [Cited by in F6Publishing: 167] [Article Influence: 26.7] [Reference Citation Analysis]
359 Rajagopala SV, Yooseph S, Harkins DM, Moncera KJ, Zabokrtsky KB, Torralba MG, Tovchigrechko A, Highlander SK, Pieper R, Sender L, Nelson KE. Gastrointestinal microbial populations can distinguish pediatric and adolescent Acute Lymphoblastic Leukemia (ALL) at the time of disease diagnosis. BMC Genomics 2016;17:635. [PMID: 27527070 DOI: 10.1186/s12864-016-2965-y] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 8.0] [Reference Citation Analysis]
360 Niederwerder MC. Role of the microbiome in swine respiratory disease. Vet Microbiol 2017;209:97-106. [PMID: 28318782 DOI: 10.1016/j.vetmic.2017.02.017] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 8.0] [Reference Citation Analysis]
361 Reed AD, Nethery MA, Stewart A, Barrangou R, Theriot CM. Strain-Dependent Inhibition of Clostridioides difficile by Commensal Clostridia Carrying the Bile Acid-Inducible (bai) Operon. J Bacteriol 2020;202:e00039-20. [PMID: 32179626 DOI: 10.1128/JB.00039-20] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
362 Li J, Liu Y, Kim E, March JC, Bentley WE, Payne GF. Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology. Free Radical Biology and Medicine 2017;105:110-31. [DOI: 10.1016/j.freeradbiomed.2016.12.029] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
363 Speri E, Janardhanan J, Masitas C, Schroeder VA, Lastochkin E, Wolter WR, Fisher JF, Mobashery S, Chang M. Discovery of a Potent Picolinamide Antibacterial Active against Clostridioides difficile. ACS Infect Dis 2020;6:2362-8. [PMID: 32786277 DOI: 10.1021/acsinfecdis.0c00479] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
364 Yan S, Huang J, Chen Z, Jiang Z, Li X, Chen Z. Metabolomics in gut microbiota: applications and challenges. Science Bulletin 2016;61:1151-3. [DOI: 10.1007/s11434-016-1142-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 3.2] [Reference Citation Analysis]
365 Greenhalgh K, Ramiro-garcia J, Heinken A, Ullmann P, Bintener T, Pacheco MP, Baginska J, Shah P, Frachet A, Halder R, Fritz JV, Sauter T, Thiele I, Haan S, Letellier E, Wilmes P. Integrated In Vitro and In Silico Modeling Delineates the Molecular Effects of a Synbiotic Regimen on Colorectal-Cancer-Derived Cells. Cell Reports 2019;27:1621-1632.e9. [DOI: 10.1016/j.celrep.2019.04.001] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 7.7] [Reference Citation Analysis]
366 Kelly CP, Chong Nguyen C, Palmieri LJ, Pallav K, Dowd SE, Humbert L, Seksik P, Bado A, Coffin B, Rainteau D, Kabbani T, Duboc H. Saccharomyces boulardii CNCM I-745 Modulates the Fecal Bile Acids Metabolism During Antimicrobial Therapy in Healthy Volunteers. Front Microbiol 2019;10:336. [PMID: 30881353 DOI: 10.3389/fmicb.2019.00336] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
367 Staley C, Khoruts A, Sadowsky MJ. Contemporary Applications of Fecal Microbiota Transplantation to Treat Intestinal Diseases in Humans. Arch Med Res 2017;48:766-73. [PMID: 29183720 DOI: 10.1016/j.arcmed.2017.11.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
368 Qi XZ, Tu X, Zha JW, Huang AG, Wang GX, Ling F. Immunosuppression-induced alterations in fish gut microbiota may increase the susceptibility to pathogens. Fish Shellfish Immunol 2019;88:540-5. [PMID: 30885744 DOI: 10.1016/j.fsi.2019.03.035] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
369 Seekatz AM, Young VB. Clostridium difficile and the microbiota. J Clin Invest 2014;124:4182-9. [PMID: 25036699 DOI: 10.1172/JCI72336] [Cited by in Crossref: 137] [Cited by in F6Publishing: 75] [Article Influence: 17.1] [Reference Citation Analysis]
370 Gao H, Shu Q, Chen J, Fan K, Xu P, Zhou Q, Li C, Zheng H. Antibiotic Exposure Has Sex-Dependent Effects on the Gut Microbiota and Metabolism of Short-Chain Fatty Acids and Amino Acids in Mice. mSystems 2019;4:e00048-19. [PMID: 31164448 DOI: 10.1128/mSystems.00048-19] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
371 Pruss KM, Marcobal A, Southwick AM, Dahan D, Smits SA, Ferreyra JA, Higginbottom SK, Sonnenburg ED, Kashyap PC, Choudhury B, Bode L, Sonnenburg JL. Mucin-derived O-glycans supplemented to diet mitigate diverse microbiota perturbations. ISME J 2021;15:577-91. [PMID: 33087860 DOI: 10.1038/s41396-020-00798-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
372 Bassis CM, Theriot CM, Young VB. Alteration of the murine gastrointestinal microbiota by tigecycline leads to increased susceptibility to Clostridium difficile infection. Antimicrob Agents Chemother. 2014;58:2767-2774. [PMID: 24590475 DOI: 10.1128/aac.02262-13] [Cited by in Crossref: 51] [Cited by in F6Publishing: 35] [Article Influence: 6.4] [Reference Citation Analysis]
373 Winston JA, Rivera AJ, Cai J, Thanissery R, Montgomery SA, Patterson AD, Theriot CM. Ursodeoxycholic Acid (UDCA) Mitigates the Host Inflammatory Response during Clostridioides difficile Infection by Altering Gut Bile Acids. Infect Immun 2020;88:e00045-20. [PMID: 32205405 DOI: 10.1128/IAI.00045-20] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
374 Zackular JP, Kirk L, Trindade BC, Skaar EP, Aronoff DM. Misoprostol protects mice against severe Clostridium difficile infection and promotes recovery of the gut microbiota after antibiotic perturbation. Anaerobe 2019;58:89-94. [PMID: 31220605 DOI: 10.1016/j.anaerobe.2019.06.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
375 Jin T, Mohammad M, Pullerits R, Ali A. Bacteria and Host Interplay in Staphylococcus aureus Septic Arthritis and Sepsis. Pathogens 2021;10:158. [PMID: 33546401 DOI: 10.3390/pathogens10020158] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
376 Zaher S. Nutrition and the gut microbiome during critical illness: A new insight of nutritional therapy. Saudi J Gastroenterol 2020. [PMID: 33208559 DOI: 10.4103/sjg.SJG_352_20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
377 Miao Z, Cheng R, Zhang Y, Liang H, Jiang F, Shen X, Chen G, Zhang Q, He F, Li M. Antibiotics can cause weight loss by impairing gut microbiota in mice and the potent benefits of lactobacilli. Bioscience, Biotechnology, and Biochemistry 2020;84:411-20. [DOI: 10.1080/09168451.2019.1676696] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
378 Dicks LMT, Mikkelsen LS, Brandsborg E, Marcotte H. Clostridium difficile, the Difficult "Kloster" Fuelled by Antibiotics. Curr Microbiol 2019;76:774-82. [PMID: 30084095 DOI: 10.1007/s00284-018-1543-8] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
379 Wilding LA, Bassis CM, Walacavage K, Hashway S, Leroueil PR, Morishita M, Maynard AD, Philbert MA, Bergin IL. Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology 2016;10:513-20. [PMID: 26525505 DOI: 10.3109/17435390.2015.1078854] [Cited by in Crossref: 65] [Cited by in F6Publishing: 56] [Article Influence: 9.3] [Reference Citation Analysis]
380 Albecker MA, Belden LK, Mccoy MW. Comparative Analysis of Anuran Amphibian Skin Microbiomes Across Inland and Coastal Wetlands. Microb Ecol 2019;78:348-60. [DOI: 10.1007/s00248-018-1295-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
381 Thanissery R, McLaren MR, Rivera A, Reed AD, Betrapally NS, Burdette T, Winston JA, Jacob M, Callahan BJ, Theriot CM. Clostridioides difficile carriage in animals and the associated changes in the host fecal microbiota. Anaerobe 2020;66:102279. [PMID: 33022384 DOI: 10.1016/j.anaerobe.2020.102279] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
382 Shubitowski TB, Poll BG, Natarajan N, Pluznick JL. Short-chain fatty acid delivery: assessing exogenous administration of the microbiome metabolite acetate in mice. Physiol Rep 2019;7:e14005. [PMID: 30810289 DOI: 10.14814/phy2.14005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
383 Raymann K, Bobay LM, Moran NA. Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome. Mol Ecol 2018;27:2057-66. [PMID: 29164717 DOI: 10.1111/mec.14434] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 8.2] [Reference Citation Analysis]
384 Leslie JL, Jenior ML, Vendrov KC, Standke AK, Barron MR, O'Brien TJ, Unverdorben L, Thaprawat P, Bergin IL, Schloss PD, Young VB. Protection from Lethal Clostridioides difficile Infection via Intraspecies Competition for Cogerminant. mBio 2021;12:e00522-21. [PMID: 33785619 DOI: 10.1128/mBio.00522-21] [Reference Citation Analysis]
385 Allegretti JR, Kearney S, Li N, Bogart E, Bullock K, Gerber GK, Bry L, Clish CB, Alm E, Korzenik JR. Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles. Aliment Pharmacol Ther. 2016;43:1142-1153. [PMID: 27086647 DOI: 10.1111/apt.13616] [Cited by in Crossref: 84] [Cited by in F6Publishing: 71] [Article Influence: 14.0] [Reference Citation Analysis]
386 Zhang N, Liang T, Jin Q, Shen C, Zhang Y, Jing P. Chinese yam (Dioscorea opposita Thunb.) alleviates antibiotic-associated diarrhea, modifies intestinal microbiota, and increases the level of short-chain fatty acids in mice. Food Res Int 2019;122:191-8. [PMID: 31229072 DOI: 10.1016/j.foodres.2019.04.016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
387 Tiffany CR, Lee JY, Rogers AWL, Olsan EE, Morales P, Faber F, Bäumler AJ. The metabolic footprint of Clostridia and Erysipelotrichia reveals their role in depleting sugar alcohols in the cecum. Microbiome 2021;9:174. [PMID: 34412707 DOI: 10.1186/s40168-021-01123-9] [Reference Citation Analysis]
388 Khanna S, Pardi DS, Kelly CR, Kraft CS, Dhere T, Henn MR, Lombardo MJ, Vulic M, Ohsumi T, Winkler J, Pindar C, McGovern BH, Pomerantz RJ, Aunins JG, Cook DN, Hohmann EL. A Novel Microbiome Therapeutic Increases Gut Microbial Diversity and Prevents Recurrent Clostridium difficile Infection. J Infect Dis. 2016;214:173-181. [PMID: 26908752 DOI: 10.1093/infdis/jiv766] [Cited by in Crossref: 202] [Cited by in F6Publishing: 170] [Article Influence: 33.7] [Reference Citation Analysis]
389 Ghose C, Kelly CP. The prospect for vaccines to prevent Clostridium difficile infection. Infect Dis Clin North Am. 2015;29:145-162. [PMID: 25677708 DOI: 10.1016/j.idc.2014.11.013] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 4.6] [Reference Citation Analysis]
390 Lin C, Wan J, Su Y, Zhu W. Effects of Early Intervention with Maternal Fecal Microbiota and Antibiotics on the Gut Microbiota and Metabolite Profiles of Piglets. Metabolites 2018;8:E89. [PMID: 30563199 DOI: 10.3390/metabo8040089] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
391 Weiss A, Lopez CA, Beavers WN, Rodriguez J, Skaar EP. Clostridioides difficile strain-dependent and strain-independent adaptations to a microaerobic environment. Microb Genom 2021;7. [PMID: 34908523 DOI: 10.1099/mgen.0.000738] [Reference Citation Analysis]
392 Lagier J. Gut microbiota and Clostridium difficile infections. Human Microbiome Journal 2016;2:10-4. [DOI: 10.1016/j.humic.2016.10.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
393 Minamoto Y, Minamoto T, Isaiah A, Sattasathuchana P, Buono A, Rangachari VR, McNeely IH, Lidbury J, Steiner JM, Suchodolski JS. Fecal short-chain fatty acid concentrations and dysbiosis in dogs with chronic enteropathy. J Vet Intern Med 2019;33:1608-18. [PMID: 31099928 DOI: 10.1111/jvim.15520] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 10.7] [Reference Citation Analysis]
394 Minamoto Y, Dhanani N, Markel ME, Steiner JM, Suchodolski JS. Prevalence of Clostridium perfringens, Clostridium perfringens enterotoxin and dysbiosis in fecal samples of dogs with diarrhea. Vet Microbiol 2014;174:463-73. [PMID: 25458422 DOI: 10.1016/j.vetmic.2014.10.005] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 6.1] [Reference Citation Analysis]
395 Rao K, Higgins PD. Epidemiology, Diagnosis, and Management of Clostridium difficile Infection in Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2016;22:1744-54. [PMID: 27120571 DOI: 10.1097/MIB.0000000000000793] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
396 Yu Z, Shi D, Liu W, Meng Y, Meng F. Metabolome responses of Enterococcus faecium to acid shock and nitrite stress. Biotechnol Bioeng 2020;117:3559-71. [PMID: 32662876 DOI: 10.1002/bit.27497] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
397 Kint N, Alves Feliciano C, Hamiot A, Denic M, Dupuy B, Martin‐verstraete I. The σ B signalling activation pathway in the enteropathogen Clostridioides difficile. Environ Microbiol 2019;21:2852-70. [DOI: 10.1111/1462-2920.14642] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
398 Theriot CM, Bowman AA, Young VB. Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine. mSphere 2016;1:e00045-15. [PMID: 27239562 DOI: 10.1128/mSphere.00045-15] [Cited by in Crossref: 184] [Cited by in F6Publishing: 144] [Article Influence: 30.7] [Reference Citation Analysis]
399 Johnson TA, Sylte MJ, Looft T. In-feed bacitracin methylene disalicylate modulates the turkey microbiota and metabolome in a dose-dependent manner. Sci Rep 2019;9:8212. [PMID: 31160613 DOI: 10.1038/s41598-019-44338-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
400 Prescott HC. Toward a Nuanced Understanding of the Role of Infection in Readmissions After Sepsis. Crit Care Med 2016;44:634-5. [PMID: 26901548 DOI: 10.1097/CCM.0000000000001508] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
401 Battaglioli EJ, Hale VL, Chen J, Jeraldo P, Ruiz-Mojica C, Schmidt BA, Rekdal VM, Till LM, Huq L, Smits SA, Moor WJ, Jones-Hall Y, Smyrk T, Khanna S, Pardi DS, Grover M, Patel R, Chia N, Nelson H, Sonnenburg JL, Farrugia G, Kashyap PC. Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Sci Transl Med 2018;10:eaam7019. [PMID: 30355801 DOI: 10.1126/scitranslmed.aam7019] [Reference Citation Analysis]
402 Caballero S, Pamer EG. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu Rev Immunol 2015;33:227-56. [PMID: 25581310 DOI: 10.1146/annurev-immunol-032713-120238] [Cited by in Crossref: 152] [Cited by in F6Publishing: 136] [Article Influence: 21.7] [Reference Citation Analysis]
403 Rojo D, Hevia A, Bargiela R, López P, Cuervo A, González S, Suárez A, Sánchez B, Martínez-Martínez M, Milani C, Ventura M, Barbas C, Moya A, Suárez A, Margolles A, Ferrer M. Ranking the impact of human health disorders on gut metabolism: systemic lupus erythematosus and obesity as study cases. Sci Rep 2015;5:8310. [PMID: 25655524 DOI: 10.1038/srep08310] [Cited by in Crossref: 55] [Cited by in F6Publishing: 45] [Article Influence: 7.9] [Reference Citation Analysis]
404 Bremer E. Clostridium difficile: A bad bug goes into defensive mode. Environ Microbiol 2017;19:2523-8. [PMID: 28447375 DOI: 10.1111/1462-2920.13776] [Reference Citation Analysis]
405 Zhang J, Gao LZ, Chen YJ, Zhu PP, Yin SS, Su MM, Ni Y, Miao J, Wu WL, Chen H, Brouwer KLR, Liu CX, Xu L, Jia W, Lan K. Continuum of Host-Gut Microbial Co-metabolism: Host CYP3A4/3A7 are Responsible for Tertiary Oxidations of Deoxycholate Species. Drug Metab Dispos 2019;47:283-94. [PMID: 30606729 DOI: 10.1124/dmd.118.085670] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
406 Leslie JL, Young VB. The rest of the story: the microbiome and gastrointestinal infections. Curr Opin Microbiol. 2015;23:121-125. [PMID: 25461582 DOI: 10.1016/j.mib.2014.11.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
407 Foley MH, O'Flaherty S, Allen G, Rivera AJ, Stewart AK, Barrangou R, Theriot CM. Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization. Proc Natl Acad Sci U S A 2021;118:e2017709118. [PMID: 33526676 DOI: 10.1073/pnas.2017709118] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
408 Du J, Zayed AA, Kigerl KA, Zane K, Sullivan MB, Popovich PG. Spinal Cord Injury Changes the Structure and Functional Potential of Gut Bacterial and Viral Communities. mSystems 2021;6:e01356-20. [PMID: 33975974 DOI: 10.1128/mSystems.01356-20] [Reference Citation Analysis]
409 Litvak Y, Bäumler AJ. Microbiota-Nourishing Immunity: A Guide to Understanding Our Microbial Self. Immunity 2019;51:214-24. [DOI: 10.1016/j.immuni.2019.08.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
410 Olguín-Araneda V, Banawas S, Sarker MR, Paredes-Sabja D. Recent advances in germination of Clostridium spores. Res Microbiol 2015;166:236-43. [PMID: 25132133 DOI: 10.1016/j.resmic.2014.07.017] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
411 Etienne-Mesmin L, Chassaing B, Adekunle O, Mattei LM, Bushman FD, Gewirtz AT. Toxin-positive Clostridium difficile latently infect mouse colonies and protect against highly pathogenic C. difficile. Gut 2018;67:860-71. [PMID: 28219893 DOI: 10.1136/gutjnl-2016-313510] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.6] [Reference Citation Analysis]
412 Seekatz AM, Theriot CM, Molloy CT, Wozniak KL, Bergin IL, Young VB. Fecal Microbiota Transplantation Eliminates Clostridium difficile in a Murine Model of Relapsing Disease. Infect Immun 2015;83:3838-46. [PMID: 26169276 DOI: 10.1128/IAI.00459-15] [Cited by in Crossref: 79] [Cited by in F6Publishing: 57] [Article Influence: 11.3] [Reference Citation Analysis]
413 Nagpal S, Haque MM, Singh R, Mande SS. iVikodak-A Platform and Standard Workflow for Inferring, Analyzing, Comparing, and Visualizing the Functional Potential of Microbial Communities. Front Microbiol 2018;9:3336. [PMID: 30692979 DOI: 10.3389/fmicb.2018.03336] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 7.7] [Reference Citation Analysis]
414 Shen A. Clostridioides difficile Spores: Bile Acid Sensors and Trojan Horses of Transmission. Clin Colon Rectal Surg 2020;33:58-66. [PMID: 32104157 DOI: 10.1055/s-0040-1701230] [Reference Citation Analysis]
415 Jiang D, Armour CR, Hu C, Mei M, Tian C, Sharpton TJ, Jiang Y. Microbiome Multi-Omics Network Analysis: Statistical Considerations, Limitations, and Opportunities. Front Genet 2019;10:995. [PMID: 31781153 DOI: 10.3389/fgene.2019.00995] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 10.0] [Reference Citation Analysis]
416 Ren W, Bin P, Yin Y, Wu G. Impacts of Amino Acids on the Intestinal Defensive System. Adv Exp Med Biol 2020;1265:133-51. [PMID: 32761574 DOI: 10.1007/978-3-030-45328-2_8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
417 Lin Y, Dong X, Sun R, Wu J, Tian L, Rao D, Zhang L, Yang K. Migratory birds-one major source of environmental antibiotic resistance around Qinghai Lake, China. Sci Total Environ 2020;739:139758. [PMID: 32540654 DOI: 10.1016/j.scitotenv.2020.139758] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
418 Ortiz-Alvarado Y, Clark DR, Vega-Melendez CJ, Flores-Cruz Z, Domingez-Bello MG, Giray T. Antibiotics in hives and their effects on honey bee physiology and behavioral development. Biol Open 2020;9:bio053884. [PMID: 33106276 DOI: 10.1242/bio.053884] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
419 Wieland A, Frank DN, Harnke B, Bambha K. Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2015;42:1051-1063. [PMID: 26304302 DOI: 10.1111/apt.13376] [Cited by in Crossref: 102] [Cited by in F6Publishing: 97] [Article Influence: 14.6] [Reference Citation Analysis]
420 Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol 2016;14:609-20. [PMID: 27573580 DOI: 10.1038/nrmicro.2016.108] [Cited by in Crossref: 227] [Cited by in F6Publishing: 191] [Article Influence: 37.8] [Reference Citation Analysis]
421 Wang S, Shen A, Setlow P, Li YQ. Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy. J Bacteriol 2015;197:2361-73. [PMID: 25939833 DOI: 10.1128/JB.00200-15] [Cited by in Crossref: 40] [Cited by in F6Publishing: 25] [Article Influence: 5.7] [Reference Citation Analysis]
422 Mummert A, Schoen M, Lampl M. Growth and Life Course Health Development. In: Halfon N, Forrest CB, Lerner RM, Faustman EM, editors. Handbook of Life Course Health Development. Cham: Springer International Publishing; 2018. pp. 405-29. [DOI: 10.1007/978-3-319-47143-3_17] [Reference Citation Analysis]
423 Uchihashi M, Bergin IL, Bassis CM, Hashway SA, Chai D, Bell JD. Influence of age, reproductive cycling status, and menstruation on the vaginal microbiome in baboons (Papio anubis). Am J Primatol 2015;77:563-78. [PMID: 25676781 DOI: 10.1002/ajp.22378] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
424 Kassiri B, Shrestha E, Kasprenski M, Antonescu C, Florea LD, Sfanos KS, Wang MH. A Prospective Study of the Urinary and Gastrointestinal Microbiome in Prepubertal Males. Urology 2019;131:204-10. [PMID: 31195012 DOI: 10.1016/j.urology.2019.05.031] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
425 Koch C, Müller S. Personalized microbiome dynamics – Cytometric fingerprints for routine diagnostics. Molecular Aspects of Medicine 2018;59:123-34. [DOI: 10.1016/j.mam.2017.06.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
426 Studer N, Desharnais L, Beutler M, Brugiroux S, Terrazos MA, Menin L, Schürch CM, McCoy KD, Kuehne SA, Minton NP, Stecher B, Bernier-Latmani R, Hapfelmeier S. Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model. Front Cell Infect Microbiol 2016;6:191. [PMID: 28066726 DOI: 10.3389/fcimb.2016.00191] [Cited by in Crossref: 82] [Cited by in F6Publishing: 75] [Article Influence: 13.7] [Reference Citation Analysis]
427 Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016;535:85-93. [PMID: 27383983 DOI: 10.1038/nature18849] [Cited by in Crossref: 526] [Cited by in F6Publishing: 470] [Article Influence: 87.7] [Reference Citation Analysis]
428 Francis MB, Allen CA, Sorg JA. Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination. J Bacteriol 2015;197:2276-83. [PMID: 25917906 DOI: 10.1128/JB.02575-14] [Cited by in Crossref: 61] [Cited by in F6Publishing: 42] [Article Influence: 8.7] [Reference Citation Analysis]
429 Nagao-Kitamoto H, Kamada N. Host-microbial Cross-talk in Inflammatory Bowel Disease. Immune Netw 2017;17:1-12. [PMID: 28261015 DOI: 10.4110/in.2017.17.1.1] [Cited by in Crossref: 71] [Cited by in F6Publishing: 62] [Article Influence: 14.2] [Reference Citation Analysis]
430 Xu D, Wang N, Rinne M, Ke W, Weinberg ZG, Da M, Bai J, Zhang Y, Li F, Guo X. The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microb Biotechnol 2021;14:561-76. [PMID: 32627363 DOI: 10.1111/1751-7915.13623] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
431 Noecker C, Eng A, Srinivasan S, Theriot CM, Young VB, Jansson JK, Fredricks DN, Borenstein E. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation. mSystems 2016;1:e00013-15. [PMID: 27239563 DOI: 10.1128/mSystems.00013-15] [Cited by in Crossref: 90] [Cited by in F6Publishing: 66] [Article Influence: 15.0] [Reference Citation Analysis]
432 Libertucci J, Young VB. The role of the microbiota in infectious diseases. Nat Microbiol 2019;4:35-45. [PMID: 30546094 DOI: 10.1038/s41564-018-0278-4] [Cited by in Crossref: 110] [Cited by in F6Publishing: 101] [Article Influence: 27.5] [Reference Citation Analysis]
433 Reed AD, Theriot CM. Contribution of Inhibitory Metabolites and Competition for Nutrients to Colonization Resistance against Clostridioides difficile by Commensal Clostridium. Microorganisms 2021;9:371. [PMID: 33673352 DOI: 10.3390/microorganisms9020371] [Reference Citation Analysis]
434 Maharjan S, Cecen B, Zhang YS. 3D Immunocompetent Organ-on-a-Chip Models. Small Methods 2020;4:2000235. [PMID: 33072861 DOI: 10.1002/smtd.202000235] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
435 Martinez-Gili L, McDonald JAK, Liu Z, Kao D, Allegretti JR, Monaghan TM, Barker GF, Miguéns Blanco J, Williams HRT, Holmes E, Thursz MR, Marchesi JR, Mullish BH. Understanding the mechanisms of efficacy of fecal microbiota transplant in treating recurrent Clostridioides difficile infection and beyond: the contribution of gut microbial-derived metabolites. Gut Microbes 2020;12:1810531. [PMID: 32893721 DOI: 10.1080/19490976.2020.1810531] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
436 Young VB. Therapeutic manipulation of the microbiota: past, present, and considerations for the future. Clin Microbiol Infect 2016;22:905-9. [PMID: 27619640 DOI: 10.1016/j.cmi.2016.09.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
437 Chakraborty S, Galla S, Cheng X, Yeo JY, Mell B, Singh V, Yeoh B, Saha P, Mathew AV, Vijay-Kumar M, Joe B. Salt-Responsive Metabolite, β-Hydroxybutyrate, Attenuates Hypertension. Cell Rep 2018;25:677-689.e4. [PMID: 30332647 DOI: 10.1016/j.celrep.2018.09.058] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 16.3] [Reference Citation Analysis]
438 Korach-Rechtman H, Hreish M, Fried C, Gerassy-Vainberg S, Azzam ZS, Kashi Y, Berger G. Intestinal Dysbiosis in Carriers of Carbapenem-Resistant Enterobacteriaceae. mSphere 2020;5:e00173-20. [PMID: 32350099 DOI: 10.1128/mSphere.00173-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
439 Arkan MC. The intricate connection between diet, microbiota, and cancer: A jigsaw puzzle. Semin Immunol 2017;32:35-42. [PMID: 28870704 DOI: 10.1016/j.smim.2017.08.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
440 Pruss KM, Sonnenburg JL. C. difficile exploits a host metabolite produced during toxin-mediated disease. Nature 2021;593:261-5. [PMID: 33911281 DOI: 10.1038/s41586-021-03502-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
441 Reese AT, Cho EH, Klitzman B, Nichols SP, Wisniewski NA, Villa MM, Durand HK, Jiang S, Midani FS, Nimmagadda SN, O'Connell TM, Wright JP, Deshusses MA, David LA. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. Elife 2018;7:e35987. [PMID: 29916366 DOI: 10.7554/eLife.35987] [Cited by in Crossref: 52] [Cited by in F6Publishing: 35] [Article Influence: 13.0] [Reference Citation Analysis]
442 Yan H, Pu ZJ, Zhang ZY, Zhou GS, Zou DQ, Guo S, Li C, Zhan ZL, Duan JA. Research on Biomarkers of Different Growth Periods and Different Drying Processes of Citrus wilsonii Tanaka Based on Plant Metabolomics. Front Plant Sci 2021;12:700367. [PMID: 34335665 DOI: 10.3389/fpls.2021.700367] [Reference Citation Analysis]
443 Sassone-Corsi M, Raffatellu M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol. 2015;194:4081-4087. [PMID: 25888704 DOI: 10.4049/jimmunol.1403169] [Cited by in Crossref: 158] [Cited by in F6Publishing: 136] [Article Influence: 22.6] [Reference Citation Analysis]
444 Bergin IL, Wilding LA, Morishita M, Walacavage K, Ault AP, Axson JL, Stark DI, Hashway SA, Capracotta SS, Leroueil PR, Maynard AD, Philbert MA. Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model. Nanotoxicology 2016;10:352-60. [PMID: 26305411 DOI: 10.3109/17435390.2015.1072588] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 6.0] [Reference Citation Analysis]
445 Laubitz D, Typpo K, Midura-Kiela M, Brown C, Barberán A, Ghishan FK, Kiela PR. Dynamics of Gut Microbiota Recovery after Antibiotic Exposure in Young and Old Mice (A Pilot Study). Microorganisms 2021;9:647. [PMID: 33804656 DOI: 10.3390/microorganisms9030647] [Reference Citation Analysis]
446 Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2020;11:158-171. [PMID: 31595814 DOI: 10.1080/19490976.2019.1674124] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 15.0] [Reference Citation Analysis]
447 Seekatz AM, Rao K, Santhosh K, Young VB. Dynamics of the fecal microbiome in patients with recurrent and nonrecurrent Clostridium difficile infection. Genome Med. 2016;8:47. [PMID: 27121861 DOI: 10.1186/s13073-016-0298-8] [Cited by in Crossref: 66] [Cited by in F6Publishing: 56] [Article Influence: 11.0] [Reference Citation Analysis]
448 Hayashi A, Nagao-Kitamoto H, Kitamoto S, Kim CH, Kamada N. The Butyrate-Producing Bacterium Clostridium butyricum Suppresses Clostridioides difficile Infection via Neutrophil- and Antimicrobial Cytokine-Dependent but GPR43/109a-Independent Mechanisms. J Immunol 2021;206:1576-85. [PMID: 33597149 DOI: 10.4049/jimmunol.2000353] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
449 Khan Mirzaei M, Deng L. New technologies for developing phage-based tools to manipulate the human microbiome. Trends Microbiol 2021:S0966-842X(21)00118-9. [PMID: 34016512 DOI: 10.1016/j.tim.2021.04.007] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
450 Seco EM, Fernández LÁ. Efficient markerless integration of genes in the chromosome of probiotic E. coli Nissle 1917 by bacterial conjugation. Microb Biotechnol 2021. [PMID: 34755474 DOI: 10.1111/1751-7915.13967] [Reference Citation Analysis]
451 Lkhagva A, Shen CC, Leung YS, Tai HC. Comparative study of five different amine-derivatization methods for metabolite analyses by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2020;1610:460536. [PMID: 31563299 DOI: 10.1016/j.chroma.2019.460536] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
452 Cataldo MA, Granata G, Petrosillo N. Clostridium difficile infection: new approaches to prevention, non-antimicrobial treatment, and stewardship. Expert Rev Anti Infect Ther 2017;15:1027-40. [PMID: 28980505 DOI: 10.1080/14787210.2017.1387535] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
453 Larsen PE, Dai Y. Metabolome of human gut microbiome is predictive of host dysbiosis. Gigascience 2015;4:42. [PMID: 26380076 DOI: 10.1186/s13742-015-0084-3] [Cited by in Crossref: 65] [Cited by in F6Publishing: 54] [Article Influence: 9.3] [Reference Citation Analysis]
454 Steinmeyer S, Lee K, Jayaraman A, Alaniz RC. Microbiota metabolite regulation of host immune homeostasis: a mechanistic missing link. Curr Allergy Asthma Rep 2015;15:24. [PMID: 26139332 DOI: 10.1007/s11882-015-0524-2] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 4.9] [Reference Citation Analysis]
455 Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci 2017;74:2959-77. [PMID: 28352996 DOI: 10.1007/s00018-017-2509-x] [Cited by in Crossref: 133] [Cited by in F6Publishing: 115] [Article Influence: 26.6] [Reference Citation Analysis]
456 Lewis BB, Carter RA, Pamer EG. Bile acid sensitivity and in vivo virulence of clinical Clostridium difficile isolates. Anaerobe 2016;41:32-6. [PMID: 27241781 DOI: 10.1016/j.anaerobe.2016.05.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
457 Roychowdhury S, Cadnum J, Glueck B, Obrenovich M, Donskey C, Cresci GAM. Faecalibacterium prausnitzii and a Prebiotic Protect Intestinal Health in a Mouse Model of Antibiotic and Clostridium difficile Exposure. JPEN J Parenter Enteral Nutr 2018;42:1156-67. [PMID: 29385239 DOI: 10.1002/jpen.1053] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
458 Lamendella R, Wright JR, Hackman J, McLimans C, Toole DR, Bernard Rubio W, Drucker R, Wong HT, Sabey K, Hegarty JP, Stewart DB Sr. Antibiotic Treatments for Clostridium difficile Infection Are Associated with Distinct Bacterial and Fungal Community Structures. mSphere 2018;3:e00572-17. [PMID: 29359185 DOI: 10.1128/mSphere.00572-17] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
459 Revolinski SL, Munoz-Price LS. Clostridium difficile Exposures, Colonization, and the Microbiome: Implications for Prevention. Infect Control Hosp Epidemiol 2018;39:596-602. [PMID: 29553000 DOI: 10.1017/ice.2018.36] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
460 Norsigian CJ, Danhof HA, Brand CK, Oezguen N, Midani FS, Palsson BO, Savidge TC, Britton RA, Spinler JK, Monk JM. Systems biology analysis of the Clostridioides difficile core-genome contextualizes microenvironmental evolutionary pressures leading to genotypic and phenotypic divergence. NPJ Syst Biol Appl 2020;6:31. [PMID: 33082337 DOI: 10.1038/s41540-020-00151-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
461 Hepburn L, Hijnen D, Sellman B, Mustelin T, Sleeman M, May R, Strickland I. The complex biology and contribution of Staphylococcus aureus in atopic dermatitis, current and future therapies. Br J Dermatol 2017;177:63-71. [DOI: 10.1111/bjd.15139] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
462 Weng G, Duan Y, Zhong Y, Song B, Zheng J, Zhang S, Yin Y, Deng J. Plant Extracts in Obesity: A Role of Gut Microbiota. Front Nutr 2021;8:727951. [PMID: 34631766 DOI: 10.3389/fnut.2021.727951] [Reference Citation Analysis]
463 Schäffler H, Breitrück A. Clostridium difficile - From Colonization to Infection. Front Microbiol 2018;9:646. [PMID: 29692762 DOI: 10.3389/fmicb.2018.00646] [Cited by in Crossref: 55] [Cited by in F6Publishing: 45] [Article Influence: 13.8] [Reference Citation Analysis]
464 Jenior ML, Leslie JL, Young VB, Schloss PD. Clostridium difficile Alters the Structure and Metabolism of Distinct Cecal Microbiomes during Initial Infection To Promote Sustained Colonization. mSphere 2018;3:e00261-18. [PMID: 29950381 DOI: 10.1128/mSphere.00261-18] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
465 Du X, Zhang J, Zhang X, Schramm KW, Nan B, Huang Q, Tian M, Shen H. Persistence and reversibility of arsenic-induced gut microbiome and metabolome shifts in male rats after 30-days recovery duration. Sci Total Environ 2021;776:145972. [PMID: 33647652 DOI: 10.1016/j.scitotenv.2021.145972] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
466 Monaghan TM, Cockayne A, Mahida YR. Pathogenesis of Clostridium difficile Infection and Its Potential Role in Inflammatory Bowel Disease. Inflamm Bowel Dis. 2015;21:1957-1966. [PMID: 26199993 DOI: 10.1097/mib.0000000000000461] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 4.2] [Reference Citation Analysis]
467 Liubakka A, Vaughn BP. Clostridium difficile Infection and Fecal Microbiota Transplant. AACN Adv Crit Care. 2016;27:324-337. [PMID: 27959316 DOI: 10.4037/aacnacc2016703] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
468 Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D, Atreja A, Moore T, Wu G. Update on Fecal Microbiota Transplantation 2015: Indications, Methodologies, Mechanisms, and Outlook. Gastroenterology. 2015;149:223-237. [PMID: 25982290 DOI: 10.1053/j.gastro.2015.05.008] [Cited by in Crossref: 326] [Cited by in F6Publishing: 294] [Article Influence: 46.6] [Reference Citation Analysis]
469 Mordant A, Kleiner M. Evaluation of Sample Preservation and Storage Methods for Metaproteomics Analysis of Intestinal Microbiomes. Microbiol Spectr 2021;9:e0187721. [PMID: 34908431 DOI: 10.1128/Spectrum.01877-21] [Reference Citation Analysis]
470 Breuninger TA, Wawro N, Breuninger J, Reitmeier S, Clavel T, Six-Merker J, Pestoni G, Rohrmann S, Rathmann W, Peters A, Grallert H, Meisinger C, Haller D, Linseisen J. Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation. Microbiome 2021;9:61. [PMID: 33726846 DOI: 10.1186/s40168-020-00969-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
471 Baktash A, Terveer EM, Zwittink RD, Hornung BVH, Corver J, Kuijper EJ, Smits WK. Mechanistic Insights in the Success of Fecal Microbiota Transplants for the Treatment of Clostridium difficile Infections. Front Microbiol 2018;9:1242. [PMID: 29946308 DOI: 10.3389/fmicb.2018.01242] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 9.3] [Reference Citation Analysis]
472 Smith AB, Soto Ocana J, Zackular JP. From Nursery to Nursing Home: Emerging Concepts in Clostridioides difficile Pathogenesis. Infect Immun 2020;88:e00934-19. [PMID: 32122939 DOI: 10.1128/IAI.00934-19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
473 Dong T, Guan Q, Hu W, Zhang M, Zhang Y, Chen M, Wang X, Xia Y. Prenatal exposure to glufosinate ammonium disturbs gut microbiome and induces behavioral abnormalities in mice. Journal of Hazardous Materials 2020;389:122152. [DOI: 10.1016/j.jhazmat.2020.122152] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
474 Wang F, Roy S. Gut Homeostasis, Microbial Dysbiosis, and Opioids. Toxicol Pathol 2017;45:150-6. [PMID: 27895265 DOI: 10.1177/0192623316679898] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 6.7] [Reference Citation Analysis]