BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Memoli G, Caleap M, Asakawa M, Sahoo DR, Drinkwater BW, Subramanian S. Metamaterial bricks and quantization of meta-surfaces. Nat Commun 2017;8:14608. [PMID: 28240283 DOI: 10.1038/ncomms14608] [Cited by in Crossref: 107] [Cited by in F6Publishing: 109] [Article Influence: 21.4] [Reference Citation Analysis]
Number Citing Articles
1 Jiang T, He Q. Spatial information coding with artificially engineered structures for acoustic and elastic wave sensing. Front Phys 2022;10:1024964. [DOI: 10.3389/fphy.2022.1024964] [Reference Citation Analysis]
2 Fan Y, Wang X, Ren J, Lin F, Wu J. Recent advances in acoustofluidic separation technology in biology. Microsyst Nanoeng 2022;8:94. [PMID: 36060525 DOI: 10.1038/s41378-022-00435-6] [Reference Citation Analysis]
3 Ren Z, Dong H, He X, Chen M, Fang D. Underwater gradient metalens for broadband subwavelength focusing. International Journal of Mechanical Sciences 2022;229:107521. [DOI: 10.1016/j.ijmecsci.2022.107521] [Reference Citation Analysis]
4 Shi Y, Song Q, Toftul I, Zhu T, Yu Y, Zhu W, Tsai DP, Kivshar Y, Liu AQ. Optical manipulation with metamaterial structures. Applied Physics Reviews 2022;9:031303. [DOI: 10.1063/5.0091280] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Khrystoslavenko O, Grubliauskas R. Investigation of Acoustic Efficiency of Wood Charcoal in Impedance Tube for Usage in Sound-Reflective Devices. Sustainability 2022;14:9431. [DOI: 10.3390/su14159431] [Reference Citation Analysis]
6 Li H, Zheng B, Duan M, Han F, Hu Y, Li X, Qian S, Chen X, Liu S. Helmholtz-Structured Two-Dimensional Super-Diffraction Meta-Lens. Front Phys 2022;10:923637. [DOI: 10.3389/fphy.2022.923637] [Reference Citation Analysis]
7 Luo Y, Li X, Wu D, Yao J, Zhu X, Du L, Liu X. Three-Dimensional Trapping and Manipulation of a Mie Particle by Hybrid Acoustic Focused Petal Beams. Phys Rev Applied 2022;17. [DOI: 10.1103/physrevapplied.17.064059] [Reference Citation Analysis]
8 Hou Z, Li J, Zhou Z, Pei Y. Programmable particles patterning by multifrequency excitation radiation force of acoustic resonance modes. International Journal of Mechanical Sciences 2022;222:107232. [DOI: 10.1016/j.ijmecsci.2022.107232] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Rufo J, Cai F, Friend J, Wiklund M, Huang TJ. Acoustofluidics for biomedical applications. Nat Rev Methods Primers 2022;2. [DOI: 10.1038/s43586-022-00109-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
10 Andrés D, Vappou J, Jiménez N, Camarena F. Thermal holographic patterns for ultrasound hyperthermia. Appl Phys Lett 2022;120:084102. [DOI: 10.1063/5.0081565] [Reference Citation Analysis]
11 Gao N, Zhang Z, Deng J, Guo X, Cheng B, Hou H. Acoustic Metamaterials for Noise Reduction: A Review. Adv Materials Technologies 2022;7:2100698. [DOI: 10.1002/admt.202100698] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 20.0] [Reference Citation Analysis]
12 Wang Y, Luo L, Ke M, Liu Z. Acoustic Subwavelength Manipulation of Particles with a Quasiperiodic Plate. Phys Rev Applied 2022;17. [DOI: 10.1103/physrevapplied.17.014026] [Reference Citation Analysis]
13 Song A, Sun C, Xiang Y, Xuan F. Switchable acoustic metagrating for three-channel retroreflection and carpet cloaking. Appl Phys Express 2022;15:024002. [DOI: 10.35848/1882-0786/ac481d] [Reference Citation Analysis]
14 Ma F, Huang Z, Liu C, Wu JH. Acoustic focusing and imaging via phononic crystal and acoustic metamaterials. Journal of Applied Physics 2022;131:011103. [DOI: 10.1063/5.0074503] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
15 Chiang YK, Quan L, Peng Y, Sepehrirahnama S, Oberst S, Alù A, Powell DA. Scalable Metagrating for Efficient Ultrasonic Focusing. Phys Rev Applied 2021;16. [DOI: 10.1103/physrevapplied.16.064014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Liu B, Su Z, Zeng Y, Wang Y, Huang L, Zhang S. Acoustic geometric-phase meta-array. New J Phys 2021;23:113026. [DOI: 10.1088/1367-2630/ac33f2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zhao Y, Subramanian S, Memoli G. Acoustic wave focusing by 2.5D graded index lens. Appl Phys Lett 2021;119:141907. [DOI: 10.1063/5.0064246] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Rahman O, Uddin KZ, Muthulingam J, Youssef G, Shen C, Koohbor B. Density‐Graded Cellular Solids: Mechanics, Fabrication, and Applications. Adv Eng Mater 2022;24:2100646. [DOI: 10.1002/adem.202100646] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
19 Lu X, Twiefel J, Ma Z, Yu T, Wallaschek J, Fischer P. Dynamic Acoustic Levitator Based On Subwavelength Aperture Control. Adv Sci (Weinh) 2021;8:e2100888. [PMID: 34105900 DOI: 10.1002/advs.202100888] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
20 Bansal S, Subramanian S. A Microfluidic Acoustic Metamaterial using Electrowetting: Enabling Active Broadband Tunability. Adv Mater Technol 2021;6:2100491. [DOI: 10.1002/admt.202100491] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
21 Kolesnik K, Xu M, Lee PVS, Rajagopal V, Collins DJ. Unconventional acoustic approaches for localized and designed micromanipulation. Lab Chip 2021;21:2837-56. [PMID: 34268539 DOI: 10.1039/d1lc00378j] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
22 Cornelio P, Velasco C, Obrist M. Multisensory Integration as per Technological Advances: A Review. Front Neurosci 2021;15:652611. [PMID: 34239410 DOI: 10.3389/fnins.2021.652611] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
23 Li J, Crivoi A, Peng X, Shen L, Pu Y, Fan Z, Cummer SA. Three dimensional acoustic tweezers with vortex streaming. Commun Phys 2021;4. [DOI: 10.1038/s42005-021-00617-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
24 Zhu Y, Gerard NJ, Xia X, Stevenson GC, Cao L, Fan S, Spadaccini CM, Jing Y, Assouar B. Systematic Design and Experimental Demonstration of Transmission‐Type Multiplexed Acoustic Metaholograms. Adv Funct Mater 2021;31:2101947. [DOI: 10.1002/adfm.202101947] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
25 Li J, Lv Z, Hou Z, Pei Y. Comparison of balanced direct search and iterative angular spectrum approaches for designing acoustic holography structure. Applied Acoustics 2021;175:107848. [DOI: 10.1016/j.apacoust.2020.107848] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
26 Gao S, Li Y, Ma C, Cheng Y, Liu X. Emitting long-distance spiral airborne sound using low-profile planar acoustic antenna. Nat Commun 2021;12:2006. [PMID: 33790285 DOI: 10.1038/s41467-021-22325-7] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
27 Morales R, Ezcurdia I, Irisarri J, Andrade MAB, Marzo A. Generating Airborne Ultrasonic Amplitude Patterns Using an Open Hardware Phased Array. Applied Sciences 2021;11:2981. [DOI: 10.3390/app11072981] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Jiang X, Wang N, Zhang C, Fang X, Li S, Sun X, Li Y, Ta D, Wang W. Acoustic orbital angular momentum prism for efficient vortex perception. Appl Phys Lett 2021;118:071901. [DOI: 10.1063/5.0041398] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Liang S, Liu T, Gao H, Gu Z, An S, Zhu J. Acoustic metasurface by layered concentric structures. Phys Rev Research 2020;2. [DOI: 10.1103/physrevresearch.2.043362] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
30 Askari M, Hutchins DA, Thomas PJ, Astolfi L, Watson RL, Abdi M, Ricci M, Laureti S, Nie L, Freear S, Wildman R, Tuck C, Clarke M, Woods E, Clare AT. Additive manufacturing of metamaterials: A review. Additive Manufacturing 2020;36:101562. [DOI: 10.1016/j.addma.2020.101562] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 18.5] [Reference Citation Analysis]
31 Mohanty S, Khalil ISM, Misra S. Contactless acoustic micro/nano manipulation: a paradigm for next generation applications in life sciences. Proc Math Phys Eng Sci 2020;476:20200621. [PMID: 33363443 DOI: 10.1098/rspa.2020.0621] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
32 Cai X, Huang Z, Yang J. Traveling Sound Wave with Transverse Particle Velocity in a Metawaveguide by Using a Phase-Reversible Metasurface. Phys Rev Applied 2020;14. [DOI: 10.1103/physrevapplied.14.054025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Choi C, Bansal S, Münzenrieder N, Subramanian S. Fabricating and Assembling Acoustic Metamaterials and Phononic Crystals. Adv Eng Mater 2021;23:2000988. [DOI: 10.1002/adem.202000988] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
34 Zangeneh-nejad F, Sounas DL, Alù A, Fleury R. Analogue computing with metamaterials. Nat Rev Mater 2021;6:207-25. [DOI: 10.1038/s41578-020-00243-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 49] [Article Influence: 12.5] [Reference Citation Analysis]
35 Rong J, Ye W, Zhang S, Liu Y. Frequency‐Coded Passive Multifunctional Elastic Metasurfaces. Adv Funct Mater 2020;30:2005285. [DOI: 10.1002/adfm.202005285] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
36 Zhang H, Zhang W, Liao Y, Zhou X, Li J, Hu G, Zhang X. Creation of acoustic vortex knots. Nat Commun 2020;11:3956. [PMID: 32770024 DOI: 10.1038/s41467-020-17744-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
37 Suárez L, del Mar Espinosa M. Assessment on the use of additive manufacturing technologies for acoustic applications. Int J Adv Manuf Technol 2020;109:2691-705. [DOI: 10.1007/s00170-020-05853-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
38 Lin Q, Zhou W, Cai F, Li F, Xia X, Wang J, Zhao D, Yan F, Meng L, Zheng H. Trapping of sub-wavelength microparticles and cells in resonant cylindrical shells. Appl Phys Lett 2020;117:053501. [DOI: 10.1063/5.0019758] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
39 Luo Y, Jia Y, Yao J, Wu D, Liu X. Enhanced Fractional Acoustic Vortices by an Annulus Acoustic Metasurface with Multi‐Layered Rings. Adv Mater Technol . [DOI: 10.1002/admt.202000356] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
40 Rathod VT. A Review of Acoustic Impedance Matching Techniques for Piezoelectric Sensors and Transducers. Sensors (Basel) 2020;20:E4051. [PMID: 32708159 DOI: 10.3390/s20144051] [Cited by in Crossref: 16] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
41 Xia X, Li Y, Cai F, Zhou H, Ma T, Zheng H. Ultrasonic tunable focusing by a stretchable phase-reversal Fresnel zone plate. Appl Phys Lett 2020;117:021904. [DOI: 10.1063/5.0018663] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
42 Jia Y, Wu D, Yao J, Wei Q, Xu Z, Liu X. Acoustic tweezing for both Rayleigh and Mie particles based on acoustic focused petal beams. Appl Phys Lett 2020;116:263504. [DOI: 10.1063/5.0010922] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
43 Brown MD, Cox BT, Treeby BE. Stackable acoustic holograms. Appl Phys Lett 2020;116:261901. [DOI: 10.1063/5.0009829] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
44 Andrade MAB, Marzo A, Adamowski JC. Acoustic levitation in mid-air: Recent advances, challenges, and future perspectives. Appl Phys Lett 2020;116:250501. [DOI: 10.1063/5.0012660] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
45 Prat‐camps J, Christopoulos G, Hardwick J, Subramanian S. A Manually Reconfigurable Reflective Spatial Sound Modulator for Ultrasonic Waves in Air. Adv Mater Technol 2020;5:2000041. [DOI: 10.1002/admt.202000041] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
46 Vieira SL, Andrade MAB. Translational and rotational resonance frequencies of a disk in a single-axis acoustic levitator. Journal of Applied Physics 2020;127:224901. [DOI: 10.1063/5.0007149] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
47 Li F, Cai F, Zhang L, Liu Z, Li F, Meng L, Wu J, Li J, Zhang X, Zheng H. Phononic-Crystal-Enabled Dynamic Manipulation of Microparticles and Cells in an Acoustofluidic Channel. Phys Rev Applied 2020;13. [DOI: 10.1103/physrevapplied.13.044077] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
48 Chen D, Zhu X, Wei Q, Yao J, Wu D. Broadband tunable focusing lenses by acoustic coding metasurfaces. J Phys D: Appl Phys 2020;53:255501. [DOI: 10.1088/1361-6463/ab8247] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
49 Polychronopoulos S, Memoli G. Acoustic levitation with optimized reflective metamaterials. Sci Rep 2020;10:4254. [PMID: 32144310 DOI: 10.1038/s41598-020-60978-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
50 Rong J, Ye W. Multifunctional elastic metasurface design with topology optimization. Acta Materialia 2020;185:382-99. [DOI: 10.1016/j.actamat.2019.12.017] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 11.0] [Reference Citation Analysis]
51 Sun H, Wang S, Huang S, Peng L, Wang Q, Zhao W. Design and characterization of an acoustic composite lens with high-intensity and directionally controllable focusing. Sci Rep 2020;10:1469. [PMID: 32001761 DOI: 10.1038/s41598-020-58092-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
52 Jiang X, Shi C, Wang Y, Smalley J, Cheng J, Zhang X. Nonresonant Metasurface for Fast Decoding in Acoustic Communications. Phys Rev Applied 2020;13. [DOI: 10.1103/physrevapplied.13.014014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
53 Zhao W, Wang K, Hong X, Wang B, Han X, Long H, Wang B, Lu P. Chirality-selected second-harmonic holography with phase and binary amplitude manipulation. Nanoscale 2020;12:13330-7. [DOI: 10.1039/d0nr03431b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
54 Lirette R, Mobley J, Zhang L. Ultrasonic Extraction and Manipulation of Droplets from a Liquid-Liquid Interface with Near-Field Acoustic Tweezers. Phys Rev Applied 2019;12. [DOI: 10.1103/physrevapplied.12.061001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
55 Zhu X, Lau S. Perfect anomalous reflection and refraction with binary acoustic metasurfaces. Journal of Applied Physics 2019;126:224504. [DOI: 10.1063/1.5124040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
56 [DOI: 10.1109/ism46123.2019.00022] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
57 Cao WK, Wu LT, Zhang C, Ke JC, Cheng Q, Cui TJ. A reflective acoustic meta-diffuser based on the coding meta-surface. Journal of Applied Physics 2019;126:194503. [DOI: 10.1063/1.5120111] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
58 Xu W, Yu D, Wen J. Quasi-perfect absorption achieved throughout low frequency range via acoustic meta-surface. Jpn J Appl Phys 2019;58:120904. [DOI: 10.7567/1347-4065/ab5239] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
59 Hirayama R, Martinez Plasencia D, Masuda N, Subramanian S. A volumetric display for visual, tactile and audio presentation using acoustic trapping. Nature 2019;575:320-3. [DOI: 10.1038/s41586-019-1739-5] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 20.3] [Reference Citation Analysis]
60 [DOI: 10.1145/3343055.3359704] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
61 Zangeneh-nejad F, Fleury R. Active times for acoustic metamaterials. Reviews in Physics 2019;4:100031. [DOI: 10.1016/j.revip.2019.100031] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 17.0] [Reference Citation Analysis]
62 [DOI: 10.1145/3332165.3347882] [Cited by in Crossref: 24] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
63 [DOI: 10.1109/ultsym.2019.8925899] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
64 Morris RH, Dye ER, Docker P, Newton MI. Beyond the Langevin horn: Transducer arrays for the acoustic levitation of liquid drops. Physics of Fluids 2019;31:101301. [DOI: 10.1063/1.5117335] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
65 Zhang F, Perkins E, Wang S, Flowers GT, Dean RN. Compact acoustic metalens with sinusoidal sub-channels for directional far-field sound beams. Appl Phys Express 2019;12:087002. [DOI: 10.7567/1882-0786/ab2ff4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Jiménez-gambín S, Jiménez N, Benlloch JM, Camarena F. Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Phys Rev Applied 2019;12. [DOI: 10.1103/physrevapplied.12.014016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 10.3] [Reference Citation Analysis]
67 Taniyama H, Iwase E. Design of Rigidity and Breaking Strain for a Kirigami Structure with Non-Uniform Deformed Regions. Micromachines (Basel) 2019;10:E395. [PMID: 31207899 DOI: 10.3390/mi10060395] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
68 Gerard NJ, Cui H, Shen C, Xie Y, Cummer S, Zheng X, Jing Y. Fabrication and experimental demonstration of a hybrid resonant acoustic gradient index metasurface at 40 kHz. Appl Phys Lett 2019;114:231902. [DOI: 10.1063/1.5095963] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
69 Wu M, Ozcelik A, Rufo J, Wang Z, Fang R, Jun Huang T. Acoustofluidic separation of cells and particles. Microsyst Nanoeng 2019;5:32. [PMID: 31231539 DOI: 10.1038/s41378-019-0064-3] [Cited by in Crossref: 93] [Cited by in F6Publishing: 131] [Article Influence: 31.0] [Reference Citation Analysis]
70 Ang LYL, Koh YK, Lee HP. Plate-type acoustic metamaterials: Evaluation of a large-scale design adopting modularity for customizable acoustical performance. Applied Acoustics 2019;149:156-70. [DOI: 10.1016/j.apacoust.2019.01.027] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
71 Meng L, Cai F, Li F, Zhou W, Niu L, Zheng H. Acoustic tweezers. J Phys D: Appl Phys 2019;52:273001. [DOI: 10.1088/1361-6463/ab16b5] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 16.3] [Reference Citation Analysis]
72 [DOI: 10.1145/3290605.3300362] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
73 Tang H, Hao Z, Zang J. Nonplanar acoustic metasurface for focusing. Journal of Applied Physics 2019;125:154901. [DOI: 10.1063/1.5082670] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
74 Tian Z, Shen C, Li J, Reit E, Gu Y, Fu H, Cummer SA, Huang TJ. Programmable Acoustic Metasurfaces. Adv Funct Mater 2019;29:1808489. [PMID: 31123431 DOI: 10.1002/adfm.201808489] [Cited by in Crossref: 76] [Cited by in F6Publishing: 71] [Article Influence: 25.3] [Reference Citation Analysis]
75 Zhu X, Wu D, Lau S, Liu X. High-efficiency anomalous reflection of acoustic waves with a passive-lossless metasurface. Appl Phys Express 2019;12:047003. [DOI: 10.7567/1882-0786/ab0cdf] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
76 Celli P, Yousefzadeh B, Daraio C, Gonella S. Bandgap widening by disorder in rainbow metamaterials. Appl Phys Lett 2019;114:091903. [DOI: 10.1063/1.5081916] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 15.7] [Reference Citation Analysis]
77 Liang S, Liu T, Chen F, Zhu J. Theoretical and experimental study of gradient-helicoid metamaterial. Journal of Sound and Vibration 2019;442:482-96. [DOI: 10.1016/j.jsv.2018.10.031] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
78 Kuchibhatla SAR, Rajagopal P. A transformation elasticity based device for wavefront manipulation. NDT & E International 2019;102:304-10. [DOI: 10.1016/j.ndteint.2019.01.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
79 Tian Z, Yu L. Elastic Phased Diffraction Gratings for Manipulation of Ultrasonic Guided Waves in Solids. Phys Rev Applied 2019;11. [DOI: 10.1103/physrevapplied.11.024052] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
80 Chen D, Zhu X, Wu D, Liu X. Broadband Airy-like beams by coded acoustic metasurfaces. Appl Phys Lett 2019;114:053504. [DOI: 10.1063/1.5080202] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
81 Jin Y, Kumar R, Poncelet O, Mondain-Monval O, Brunet T. Flat acoustics with soft gradient-index metasurfaces. Nat Commun 2019;10:143. [PMID: 30635556 DOI: 10.1038/s41467-018-07990-5] [Cited by in Crossref: 37] [Cited by in F6Publishing: 46] [Article Influence: 12.3] [Reference Citation Analysis]
82 Chen D, Zhu X, Wei Q, Wu D. Bidirectional asymmetric acoustic focusing with two flat acoustic metasurfaces. Chinese Phys B 2018;27:124302. [DOI: 10.1088/1674-1056/27/12/124302] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
83 Cesewski E, Haring AP, Tong Y, Singh M, Thakur R, Laheri S, Read KA, Powell MD, Oestreich KJ, Johnson BN. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications. Lab Chip 2018;18:2087-98. [PMID: 29897358 DOI: 10.1039/c8lc00427g] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
84 Xia X, Cai F, Li F, Meng L, Ma T, Zhou H, Ke M, Qiu C, Liu Z, Zheng H. Planar Ultrasonic Lenses Formed by Concentric Circular Sandwiched‐Ring Arrays. Adv Mater Technol 2018. [DOI: 10.1002/admt.201800542] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
85 Huang S, Fang X, Wang X, Assouar B, Cheng Q, Li Y. Acoustic perfect absorbers via spiral metasurfaces with embedded apertures. Appl Phys Lett 2018;113:233501. [DOI: 10.1063/1.5063289] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 15.5] [Reference Citation Analysis]
86 Zhao S, Chen A, Wang Y, Zhang C. Continuously Tunable Acoustic Metasurface for Transmitted Wavefront Modulation. Phys Rev Applied 2018;10. [DOI: 10.1103/physrevapplied.10.054066] [Cited by in Crossref: 54] [Cited by in F6Publishing: 62] [Article Influence: 13.5] [Reference Citation Analysis]
87 Ozcelik A, Rufo J, Guo F, Gu Y, Li P, Lata J, Huang TJ. Acoustic tweezers for the life sciences. Nat Methods 2018;15:1021-8. [PMID: 30478321 DOI: 10.1038/s41592-018-0222-9] [Cited by in Crossref: 210] [Cited by in F6Publishing: 259] [Article Influence: 52.5] [Reference Citation Analysis]
88 Chen J, Xiao J, Lisevych D, Shakouri A, Fan Z. Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nat Commun 2018;9:4920. [PMID: 30467347 DOI: 10.1038/s41467-018-07315-6] [Cited by in Crossref: 40] [Cited by in F6Publishing: 47] [Article Influence: 10.0] [Reference Citation Analysis]
89 Xie Y, Fu Y, Jia Z, Li J, Shen C, Xu Y, Chen H, Cummer SA. Acoustic Imaging with Metamaterial Luneburg Lenses. Sci Rep 2018;8:16188. [PMID: 30385792 DOI: 10.1038/s41598-018-34581-7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
90 Jia Y, Ji W, Wu D, Liu X. Metasurface-enabled airborne fractional acoustic vortex emitter. Appl Phys Lett 2018;113:173502. [DOI: 10.1063/1.5051696] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
91 Assouar B, Liang B, Wu Y, Li Y, Cheng J, Jing Y. Acoustic metasurfaces. Nat Rev Mater 2018;3:460-72. [DOI: 10.1038/s41578-018-0061-4] [Cited by in Crossref: 211] [Cited by in F6Publishing: 249] [Article Influence: 52.8] [Reference Citation Analysis]
92 Chen Y, Li X, Nassar H, Hu G, Huang G. A programmable metasurface for real time control of broadband elastic rays. Smart Mater Struct 2018;27:115011. [DOI: 10.1088/1361-665x/aae27b] [Cited by in Crossref: 44] [Cited by in F6Publishing: 49] [Article Influence: 11.0] [Reference Citation Analysis]
93 [DOI: 10.1145/3242587.3242590] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
94 Li W, Ke M, Peng S, Liu F, Qiu C, Liu Z. Rotational manipulation by acoustic radiation torque of high-order vortex beams generated by an artificial structured plate. Appl Phys Lett 2018;113:051902. [DOI: 10.1063/1.5040381] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
95 Tang H, Chen Z, Tang N, Li S, Shen Y, Peng Y, Zhu X, Zang J. Hollow-Out Patterning Ultrathin Acoustic Metasurfaces for Multifunctionalities Using Soft fiber/Rigid Bead Networks. Adv Funct Mater 2018;28:1801127. [DOI: 10.1002/adfm.201801127] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 8.5] [Reference Citation Analysis]
96 [DOI: 10.1145/3205873.3205878] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
97 Zhang Q, Zhang K, Hu G. Tunable fluid-solid metamaterials for manipulation of elastic wave propagation in broad frequency range. Appl Phys Lett 2018;112:221906. [DOI: 10.1063/1.5023307] [Cited by in Crossref: 24] [Cited by in F6Publishing: 33] [Article Influence: 6.0] [Reference Citation Analysis]
98 Liu B, Jiang Y. Controllable asymmetric transmission via gap-tunable acoustic metasurface. Appl Phys Lett 2018;112:173503. [DOI: 10.1063/1.5023852] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
99 [DOI: 10.1145/3173574.3173736] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
100 Li J, Shen C, Díaz-Rubio A, Tretyakov SA, Cummer SA. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat Commun 2018;9:1342. [PMID: 29632385 DOI: 10.1038/s41467-018-03778-9] [Cited by in Crossref: 103] [Cited by in F6Publishing: 124] [Article Influence: 25.8] [Reference Citation Analysis]
101 Goldsberry BM, Haberman MR. Negative stiffness honeycombs as tunable elastic metamaterials. Journal of Applied Physics 2018;123:091711. [DOI: 10.1063/1.5011400] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 9.5] [Reference Citation Analysis]
102 O'Rorke R, Collins D, Ai Y. A rapid and meshless analytical model of acoustofluidic pressure fields for waveguide design. Biomicrofluidics 2018;12:024104. [PMID: 29576835 DOI: 10.1063/1.5021117] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
103 Collins DJ, O’rorke R, Devendran C, Ma Z, Han J, Neild A, Ai Y. Self-Aligned Acoustofluidic Particle Focusing and Patterning in Microfluidic Channels from Channel-Based Acoustic Waveguides. Phys Rev Lett 2018;120. [DOI: 10.1103/physrevlett.120.074502] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 9.0] [Reference Citation Analysis]
104 Noimark S, Colchester RJ, Poduval RK, Maneas E, Alles EJ, Zhao T, Zhang EZ, Ashworth M, Tsolaki E, Chester AH, Latif N, Bertazzo S, David AL, Ourselin S, Beard PC, Parkin IP, Papakonstantinou I, Desjardins AE. Polydimethylsiloxane Composites for Optical Ultrasound Generation and Multimodality Imaging. Adv Funct Mater 2018;28:1704919. [DOI: 10.1002/adfm.201704919] [Cited by in Crossref: 51] [Cited by in F6Publishing: 22] [Article Influence: 12.8] [Reference Citation Analysis]
105 Andrade MAB, Pérez N, Adamowski JC. Review of Progress in Acoustic Levitation. Braz J Phys 2018;48:190-213. [DOI: 10.1007/s13538-017-0552-6] [Cited by in Crossref: 47] [Cited by in F6Publishing: 36] [Article Influence: 9.4] [Reference Citation Analysis]
106 Hwang M, Riggs BJ, Katz J, Seyfert D, Northington F, Shenandoah R, Burd I, McArthur J, Darge K, Thimm MA, Huisman TAGM. Advanced Pediatric Neurosonography Techniques: Contrast-Enhanced Ultrasonography, Elastography, and Beyond. J Neuroimaging 2018;28:150-7. [PMID: 29280236 DOI: 10.1111/jon.12492] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
107 Pulido-mancera L, Bowen PT, Imani MF, Kundtz N, Smith D. Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling. Phys Rev B 2017;96. [DOI: 10.1103/physrevb.96.235402] [Cited by in Crossref: 29] [Cited by in F6Publishing: 15] [Article Influence: 5.8] [Reference Citation Analysis]
108 Ding Y, Statharas EC, Yao K, Hong M. A broadband acoustic metamaterial with impedance matching layer of gradient index. Appl Phys Lett 2017;110:241903. [DOI: 10.1063/1.4986472] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 6.8] [Reference Citation Analysis]
109 Devendran C, Collins DJ, Ai Y, Neild A. Huygens-Fresnel Acoustic Interference and the Development of Robust Time-Averaged Patterns from Traveling Surface Acoustic Waves. Phys Rev Lett 2017;118. [DOI: 10.1103/physrevlett.118.154501] [Cited by in Crossref: 31] [Cited by in F6Publishing: 36] [Article Influence: 6.2] [Reference Citation Analysis]