BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cai Y, Zhu L, Zhang F, Niu G, Lee S, Kimura S, Chen X. Noninvasive monitoring of pulmonary fibrosis by targeting matrix metalloproteinases (MMPs). Mol Pharm 2013;10:2237-47. [PMID: 23607644 DOI: 10.1021/mp300613x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Yue X, Wang Z, Zhu L, Wang Y, Qian C, Ma Y, Kiesewetter DO, Niu G, Chen X. Novel 19F activatable probe for the detection of matrix metalloprotease-2 activity by MRI/MRS. Mol Pharm 2014;11:4208-17. [PMID: 25271556 DOI: 10.1021/mp500443x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
2 Barapatre N, Symvoulidis P, Möller W, Prade F, Deliolanis NC, Hertel S, Winter G, Yildirim AÖ, Stoeger T, Eickelberg O, Ntziachristos V, Schmid O. Quantitative detection of drug dose and spatial distribution in the lung revealed by Cryoslicing Imaging. Journal of Pharmaceutical and Biomedical Analysis 2015;102:129-36. [DOI: 10.1016/j.jpba.2014.09.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
3 Sun Z, Ma N, Fan W, Guo L, Chen J, Zhu L, Tong G. Noninvasive monitoring of the development and treatment response of ischemic hindlimb by targeting matrix metalloproteinase-2 (MMP-2). Biomater Sci 2019;7:4036-45. [DOI: 10.1039/c9bm00915a] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
4 Zhu L, Ma Y, Kiesewetter DO, Wang Y, Lang L, Lee S, Niu G, Chen X. Rational design of matrix metalloproteinase-13 activatable probes for enhanced specificity. ACS Chem Biol 2014;9:510-6. [PMID: 24266806 DOI: 10.1021/cb400698s] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
5 Egger C, Cannet C, Gérard C, Suply T, Ksiazek I, Jarman E, Beckmann N. Effects of the fibroblast activation protein inhibitor, PT100, in a murine model of pulmonary fibrosis. European Journal of Pharmacology 2017;809:64-72. [DOI: 10.1016/j.ejphar.2017.05.022] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 5.6] [Reference Citation Analysis]
6 Mahmutovic Persson I, von Wachenfeldt K, Waterton JC, Olsson LE, On Behalf Of The Tristan Consortium. Imaging Biomarkers in Animal Models of Drug-Induced Lung Injury: A Systematic Review. J Clin Med 2020;10:E107. [PMID: 33396865 DOI: 10.3390/jcm10010107] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Tashiro J, Rubio GA, Limper AH, Williams K, Elliot SJ, Ninou I, Aidinis V, Tzouvelekis A, Glassberg MK. Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2017;4:118. [PMID: 28804709 DOI: 10.3389/fmed.2017.00118] [Cited by in Crossref: 85] [Cited by in F6Publishing: 77] [Article Influence: 17.0] [Reference Citation Analysis]
8 Luo J, Guo XR, Tang XJ, Sun XY, Yang ZS, Zhang Y, Dai LJ, Warnock GL. Intravital biobank and personalized cancer therapy: the correlation with omics. Int J Cancer 2014;135:1511-6. [PMID: 24285244 DOI: 10.1002/ijc.28632] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
9 Porras AM, Hutson HN, Berger AJ, Masters KS. Engineering approaches to study fibrosis in 3-D in vitro systems. Curr Opin Biotechnol 2016;40:24-30. [PMID: 26926460 DOI: 10.1016/j.copbio.2016.02.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
10 Chavan T, Muth A. The diverse bioactivity of α-mangostin and its therapeutic implications. Future Med Chem 2021;13:1679-94. [PMID: 34410182 DOI: 10.4155/fmc-2021-0146] [Reference Citation Analysis]
11 Liang P, Zhang YY, Yang P, Grond S, Zhang Y, Qian Z. Viridicatol and viridicatin isolated from a shark-gill-derived fungus Penicilliumpolonicum AP2T1 as MMP-2 and MMP-9 inhibitors in HT1080 cells by MAPKs signaling pathway and docking studies. Med Chem Res 2019;28:1039-48. [DOI: 10.1007/s00044-019-02358-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
12 Marenzana M, Vande Velde G. Refine, reduce, replace: Imaging of fibrosis and arthritis in animal models. Best Practice & Research Clinical Rheumatology 2015;29:715-40. [DOI: 10.1016/j.berh.2016.02.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
13 Maraloiu VA, Appaix F, Broisat A, Le Guellec D, Teodorescu VS, Ghezzi C, van der Sanden B, Blanchin MG. Multiscale investigation of USPIO nanoparticles in atherosclerotic plaques and their catabolism and storage in vivo. Nanomedicine 2016;12:191-200. [PMID: 26370708 DOI: 10.1016/j.nano.2015.08.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
14 Takeuchi T, Hayashi M, Tamita T, Nomura Y, Kojima N, Mitani A, Takeda T, Hitaka K, Kato Y, Kamitani M, Mima M, Toki H, Ohkubo M, Nozoe A, Kakinuma H. Discovery of Aryloxyphenyl-Heptapeptide Hybrids as Potent and Selective Matrix Metalloproteinase-2 Inhibitors for the Treatment of Idiopathic Pulmonary Fibrosis. J Med Chem 2022;65:8493-510. [PMID: 35687819 DOI: 10.1021/acs.jmedchem.2c00613] [Reference Citation Analysis]
15 Haak AJ, Tan Q, Tschumperlin DJ. Matrix biomechanics and dynamics in pulmonary fibrosis. Matrix Biol 2018;73:64-76. [PMID: 29274939 DOI: 10.1016/j.matbio.2017.12.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
16 Tashiro J, Elliot SJ, Gerth DJ, Xia X, Pereira-Simon S, Choi R, Catanuto P, Shahzeidi S, Toonkel RL, Shah RH, El Salem F, Glassberg MK. Therapeutic benefits of young, but not old, adipose-derived mesenchymal stem cells in a chronic mouse model of bleomycin-induced pulmonary fibrosis. Transl Res. 2015;166:554-567. [PMID: 26432923 DOI: 10.1016/j.trsl.2015.09.004] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 6.7] [Reference Citation Analysis]
17 Lee A, Park K, Choi SJ, Seo DH, Kim K, Kim HS, Choi K, Kwon IC, Yoon SY, Youn I. Prediction of antiarthritic drug efficacies by monitoring active matrix metalloproteinase-3 (MMP-3) levels in collagen-induced arthritic mice using the MMP-3 probe. Mol Pharm 2014;11:1450-8. [PMID: 24673659 DOI: 10.1021/mp400622q] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
18 Chen Y, Hong J, Wu D, Zhou Y, D'ortenzio M, Ding Y, Xia X. In vivo mapping and assay of matrix metalloproteases for liver tumor diagnosis. RSC Adv 2016;6:8336-45. [DOI: 10.1039/c5ra26172d] [Cited by in Crossref: 8] [Article Influence: 1.3] [Reference Citation Analysis]
19 Divya T, Dineshbabu V, Soumyakrishnan S, Sureshkumar A, Sudhandiran G. Celastrol enhances Nrf2 mediated antioxidant enzymes and exhibits anti-fibrotic effect through regulation of collagen production against bleomycin-induced pulmonary fibrosis. Chem Biol Interact 2016;246:52-62. [PMID: 26768587 DOI: 10.1016/j.cbi.2016.01.006] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 6.8] [Reference Citation Analysis]
20 Li N, Yi L, He Z, Zhang W, Li H, Lin JM. A DNA-directed covalent conjugation fluorescence probe for in vitro detection of functional matrix metalloproteinases. Analyst 2017;142:634-40. [PMID: 28112295 DOI: 10.1039/c6an02339h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
21 Liu H, Gao L, Yu X, Zhong L, Shi J, Jia B, Li N, Liu Z, Wang F. Small-animal SPECT/CT imaging of cancer xenografts and pulmonary fibrosis using a 99mTc-labeled integrin αvβ6-targeting cyclic peptide with improved in vivo stability. Biophys Rep 2018;4:254-64. [PMID: 30533490 DOI: 10.1007/s41048-018-0071-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
22 Wang X, Xu K, Yang X, Liu J, Zeng Q, Wang F. Upregulated miR-29c suppresses silica-induced lung fibrosis through the Wnt/β-catenin pathway in mice. Hum Exp Toxicol 2018;37:944-52. [DOI: 10.1177/0960327117741750] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
23 Ovet H, Oztay F. The copper chelator tetrathiomolybdate regressed bleomycin-induced pulmonary fibrosis in mice, by reducing lysyl oxidase expressions. Biol Trace Elem Res 2014;162:189-99. [PMID: 25349139 DOI: 10.1007/s12011-014-0142-1] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
24 Peterson JD. Paradigms in Fluorescence Molecular Imaging: Maximizing Measurement of Biological Changes in Disease, Therapeutic Efficacy, and Toxicology/Safety. Mol Imaging Biol 2019;21:599-611. [PMID: 30218390 DOI: 10.1007/s11307-018-1273-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]