BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang J, Jin W, Wang X, Wang J, Zhang X, Zhang Q. A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models. Mol Pharm. 2010;7:1159-1168. [PMID: 20524673 DOI: 10.1021/mp1000235] [Cited by in Crossref: 79] [Cited by in F6Publishing: 80] [Article Influence: 6.6] [Reference Citation Analysis]
Number Citing Articles
1 Mojarad-Jabali S, Mahdinloo S, Farshbaf M, Sarfraz M, Fatahi Y, Atyabi F, Valizadeh H. Transferrin receptor-mediated liposomal drug delivery: recent trends in targeted therapy of cancer. Expert Opin Drug Deliv 2022;:1-21. [PMID: 35698794 DOI: 10.1080/17425247.2022.2083106] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
2 Gaurav I, Wang X, Thakur A, Iyaswamy A, Thakur S, Chen X, Kumar G, Li M, Yang Z. Peptide-Conjugated Nano Delivery Systems for Therapy and Diagnosis of Cancer. Pharmaceutics 2021;13:1433. [PMID: 34575511 DOI: 10.3390/pharmaceutics13091433] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
3 Prencipe F, Diaferia C, Rossi F, Ronga L, Tesauro D. Forward Precision Medicine: Micelles for Active Targeting Driven by Peptides. Molecules 2021;26:4049. [PMID: 34279392 DOI: 10.3390/molecules26134049] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
4 Shelar SB, Gawali SL, Barick KC, Kunwar A, Mohan A, Priyadarsini IK, Hassan PA. Electrostatically bound lanreotide peptide - gold nanoparticle conjugates for enhanced uptake in SSTR2-positive cancer cells. Mater Sci Eng C Mater Biol Appl 2020;117:111272. [PMID: 32919636 DOI: 10.1016/j.msec.2020.111272] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
5 Fan X, Xu H, Zhao F, Song J, Jin Y, Zhang C, Wu G. Lipid-mimicking peptide decorates erythrocyte membrane for active delivery to engrafted MDA-MB-231 breast tumour. Eur J Pharm Biopharm 2020;152:72-84. [PMID: 32376370 DOI: 10.1016/j.ejpb.2020.04.024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zhang D, Zhang J. Surface engineering of nanomaterials with phospholipid-polyethylene glycol-derived functional conjugates for molecular imaging and targeted therapy. Biomaterials 2020;230:119646. [PMID: 31787335 DOI: 10.1016/j.biomaterials.2019.119646] [Cited by in Crossref: 18] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
7 Liu Y, Chen S, Sun J, Zhu S, Chen C, Xie W, Zheng J, Zhu Y, Xiao L, Hao L, Wang Z, Chang S. Folate-Targeted and Oxygen/Indocyanine Green-Loaded Lipid Nanoparticles for Dual-Mode Imaging and Photo-sonodynamic/Photothermal Therapy of Ovarian Cancer in Vitro and in Vivo. Mol Pharm 2019;16:4104-20. [PMID: 31517495 DOI: 10.1021/acs.molpharmaceut.9b00339] [Cited by in Crossref: 18] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
8 Shu X, Zhu Z, Cao D, Zheng L, Wang F, Pei H, Wen J, Yang J, Li D, Bai P, Tang M, Ye H, Peng A, Li W, Chen L. PEG-derivatized birinapant as a nanomicellar carrier of paclitaxel delivery for cancer therapy. Colloids Surf B Biointerfaces 2019;182:110356. [PMID: 31319226 DOI: 10.1016/j.colsurfb.2019.110356] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
9 Liu X, Wang C, Ma H, Yu F, Hu F, Yuan H. Water-Responsive Hybrid Nanoparticles Codelivering ICG and DOX Effectively Treat Breast Cancer via Hyperthermia-aided DOX Functionality and Drug Penetration. Adv Healthc Mater 2019;8:e1801486. [PMID: 30856296 DOI: 10.1002/adhm.201801486] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 14.7] [Reference Citation Analysis]
10 Varshosaz J, Raghami F, Rostami M, Jahanian A. PEGylated trimethylchitosan emulsomes conjugated to octreotide for targeted delivery of sorafenib to hepatocellular carcinoma cells of HepG2. J Liposome Res 2019;29:383-98. [PMID: 30668221 DOI: 10.1080/08982104.2019.1570250] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
11 Bian K, Li Y, Xue W, Luo L, Li L, He Y, Cong C, An J, Gao D. Direct synthesis of ultralong platinum nanowires with prominent electrocatalytic performance using lanreotide biotemplate. Nanotechnology 2019;30:085401. [PMID: 30523961 DOI: 10.1088/1361-6528/aaf4c2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
12 Tan Y, Zhu Y, Wen L, Yang X, Liu X, Meng T, Dai S, Ping Y, Yuan H, Hu F. Mitochondria-Responsive Drug Release along with Heat Shock Mediated by Multifunctional Glycolipid Micelles for Precise Cancer Chemo-Phototherapy. Theranostics 2019;9:691-707. [PMID: 30809302 DOI: 10.7150/thno.31022] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
13 Zhu L, Li P, Gao D, Liu J, Liu Y, Sun C, Xu M, Chen X, Sheng Z, Wang R, Yuan Z, Cai L, Ma Y, Zhao Q. pH-sensitive loaded retinal/indocyanine green micelles as an “all-in-one” theranostic agent for multi-modal imaging in vivo guided cellular senescence-photothermal synergistic therapy. Chem Commun 2019;55:6209-12. [DOI: 10.1039/c9cc02567g] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
14 Manivasagan P, Jun SW, Nguyen VT, Truong NTP, Hoang G, Mondal S, Santha Moorthy M, Kim H, Vy Phan TT, Doan VHM, Kim C, Oh J. A multifunctional near-infrared laser-triggered drug delivery system using folic acid conjugated chitosan oligosaccharide encapsulated gold nanorods for targeted chemo-photothermal therapy. J Mater Chem B 2019;7:3811-25. [DOI: 10.1039/c8tb02823k] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
15 Raza F, Zafar H, You X, Khan A, Wu J, Ge L. Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers. J Mater Chem B 2019;7:7639-55. [DOI: 10.1039/c9tb01842e] [Cited by in Crossref: 20] [Cited by in F6Publishing: 34] [Article Influence: 6.7] [Reference Citation Analysis]
16 Zhang H, Guo Z, He B, Dai W, Zhang H, Wang X, Zhang Q. The Improved Delivery to Breast Cancer Based on a Novel Nanocarrier Modified with High-Affinity Peptides Discovered by Phage Display. Adv Healthc Mater 2018;7:e1800269. [PMID: 29956504 DOI: 10.1002/adhm.201800269] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
17 Li L, Wang Q, Zhang X, Luo L, He Y, Zhu R, Gao D. Dual-targeting liposomes for enhanced anticancer effect in somatostatin receptor II-positive tumor model. Nanomedicine 2018;13:2155-69. [DOI: 10.2217/nnm-2018-0115] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
18 Paramonov VM, Desai D, Kettiger H, Mamaeva V, Rosenholm JM, Sahlgren C, Rivero-Müller A. Targeting Somatostatin Receptors By Functionalized Mesoporous Silica Nanoparticles - Are We Striking Home? Nanotheranostics 2018;2:320-46. [PMID: 30148051 DOI: 10.7150/ntno.23826] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
19 Yang Y, Zhao Y, Lan J, Kang Y, Zhang T, Ding Y, Zhang X, Lu L. Reduction-sensitive CD44 receptor-targeted hyaluronic acid derivative micelles for doxorubicin delivery. Int J Nanomedicine 2018;13:4361-78. [PMID: 30100720 DOI: 10.2147/IJN.S165359] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
20 Chatzisideri T, Leonidis G, Sarli V. Cancer-targeted delivery systems based on peptides. Future Med Chem 2018;10:2201-26. [PMID: 30043641 DOI: 10.4155/fmc-2018-0174] [Cited by in Crossref: 18] [Cited by in F6Publishing: 25] [Article Influence: 4.5] [Reference Citation Analysis]
21 Zhu D, Fan F, Huang C, Zhang Z, Qin Y, Lu L, Wang H, Jin X, Zhao H, Yang H, Zhang C, Yang J, Liu Z, Sun H, Leng X, Kong D, Zhang L. Bubble-generating polymersomes loaded with both indocyanine green and doxorubicin for effective chemotherapy combined with photothermal therapy. Acta Biomater 2018;75:386-97. [PMID: 29793073 DOI: 10.1016/j.actbio.2018.05.033] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 8.8] [Reference Citation Analysis]
22 Wang S, Guo F, Ji Y, Yu M, Wang J, Li N. Dual-Mode Imaging Guided Multifunctional Theranosomes with Mitochondria Targeting for Photothermally Controlled and Enhanced Photodynamic Therapy in Vitro and in Vivo. Mol Pharmaceutics 2018;15:3318-31. [DOI: 10.1021/acs.molpharmaceut.8b00351] [Cited by in Crossref: 17] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
23 Ju RJ, Cheng L, Peng XM, Wang T, Li CQ, Song XL, Liu S, Chao JP, Li XT. Octreotide-modified liposomes containing daunorubicin and dihydroartemisinin for treatment of invasive breast cancer. Artif Cells Nanomed Biotechnol 2018;46:616-28. [PMID: 29381101 DOI: 10.1080/21691401.2018.1433187] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
24 Li XT, Tang W, Jiang Y, Wang XM, Wang YH, Cheng L, Meng XS. Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells. Oncotarget 2016;7:24604-22. [PMID: 27029055 DOI: 10.18632/oncotarget.8360] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
25 Kim CH, Lee SG, Kang MJ, Lee S, Choi YW. Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. Journal of Pharmaceutical Investigation 2017;47:203-27. [DOI: 10.1007/s40005-017-0329-5] [Cited by in Crossref: 57] [Cited by in F6Publishing: 46] [Article Influence: 11.4] [Reference Citation Analysis]
26 Nguyen VP, Kim SW, Kim H, Kim H, Seok KH, Jung MJ, Ahn YC, Kang HW. Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy. PLoS One 2017;12:e0174687. [PMID: 28369126 DOI: 10.1371/journal.pone.0174687] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
27 Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WC, Chen C, Chen X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grünweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kopeček J, Kotov NA, Krug HF, Lee DS, Lehr CM, Leong KW, Liang XJ, Ling Lim M, Liz-Marzán LM, Ma X, Macchiarini P, Meng H, Möhwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sjöqvist S, Skirtach AG, Soliman MG, Stevens MM, Sung HW, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang XE, Zhao Y, Zhou X, Parak WJ. Diverse Applications of Nanomedicine. ACS Nano 2017;11:2313-81. [PMID: 28290206 DOI: 10.1021/acsnano.6b06040] [Cited by in Crossref: 708] [Cited by in F6Publishing: 636] [Article Influence: 141.6] [Reference Citation Analysis]
28 Wang Q, Zhu R, Wang M, Xing S, Li L, He Y, Cao W, Gao D. Targeted therapy of octreotide-modified oleanolic acid liposomes to somatostatin receptor overexpressing tumor cells. Nanomedicine (Lond) 2017;12:927-40. [PMID: 28338414 DOI: 10.2217/nnm-2017-0009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
29 Deng G, Zhu T, Zhou L, Zhang J, Li S, Sun Z, Lai J, Meng X, Li W, Zhang P, Wu Y, Jiang T, Ni D, Yan W, Zheng M, Gong P, Cai L. Bovine serum albumin-loaded nano-selenium/ICG nanoparticles for highly effective chemo-photothermal combination therapy. RSC Adv 2017;7:30717-24. [DOI: 10.1039/c7ra02384g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
30 Bharti R, Dey G, Banerjee I, Dey KK, Parida S, Kumar BN, Das CK, Pal I, Mukherjee M, Misra M, Pradhan AK, Emdad L, Das SK, Fisher PB, Mandal M. Somatostatin receptor targeted liposomes with Diacerein inhibit IL-6 for breast cancer therapy. Cancer Lett 2017;388:292-302. [PMID: 28025102 DOI: 10.1016/j.canlet.2016.12.021] [Cited by in Crossref: 36] [Cited by in F6Publishing: 42] [Article Influence: 6.0] [Reference Citation Analysis]
31 Li H, Yuan D, Sun M, Ping Q. Effect of ligand density and PEG modification on octreotide-targeted liposome via somatostatin receptor in vitro and in vivo. Drug Delivery 2016;23:3562-72. [DOI: 10.1080/10717544.2016.1209797] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 2.2] [Reference Citation Analysis]
32 Banerjee I, De K, Mukherjee D, Dey G, Chattopadhyay S, Mukherjee M, Mandal M, Bandyopadhyay AK, Gupta A, Ganguly S, Misra M. Paclitaxel-loaded solid lipid nanoparticles modified with Tyr-3-octreotide for enhanced anti-angiogenic and anti-glioma therapy. Acta Biomater 2016;38:69-81. [PMID: 27109765 DOI: 10.1016/j.actbio.2016.04.026] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 8.3] [Reference Citation Analysis]
33 Liu T, Jia T, Yuan X, Liu C, Sun J, Ni Z, Xu J, Wang X, Yuan Y. Development of octreotide-conjugated polymeric prodrug of bufalin for targeted delivery to somatostatin receptor 2 overexpressing breast cancer in vitro and in vivo. Int J Nanomedicine 2016;11:2235-50. [PMID: 27284243 DOI: 10.2147/IJN.S100404] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
34 Lei Y, Hamada Y, Li J, Cong L, Wang N, Li Y, Zheng W, Jiang X. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. J Control Release 2016;232:131-42. [PMID: 27046157 DOI: 10.1016/j.jconrel.2016.03.023] [Cited by in Crossref: 53] [Cited by in F6Publishing: 61] [Article Influence: 8.8] [Reference Citation Analysis]
35 Ye N, Ma J, An J, Li J, Cai Z, Zong H. Separation of amino acid enantiomers by a capillary modified with a metal–organic framework. RSC Adv 2016;6:41587-93. [DOI: 10.1039/c6ra02741e] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
36 Liu Q, Sun C, He Q, Khalil A, Xiang T, Liu D, Zhou Y, Wang J, Song L. Stable metallic 1T-WS2 ultrathin nanosheets as a promising agent for near-infrared photothermal ablation cancer therapy. Nano Res 2015;8:3982-91. [DOI: 10.1007/s12274-015-0901-0] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 5.7] [Reference Citation Analysis]
37 Nogueira E, Gomes AC, Preto A, Cavaco-Paulo A. Design of liposomal formulations for cell targeting. Colloids Surf B Biointerfaces 2015;136:514-26. [PMID: 26454541 DOI: 10.1016/j.colsurfb.2015.09.034] [Cited by in Crossref: 83] [Cited by in F6Publishing: 92] [Article Influence: 11.9] [Reference Citation Analysis]
38 Accardo A, Morelli G. Review peptide-targeted liposomes for selective drug delivery: Advantages and problematic issues: Peptide-Targeted Liposomes for Selective Drug Delivery. Biopolymers 2015;104:462-79. [DOI: 10.1002/bip.22678] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 4.6] [Reference Citation Analysis]
39 Yin T, Wu Q, Wang L, Yin L, Zhou J, Huo M. Well-Defined Redox-Sensitive Polyethene Glycol-Paclitaxel Prodrug Conjugate for Tumor-Specific Delivery of Paclitaxel Using Octreotide for Tumor Targeting. Mol Pharm 2015;12:3020-31. [PMID: 26086430 DOI: 10.1021/acs.molpharmaceut.5b00280] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 5.3] [Reference Citation Analysis]
40 Kranz S, Huebsch M, Guellmar A, Voelpel A, Tonndorf-martini S, Sigusch BW. Antibacterial photodynamic treatment of periodontopathogenic bacteria with indocyanine green and near-infrared laser light enhanced by Trolox TM: ENHANCEMENT OF aPDT BY TROLOX TM. Lasers Surg Med 2015;47:350-60. [DOI: 10.1002/lsm.22336] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
41 Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov 2015;14:203-19. [DOI: 10.1038/nrd4519] [Cited by in Crossref: 402] [Cited by in F6Publishing: 419] [Article Influence: 57.4] [Reference Citation Analysis]
42 Yang Y, Song X, Yao Y, Wu H, Liu J, Zhao Y, Tan M, Yang Q. Ultrasmall single micelle@resin core–shell nanocarriers as efficient cargo loading vehicles for in vivo biomedical applications. J Mater Chem B 2015;3:4671-8. [DOI: 10.1039/c5tb00398a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
43 Liu Q, Sun C, He Q, Liu D, Khalil A, Xiang T, Wu Z, Wang J, Song L. Ultrathin carbon layer coated MoO 2 nanoparticles for high-performance near-infrared photothermal cancer therapy. Chem Commun 2015;51:10054-7. [DOI: 10.1039/c5cc02016f] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 5.6] [Reference Citation Analysis]
44 Tu Y, Li GH. Octreotide injection combined with intravenous ulinastatin for treatment of acute pancreatitis: A controlled study. Shijie Huaren Xiaohua Zazhi 2014; 22(32): 5009-5012 [DOI: 10.11569/wcjd.v22.i32.5009] [Reference Citation Analysis]
45 Zheng N, Dai W, Zhang H, Wang X, Wang J, Zhang X, Wang K, Li J, Zhang Q. Lanreotide-conjugated PEG-DSPE micelles: an efficient nanocarrier targeting to somatostatin receptor positive tumors. J Drug Target 2015;23:67-78. [PMID: 25366085 DOI: 10.3109/1061186X.2014.954118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
46 Wang X, Li S, Shi Y, Chuan X, Li J, Zhong T, Zhang H, Dai W, He B, Zhang Q. The development of site-specific drug delivery nanocarriers based on receptor mediation. Journal of Controlled Release 2014;193:139-53. [DOI: 10.1016/j.jconrel.2014.05.028] [Cited by in Crossref: 50] [Cited by in F6Publishing: 55] [Article Influence: 6.3] [Reference Citation Analysis]
47 Akhtar MJ, Ahamed M, Alhadlaq HA, Alrokayan SA, Kumar S. Targeted anticancer therapy: Overexpressed receptors and nanotechnology. Clinica Chimica Acta 2014;436:78-92. [DOI: 10.1016/j.cca.2014.05.004] [Cited by in Crossref: 119] [Cited by in F6Publishing: 118] [Article Influence: 14.9] [Reference Citation Analysis]
48 He S, Zhou Z, Li L, Yang Q, Yang Y, Guan S, Zhang J, Zhu X, Jin Y, Huang Y. Comparison of active and passive targeting of doxorubicin for somatostatin receptor 2 positive tumor models by octreotide-modified HPMA copolymer-doxorubicin conjugates. Drug Deliv 2016;23:285-96. [PMID: 24865288 DOI: 10.3109/10717544.2014.911991] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
49 Zhao P, Zheng M, Yue C, Luo Z, Gong P, Gao G, Sheng Z, Zheng C, Cai L. Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles. Biomaterials 2014;35:6037-46. [PMID: 24776486 DOI: 10.1016/j.biomaterials.2014.04.019] [Cited by in Crossref: 133] [Cited by in F6Publishing: 149] [Article Influence: 16.6] [Reference Citation Analysis]
50 Zheng M, Zhao P, Luo Z, Gong P, Zheng C, Zhang P, Yue C, Gao D, Ma Y, Cai L. Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS Appl Mater Interfaces 2014;6:6709-16. [PMID: 24697646 DOI: 10.1021/am5004393] [Cited by in Crossref: 166] [Cited by in F6Publishing: 185] [Article Influence: 20.8] [Reference Citation Analysis]
51 Feng Q, Yu MZ, Wang JC, Hou WJ, Gao LY, Ma XF, Pei XW, Niu YJ, Liu XY, Qiu C, Pang WH, Du LL, Zhang Q. Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles. Biomaterials 2014;35:5028-38. [PMID: 24680191 DOI: 10.1016/j.biomaterials.2014.03.012] [Cited by in Crossref: 85] [Cited by in F6Publishing: 103] [Article Influence: 10.6] [Reference Citation Analysis]
52 Accardo A, Aloj L, Aurilio M, Morelli G, Tesauro D. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int J Nanomedicine 2014;9:1537-57. [PMID: 24741304 DOI: 10.2147/IJN.S53593] [Cited by in Crossref: 11] [Cited by in F6Publishing: 25] [Article Influence: 1.4] [Reference Citation Analysis]
53 Qin C, He B, Dai W, Zhang H, Wang X, Wang J, Zhang X, Wang G, Yin L, Zhang Q. Inhibition of Metastatic Tumor Growth and Metastasis via Targeting Metastatic Breast Cancer by Chlorotoxin-Modified Liposomes. Mol Pharmaceutics 2014;11:3233-41. [DOI: 10.1021/mp400691z] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 4.1] [Reference Citation Analysis]
54 Peng J, Qi X, Chen Y, Ma N, Zhang Z, Xing J, Zhu X, Li Z, Wu Z. Octreotide-conjugated PAMAM for targeted delivery to somatostatin receptors over-expressed tumor cells. Journal of Drug Targeting 2014;22:428-38. [DOI: 10.3109/1061186x.2013.879386] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
55 Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol 2014;32:32-45. [PMID: 24210498 DOI: 10.1016/j.tibtech.2013.09.007] [Cited by in Crossref: 252] [Cited by in F6Publishing: 249] [Article Influence: 28.0] [Reference Citation Analysis]
56 Yue C, Liu P, Zheng M, Zhao P, Wang Y, Ma Y, Cai L. IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy. Biomaterials 2013;34:6853-61. [DOI: 10.1016/j.biomaterials.2013.05.071] [Cited by in Crossref: 239] [Cited by in F6Publishing: 264] [Article Influence: 26.6] [Reference Citation Analysis]
57 Feng B, Guo L, Wang L, Li F, Lu J, Gao J, Fan C, Huang Q. A Graphene Oxide-Based Fluorescent Biosensor for the Analysis of Peptide–Receptor Interactions and Imaging in Somatostatin Receptor Subtype 2 Overexpressed Tumor Cells. Anal Chem 2013;85:7732-7. [DOI: 10.1021/ac4009463] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 6.7] [Reference Citation Analysis]
58 Zhang B, Chen J, Lu Y, Qi J, Wu W. Liposomes interiorly thickened with thermosensitive nanogels as novel drug delivery systems. Int J Pharm 2013;455:276-84. [PMID: 23872301 DOI: 10.1016/j.ijpharm.2013.07.020] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
59 Su Z, Shi Y, Xiao Y, Sun M, Ping Q, Zong L, Li S, Niu J, Huang A, You W, Chen Y, Chen X, Fei J, Tian J. Effect of octreotide surface density on receptor-mediated endocytosis in vitro and anticancer efficacy of modified nanocarrier in vivo after optimization. International Journal of Pharmaceutics 2013;447:281-92. [DOI: 10.1016/j.ijpharm.2013.01.068] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 2.7] [Reference Citation Analysis]
60 Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, Sheng Z, Zhang P, Wang Z, Cai L. Single-step assembly of DOX/ICG loaded lipid--polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 2013;7:2056-67. [PMID: 23413798 DOI: 10.1021/nn400334y] [Cited by in Crossref: 603] [Cited by in F6Publishing: 606] [Article Influence: 67.0] [Reference Citation Analysis]
61 Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 2013;2013:705265. [PMID: 23533772 DOI: 10.1155/2013/705265] [Cited by in Crossref: 127] [Cited by in F6Publishing: 120] [Article Influence: 14.1] [Reference Citation Analysis]
62 Fan Y, Du W, He B, Fu F, Yuan L, Wu H, Dai W, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin. Biomaterials 2013;34:2277-88. [DOI: 10.1016/j.biomaterials.2012.12.012] [Cited by in Crossref: 59] [Cited by in F6Publishing: 57] [Article Influence: 6.6] [Reference Citation Analysis]
63 Zou A, Chen Y, Huo M, Wang J, Zhang Y, Zhou J, Zhang Q. In Vivo Studies of Octreotide-Modified N-Octyl-O, N-Carboxymethyl Chitosan Micelles Loaded with Doxorubicin for Tumor-Targeted Delivery. Journal of Pharmaceutical Sciences 2013;102:126-35. [DOI: 10.1002/jps.23341] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
64 Ding W, Kameta N, Minamikawa H, Wada M, Shimizu T, Masuda M. Hybrid organic nanotubes with dual functionalities localized on cylindrical nanochannels control the release of doxorubicin. Adv Healthc Mater 2012;1:699-706. [PMID: 23184820 DOI: 10.1002/adhm.201200133] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 2.7] [Reference Citation Analysis]
65 Petersen AL, Hansen AE, Gabizon A, Andresen TL. Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev 2012;64:1417-35. [PMID: 22982406 DOI: 10.1016/j.addr.2012.09.003] [Cited by in Crossref: 116] [Cited by in F6Publishing: 96] [Article Influence: 11.6] [Reference Citation Analysis]
66 Barragán F, Carrion-Salip D, Gómez-Pinto I, González-Cantó A, Sadler PJ, de Llorens R, Moreno V, González C, Massaguer A, Marchán V. Somatostatin subtype-2 receptor-targeted metal-based anticancer complexes. Bioconjug Chem 2012;23:1838-55. [PMID: 22871231 DOI: 10.1021/bc300173h] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 4.7] [Reference Citation Analysis]
67 Pearce TR, Shroff K, Kokkoli E. Peptide targeted lipid nanoparticles for anticancer drug delivery. Adv Mater 2012;24:3803-22, 3710. [PMID: 22674563 DOI: 10.1002/adma.201200832] [Cited by in Crossref: 136] [Cited by in F6Publishing: 131] [Article Influence: 13.6] [Reference Citation Analysis]
68 Dai W, Jin W, Zhang J, Wang X, Wang J, Zhang X, Wan Y, Zhang Q. Spatiotemporally Controlled Co-delivery of Anti-vasculature Agent and Cytotoxic Drug by Octreotide-Modified Stealth Liposomes. Pharm Res 2012;29:2902-11. [DOI: 10.1007/s11095-012-0797-2] [Cited by in Crossref: 34] [Cited by in F6Publishing: 41] [Article Influence: 3.4] [Reference Citation Analysis]
69 Petersen AL, Binderup T, Jølck RI, Rasmussen P, Henriksen JR, Pfeifer AK, Kjær A, Andresen TL. Positron emission tomography evaluation of somatostatin receptor targeted 64Cu-TATE-liposomes in a human neuroendocrine carcinoma mouse model. Journal of Controlled Release 2012;160:254-63. [DOI: 10.1016/j.jconrel.2011.12.038] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 4.7] [Reference Citation Analysis]
70 Zheng N, Dai W, Du W, Zhang H, Lei L, Zhang H, Wang X, Wang J, Zhang X, Gao J, Zhang Q. A Novel Lanreotide-Encoded Micelle System Targets Paclitaxel to the Tumors with Overexpression of Somatostatin Receptors. Mol Pharmaceutics 2012;9:1175-88. [DOI: 10.1021/mp200464x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 3.3] [Reference Citation Analysis]
71 Gaviglio L, Gross A, Metzler-Nolte N, Ravera M. Synthesis and in vitro cytotoxicity of cis,cis,trans-diamminedichloridodisuccinatoplatinum(IV)-peptide bioconjugates. Metallomics 2012;4:260-6. [PMID: 22310724 DOI: 10.1039/c2mt00171c] [Cited by in Crossref: 52] [Cited by in F6Publishing: 51] [Article Influence: 5.2] [Reference Citation Analysis]
72 Zou A, Huo M, Zhang Y, Zhou J, Yin X, Yao C, Zhu Q, Zhang M, Ren J, Zhang Q. Octreotide-Modified N-Octyl-O, N-Carboxymethyl Chitosan Micelles as Potential Carriers for Targeted Antitumor Drug Delivery. Journal of Pharmaceutical Sciences 2012;101:627-40. [DOI: 10.1002/jps.22798] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
73 Xiang Y, Wu Q, Liang L, Wang X, Wang J, Zhang X, Pu X, Zhang Q. Chlorotoxin-modified stealth liposomes encapsulating levodopa for the targeting delivery against the Parkinson’s disease in the MPTP-induced mice model. Journal of Drug Targeting 2011;20:67-75. [DOI: 10.3109/1061186x.2011.595490] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 3.8] [Reference Citation Analysis]
74 Zhang Y, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials. 2012;33:679-691. [PMID: 22019123 DOI: 10.1016/j.biomaterials.2011.09.072] [Cited by in Crossref: 133] [Cited by in F6Publishing: 144] [Article Influence: 12.1] [Reference Citation Analysis]
75 Su Z, Niu J, Xiao Y, Ping Q, Sun M, Huang A, You W, Sang X, Yuan D. Effect of octreotide-polyethylene glycol(100) monostearate modification on the pharmacokinetics and cellular uptake of nanostructured lipid carrier loaded with hydroxycamptothecine. Mol Pharm 2011;8:1641-51. [PMID: 21770405 DOI: 10.1021/mp100463n] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 4.4] [Reference Citation Analysis]
76 Helbok A, Rangger C, von Guggenberg E, Saba-Lepek M, Radolf T, Thurner G, Andreae F, Prassl R, Decristoforo C. Targeting properties of peptide-modified radiolabeled liposomal nanoparticles. Nanomedicine 2012;8:112-8. [PMID: 21645641 DOI: 10.1016/j.nano.2011.04.012] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
77 Oumzil K, Khiati S, Grinstaff MW, Barthélémy P. Reduction-triggered delivery using nucleoside-lipid based carriers possessing a cleavable PEG coating. J Control Release 2011;151:123-30. [PMID: 21354443 DOI: 10.1016/j.jconrel.2011.02.008] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 2.5] [Reference Citation Analysis]
78 Cakir M, Grossman A. The molecular pathogenesis and management of bronchial carcinoids. Expert Opinion on Therapeutic Targets 2011;15:457-91. [DOI: 10.1517/14728222.2011.555403] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
79 He X, Na MH, Kim JS, Lee GY, Park JY, Hoffman AS, Nam JO, Han SE, Sim GY, Oh YK, Kim IS, Lee BH. A novel peptide probe for imaging and targeted delivery of liposomal doxorubicin to lung tumor. Mol Pharm 2011;8:430-8. [PMID: 21222482 DOI: 10.1021/mp100266g] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 3.6] [Reference Citation Analysis]
80 Sun M, Wang Y, Shen J, Xiao Y, Su Z, Ping Q. Octreotide-modification enhances the delivery and targeting of doxorubicin-loaded liposomes to somatostatin receptors expressing tumor in vitro and in vivo. Nanotechnology 2010;21:475101. [DOI: 10.1088/0957-4484/21/47/475101] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 3.2] [Reference Citation Analysis]