BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhuo MH, Wilbur DJ, Kwan EE, Bennett CS. Matching Glycosyl Donor Reactivity to Sulfonate Leaving Group Ability Permits SN2 Glycosylations. J Am Chem Soc 2019;141:16743-54. [PMID: 31550879 DOI: 10.1021/jacs.9b07022] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Mizia JC, Syed MU, Bennett CS. Synthesis of the α-Linked Digitoxose Trisaccharide Fragment of Kijanimicin: An Unexpected Application of Glycosyl Sulfonates. Org Lett 2022;24:731-5. [PMID: 35005969 DOI: 10.1021/acs.orglett.1c04190] [Reference Citation Analysis]
2 Fu Y, Bernasconi L, Liu P. Ab Initio Molecular Dynamics Simulations of the SN1/SN2 Mechanistic Continuum in Glycosylation Reactions. J Am Chem Soc 2021;143:1577-89. [PMID: 33439656 DOI: 10.1021/jacs.0c12096] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
3 Tsutsui M, Sianturi J, Masui S, Tokunaga K, Manabe Y, Fukase K. Efficient Synthesis of Antigenic Trisaccharides Containing N -Acetylglucosamine: Protection of NHAc as NAc 2: Efficient Synthesis of Antigenic Trisaccharides Containing N -Acetylglucosamine: Protection of NHAc as NAc 2. Eur J Org Chem 2020;2020:1802-10. [DOI: 10.1002/ejoc.201901809] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
4 Ling J, Bennett CS. Versatile Glycosyl Sulfonates in β‐Selective C‐Glycosylation. Angew Chem 2020;132:4334-8. [DOI: 10.1002/ange.201914221] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
5 Merino P, Delso I, Pereira S, Orta S, Pedrón M, Tejero T. Computational evidence of glycosyl cations. Org Biomol Chem 2021;19:2350-65. [PMID: 33481977 DOI: 10.1039/d0ob02373f] [Reference Citation Analysis]
6 Santana AG, Montalvillo‐jiménez L, Díaz‐casado L, Mann E, Jiménez‐barbero J, Gómez AM, Asensio JL. Single‐Step Glycosylations with 13 C‐Labelled Sulfoxide Donors: A Low‐Temperature NMR Cartography of the Distinguishing Mechanistic Intermediates. Chem Eur J 2021;27:2030-42. [DOI: 10.1002/chem.202003850] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Chang CW, Lin MH, Wang CC. Statistical Analysis of Glycosylation Reactions. Chemistry 2021;27:2556-68. [PMID: 32939892 DOI: 10.1002/chem.202003105] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
8 Chang CW, Lin MH, Chan CK, Su KY, Wu CH, Lo WC, Lam S, Cheng YT, Liao PH, Wong CH, Wang CC. Automated Quantification of Hydroxyl Reactivities: Prediction of Glycosylation Reactions. Angew Chem Int Ed Engl 2021;60:12413-23. [PMID: 33634934 DOI: 10.1002/anie.202013909] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
9 Sharma HA, Mennie KM, Kwan EE, Jacobsen EN. Enantioselective Aryl-Iodide-Catalyzed Wagner-Meerwein Rearrangements. J Am Chem Soc 2020;142:16090-6. [PMID: 32845619 DOI: 10.1021/jacs.0c08150] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
10 Ling J, Bennett CS. Versatile Glycosyl Sulfonates in β-Selective C-Glycosylation. Angew Chem Int Ed Engl 2020;59:4304-8. [PMID: 31880395 DOI: 10.1002/anie.201914221] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
11 Ding YN, Shi WY, Liu C, Zheng N, Li M, An Y, Zhang Z, Wang CT, Zhang BS, Liang YM. Palladium-Catalyzed ortho-C-H Glycosylation/ipso-Alkenylation of Aryl Iodides. J Org Chem 2020;85:11280-96. [PMID: 32786633 DOI: 10.1021/acs.joc.0c01392] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
12 McKitrick TR, Ackerman ME, Anthony RM, Bennett CS, Demetriou M, Hudalla GA, Ribbeck K, Ruhl S, Woo CM, Yang L, Zost SJ, Schnaar RL, Doering TL. The Crossroads of Glycoscience, Infection, and Immunology. Front Microbiol 2021;12:731008. [PMID: 34646251 DOI: 10.3389/fmicb.2021.731008] [Reference Citation Analysis]
13 Sati GC, Martin JL, Xu Y, Malakar T, Zimmerman PM, Montgomery J. Fluoride Migration Catalysis Enables Simple, Stereoselective, and Iterative Glycosylation. J Am Chem Soc 2020;142:7235-42. [PMID: 32207615 DOI: 10.1021/jacs.0c03165] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
14 Cai L, Zeng J, Li T, Xiao Y, Ma X, Xiao X, Zhang Q, Meng L, Wan Q. Dehydrative Glycosylation Enabled by a Comproportionation Reaction of 2‐Aryl‐1,3‐dithiane 1‐Oxide . Chin J Chem 2019;38:43-9. [DOI: 10.1002/cjoc.201900419] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
15 Tang Y, Reddy DP, Yu B. A dehydrative glycosylation protocol mediated by nonafluorobutanesulfonyl fluoride (NfF). Tetrahedron 2021;78:131800. [DOI: 10.1016/j.tet.2020.131800] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Zhao WC, Li RP, Ma C, Liao QY, Wang M, He ZT. Stereoselective gem-C,B-Glycosylation via 1,2-Boronate Migration. J Am Chem Soc 2022. [PMID: 35112837 DOI: 10.1021/jacs.1c11842] [Reference Citation Analysis]
17 Airoldi C, Palmioli A. Synthesis of C- and S-Glycosides. Comprehensive Glycoscience. Elsevier; 2021. pp. 160-99. [DOI: 10.1016/b978-0-12-819475-1.00034-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Bennett CS. Glycosyl Sulfonates Beyond Triflates. Chem Rec 2021. [PMID: 34142755 DOI: 10.1002/tcr.202100141] [Reference Citation Analysis]
19 Chang C, Lin M, Wu C, Chiang T, Wang C. Mapping Mechanisms in Glycosylation Reactions with Donor Reactivity: Avoiding Generation of Side Products. J Org Chem 2020;85:15945-63. [DOI: 10.1021/acs.joc.0c01313] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
20 Andreana PR, Crich D. Guidelines for O-Glycoside Formation from First Principles. ACS Cent Sci 2021;7:1454-62. [PMID: 34584944 DOI: 10.1021/acscentsci.1c00594] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
21 Li T, Li T, Zhuang H, Wang F, Schmidt RR, Peng P. O -Glycosyl Trichloroacetimidates as Glycosyl Donors and Platinum(IV) Chloride as a Dual Catalyst Permitting Stereo- and Regioselective Glycosidations. ACS Catal 2021;11:10279-87. [DOI: 10.1021/acscatal.1c02256] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Imperio D, Campo F, Panza L. Exploring glycosyl sulphates as donors for chemical glycosylation. Org Biomol Chem 2021;19:4930-6. [PMID: 33982734 DOI: 10.1039/d1ob00603g] [Reference Citation Analysis]
23 Okamoto K, Tsutsui M, Morizumi H, Kitano Y, Chiba K. Electrochemical Synthesis of Imino‐ C ‐Nucleosides by “Reactivity Switching” Methodology for in situ Generated Glycoside Donors. Eur J Org Chem 2021;2021:2479-84. [DOI: 10.1002/ejoc.202100106] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
24 Crich D. En Route to the Transformation of Glycoscience: A Chemist's Perspective on Internal and External Crossroads in Glycochemistry. J Am Chem Soc 2021;143:17-34. [PMID: 33350830 DOI: 10.1021/jacs.0c11106] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]