BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tan Z, Jiang Y, Zhang W, Karls L, Lodge TP, Reineke TM. Polycation Architecture and Assembly Direct Successful Gene Delivery: Micelleplexes Outperform Polyplexes via Optimal DNA Packaging. J Am Chem Soc 2019;141:15804-17. [PMID: 31553590 DOI: 10.1021/jacs.9b06218] [Cited by in Crossref: 29] [Cited by in F6Publishing: 41] [Article Influence: 9.7] [Reference Citation Analysis]
Number Citing Articles
1 Zhou L, Emenuga M, Kumar S, Lamantia Z, Figueiredo M, Emrick T. Designing Synthetic Polymers for Nucleic Acid Complexation and Delivery: From Polyplexes to Micelleplexes to Triggered Degradation. Biomacromolecules 2022. [PMID: 36125365 DOI: 10.1021/acs.biomac.2c00767] [Reference Citation Analysis]
2 Figueiras A, Domingues C, Jarak I, Santos AI, Parra A, Pais A, Alvarez-lorenzo C, Concheiro A, Kabanov A, Cabral H, Veiga F. New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics 2022;14:1700. [DOI: 10.3390/pharmaceutics14081700] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Ban E, Kim A. Coacervates: recent developments as nanostructure delivery platforms for therapeutic biomolecules. Int J Pharm 2022;:122058. [PMID: 35905931 DOI: 10.1016/j.ijpharm.2022.122058] [Reference Citation Analysis]
4 Grimme CJ, Hanson MG, Corcoran LG, Reineke TM. Polycation Architecture Affects Complexation and Delivery of Short Antisense Oligonucleotides: Micelleplexes Outperform Polyplexes. Biomacromolecules 2022. [PMID: 35862267 DOI: 10.1021/acs.biomac.2c00338] [Reference Citation Analysis]
5 Zhou Q, Li X, Xiang J, Shen Y. Tuning the Stability of the Polyplex Nanovesicles of Oligonucleotides via a Zinc (II)-Coordinative Strategy. Chin J Polym Sci. [DOI: 10.1007/s10118-022-2764-7] [Reference Citation Analysis]
6 Yang Z, Lin L, Guo Z, Guo X, Tang Z, Tian H, Chen X. Synthetic Helical Polypeptide as a Gene Transfection Enhancer. Biomacromolecules 2022. [PMID: 35678301 DOI: 10.1021/acs.biomac.2c00331] [Reference Citation Analysis]
7 Santa Chalarca CF, Dalal RJ, Chapa A, Hanson MG, Reineke TM. Cation Bulk and pKa Modulate Diblock Polymer Micelle Binding to pDNA. ACS Macro Lett 2022;11:588-94. [PMID: 35575319 DOI: 10.1021/acsmacrolett.2c00015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Sethuraman V, Zheng D, Morse DC, Dorfman KD. Adsorption of Charge Sequence-Specific Polydisperse Polyelectrolytes. Macromolecules. [DOI: 10.1021/acs.macromol.1c02623] [Reference Citation Analysis]
9 Li Q, Jin B, Luo Y, Li X. Amphiphilic Block Copolymer Micelles for Gene Delivery. Chem Res Chin Univ . [DOI: 10.1007/s40242-022-2005-1] [Reference Citation Analysis]
10 Guo Z, Huang G, Zhang C, Yao Q, Ye T, Zhang L, Chen X. Amphipathic engineering of magnetic composites reinforced with ion-copolymer-activated protein-bioconjugate functionalized surface. Mater Chem Front 2022;6:237-44. [DOI: 10.1039/d1qm01354h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Jarak I, Pereira-silva M, Santos AC, Veiga F, Cabral H, Figueiras A. Multifunctional polymeric micelle-based nucleic acid delivery: Current advances and future perspectives. Applied Materials Today 2021;25:101217. [DOI: 10.1016/j.apmt.2021.101217] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
12 Monnery BD. Polycation-Mediated Transfection: Mechanisms of Internalization and Intracellular Trafficking. Biomacromolecules 2021;22:4060-83. [DOI: 10.1021/acs.biomac.1c00697] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
13 Richter F, Leer K, Martin L, Mapfumo P, Solomun JI, Kuchenbrod MT, Hoeppener S, Brendel JC, Traeger A. The impact of anionic polymers on gene delivery: how composition and assembly help evading the toxicity-efficiency dilemma. J Nanobiotechnology 2021;19:292. [PMID: 34579715 DOI: 10.1186/s12951-021-00994-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Rabiee N, Bagherzadeh M, Ghadiri AM, Kiani M, Ahmadi S, Jajarmi V, Fatahi Y, Aldhaher A, Tahriri M, Webster TJ, Mostafavi E. Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery. J Nanostructure Chem 2021;:1-14. [PMID: 34580605 DOI: 10.1007/s40097-021-00446-1] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
15 Bellotti E, Cascone MG, Barbani N, Rossin D, Rastaldo R, Giachino C, Cristallini C. Targeting Cancer Cells Overexpressing Folate Receptors with New Terpolymer-Based Nanocapsules: Toward a Novel Targeted DNA Delivery System for Cancer Therapy. Biomedicines 2021;9:1275. [PMID: 34572461 DOI: 10.3390/biomedicines9091275] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
16 Dalal RJ, Kumar R, Ohnsorg M, Brown M, Reineke TM. Cationic Bottlebrush Polymers Outperform Linear Polycation Analogues for pDNA Delivery and Gene Expression. ACS Macro Lett 2021;10:886-93. [PMID: 35549207 DOI: 10.1021/acsmacrolett.1c00335] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
17 Marras AE, Campagna TR, Vieregg JR, Tirrell MV. Physical Property Scaling Relationships for Polyelectrolyte Complex Micelles. Macromolecules 2021;54:6585-94. [DOI: 10.1021/acs.macromol.1c00743] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
18 Nazarova A, Khannanov A, Boldyrev A, Yakimova L, Stoikov I. Self-Assembling Systems Based on Pillar[5]arenes and Surfactants for Encapsulation of Diagnostic Dye DAPI. Int J Mol Sci 2021;22:6038. [PMID: 34204914 DOI: 10.3390/ijms22116038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
19 Zhang Y, Wang L, Wang J, Xin S, Sheng X. Enzyme-responsive polysaccharide supramolecular nanoassembly for enhanced DNA encapsulation and controlled release. Chinese Chemical Letters 2021;32:1902-6. [DOI: 10.1016/j.cclet.2021.01.032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
20 Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Cited by in Crossref: 3] [Cited by in F6Publishing: 31] [Article Influence: 3.0] [Reference Citation Analysis]
21 Cao Y, Zhang J, Wang L, Cen M, Peng W, Li Y, Zhang F, Tan J, Fan X. Dual-Functionalized Covalent Triazine Framework Nanosheets as Hierarchical Nonviral Vectors for Intracellular Gene Delivery. ACS Appl Nano Mater 2021;4:4948-55. [DOI: 10.1021/acsanm.1c00477] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
22 Dutta K, Das R, Medeiros J, Kanjilal P, Thayumanavan S. Charge‐Conversion Strategies for Nucleic Acid Delivery. Adv Funct Mater 2021;31:2011103. [DOI: 10.1002/adfm.202011103] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
23 Yang Q, Dong Y, Wang X, Lin Z, Yan M, Wang W, Dong A, Zhang J, Huang P, Wang C. pH-Sensitive Polycations for siRNA Delivery: Effect of Asymmetric Structures of Tertiary Amine Groups. Macromol Biosci 2021;21:e2100025. [PMID: 33769670 DOI: 10.1002/mabi.202100025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Richter F, Mapfumo P, Martin L, Solomun JI, Hausig F, Frietsch JJ, Ernst T, Hoeppener S, Brendel JC, Traeger A. Improved gene delivery to K-562 leukemia cells by lipoic acid modified block copolymer micelles. J Nanobiotechnology 2021;19:70. [PMID: 33676500 DOI: 10.1186/s12951-021-00801-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
25 Sproncken CCM, Magana JR, Voets IK. 100th Anniversary of Macromolecular Science Viewpoint: Attractive Soft Matter: Association Kinetics, Dynamics, and Pathway Complexity in Electrostatically Coassembled Micelles. ACS Macro Lett 2021;10:167-79. [PMID: 33628618 DOI: 10.1021/acsmacrolett.0c00787] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
26 Shi L, Wu W, Duan Y, Xu L, Li S, Gao X, Liu B. Carrier-Free Hybrid DNA Nanoparticles for Light-Induced Self-Delivery of Functional Nucleic Acid Enzymes. ACS Nano 2021;15:1841-9. [PMID: 33449616 DOI: 10.1021/acsnano.0c10045] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
27 Wang C, Wang X, Du L, Dong Y, Hu B, Zhou J, Shi Y, Bai S, Huang Y, Cao H, Liang Z, Dong A. Harnessing pH-Sensitive Polycation Vehicles for the Efficient siRNA Delivery. ACS Appl Mater Interfaces 2021;13:2218-29. [DOI: 10.1021/acsami.0c17866] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
28 Guo Y, Hu Y, Zheng X, Cao X, Li Q, Wei Z, Zhu Z, Zhang S. Self-assembled peptide nanoparticles with endosome escaping permits for co-drug delivery. Talanta 2021;221:121572. [DOI: 10.1016/j.talanta.2020.121572] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
29 Van Bruggen C, Punihaole D, Keith AR, Schmitz AJ, Tolar J, Frontiera RR, Reineke TM. Quinine copolymer reporters promote efficient intracellular DNA delivery and illuminate a protein-induced unpackaging mechanism. Proc Natl Acad Sci U S A 2020;117:32919-28. [PMID: 33318196 DOI: 10.1073/pnas.2016860117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
30 Hack FJ, Cokca C, Städter S, Hülsmann J, Peneva K, Fischer D. Indole, Phenyl, and Phenol Groups: The Role of the Comonomer on Gene Delivery in Guanidinium Containing Methacrylamide Terpolymers. Macromol Rapid Commun 2021;42:e2000580. [PMID: 33274813 DOI: 10.1002/marc.202000580] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Understanding the Interaction of Polyelectrolyte Architectures with Proteins and Biosystems. Angew Chem Int Ed Engl 2021;60:3882-904. [PMID: 32589355 DOI: 10.1002/anie.202006457] [Cited by in Crossref: 9] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
32 Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Wechselwirkung von Polyelektrolyt‐Architekturen mit Proteinen und Biosystemen. Angew Chem 2021;133:3926-50. [DOI: 10.1002/ange.202006457] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
33 Sahoo S, Bera S, Dhara D. Histidine-Based Reduction-Sensitive Star-Polymer Inclusion Complex as a Potential DNA Carrier: Biophysical Studies Using Time-Resolved Fluorescence as an Important Tool. Langmuir 2020;36:11262-73. [PMID: 32865419 DOI: 10.1021/acs.langmuir.0c01636] [Reference Citation Analysis]
34 Lee JY, Song Y, Wessels MG, Jayaraman A, Wooley KL, Pochan DJ. Hierarchical Self-Assembly of Poly( d -glucose carbonate) Amphiphilic Block Copolymers in Mixed Solvents. Macromolecules 2020;53:8581-91. [DOI: 10.1021/acs.macromol.0c01575] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
35 Magana JR, Sproncken CCM, Voets IK. On Complex Coacervate Core Micelles: Structure-Function Perspectives. Polymers (Basel) 2020;12:E1953. [PMID: 32872312 DOI: 10.3390/polym12091953] [Cited by in Crossref: 13] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
36 Shi L, Wu W, Duan Y, Xu L, Xu Y, Hou L, Meng X, Zhu X, Liu B. Light‐Induced Self‐Escape of Spherical Nucleic Acid from Endo/Lysosome for Efficient Non‐Cationic Gene Delivery. Angew Chem 2020;132:19330-6. [DOI: 10.1002/ange.202006890] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
37 Shi L, Wu W, Duan Y, Xu L, Xu Y, Hou L, Meng X, Zhu X, Liu B. Light-Induced Self-Escape of Spherical Nucleic Acid from Endo/Lysosome for Efficient Non-Cationic Gene Delivery. Angew Chem Int Ed Engl 2020;59:19168-74. [PMID: 32686235 DOI: 10.1002/anie.202006890] [Cited by in Crossref: 14] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
38 Skandalis A, Uchman M, Štěpánek M, Kereı̈che S, Pispas S. Complexation of DNA with QPDMAEMA- b -PLMA- b -POEGMA Cationic Triblock Terpolymer Micelles. Macromolecules 2020;53:5747-55. [DOI: 10.1021/acs.macromol.0c00388] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
39 Yakimova LS, Nugmanova AR, Mostovaya OA, Vavilova AA, Shurpik DN, Mukhametzyanov TA, Stoikov II. Nanostructured Polyelectrolyte Complexes Based on Water-Soluble Thiacalix[4]Arene and Pillar[5]Arene: Self-Assembly in Micelleplexes and Polyplexes at Packaging DNA. Nanomaterials (Basel) 2020;10:E777. [PMID: 32316551 DOI: 10.3390/nano10040777] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
40 Su D, Coste M, Diaconu A, Barboiu M, Ulrich S. Cationic dynamic covalent polymers for gene transfection. J Mater Chem B 2020;8:9385-403. [DOI: 10.1039/d0tb01836h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
41 Zamolo SJ, Darbre T, Reymond J. Transfecting tissue models with CRISPR/Cas9 plasmid DNA using peptide dendrimers. Chem Commun 2020;56:11981-4. [DOI: 10.1039/d0cc04750c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]