1 |
Ciulla MG, Gelain F. Structure-activity relationships of antibacterial peptides. Microb Biotechnol 2023;16:757-77. [PMID: 36705032 DOI: 10.1111/1751-7915.14213] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
2 |
França A. The Role of Coagulase-Negative Staphylococci Biofilms on Late-Onset Sepsis: Current Challenges and Emerging Diagnostics and Therapies. Antibiotics 2023;12:554. [DOI: 10.3390/antibiotics12030554] [Reference Citation Analysis]
|
3 |
Sarkar P, De K, Modi M, Dhanda G, Priyadarshini R, Bandow JE, Haldar J. Next-generation membrane-active glycopeptide antibiotics that also inhibit bacterial cell division. Chem Sci 2023;14:2386-98. [PMID: 36873852 DOI: 10.1039/d2sc05600c] [Reference Citation Analysis]
|
4 |
Dalesandro BE, Kelly JJ, Liu Z, Chordia MD, Ongwae GM, Pires MM. Measurement of Accumulation of Antibiotics to Staphylococcus aureus in Phagosomes. bioRxiv 2023:2023. [PMID: 36824967 DOI: 10.1101/2023.02.13.528196] [Reference Citation Analysis]
|
5 |
Ye J, Hou F, Chen G, Zhong T, Xue J, Yu F, Lai Y, Yang Y, Liu D, Tian Y, Huang J. Novel copper-containing ferrite nanoparticles exert lethality to MRSA by disrupting MRSA cell membrane permeability, depleting intracellular iron ions, and upregulating ROS levels. Front Microbiol 2023;14:1023036. [PMID: 36846790 DOI: 10.3389/fmicb.2023.1023036] [Reference Citation Analysis]
|
6 |
Jia J, Parmar D, Ellis JF, Cao T, Cutri AR, Shrout JD, Sweedler JV, Bohn PW. Effect of Micro-Patterned Mucin on Quinolone and Rhamnolipid Profiles of Mucoid Pseudomonas aeruginosa under Antibiotic Stress. ACS Infect Dis 2023;9:150-61. [PMID: 36538577 DOI: 10.1021/acsinfecdis.2c00519] [Reference Citation Analysis]
|
7 |
Li N, Luo HK, Chen AX, Tan JPK, Yang C, Ang MJY, Zeng H, Yang YY. Guanidinium-Perfunctionalized Polyhedral Oligomeric Silsesquioxanes as Highly Potent Antimicrobials against Planktonic Microbes, Biofilms, and Coronavirus. ACS Appl Mater Interfaces 2023;15:354-63. [PMID: 36534480 DOI: 10.1021/acsami.2c16493] [Reference Citation Analysis]
|
8 |
Qian Y, Mobashery S, Fisher JF. Macrolide, lincosamide, glycopeptide, and other antibacterial antibiotics. Medicinal Chemistry of Chemotherapeutic Agents 2023. [DOI: 10.1016/b978-0-323-90575-6.00008-9] [Reference Citation Analysis]
|
9 |
Zhang H, Chen Q, Xie J, Cong Z, Cao C, Zhang W, Zhang D, Chen S, Gu J, Deng S, Qiao Z, Zhang X, Li M, Lu Z, Liu R. Switching from membrane disrupting to membrane crossing, an effective strategy in designing antibacterial polypeptide. Sci Adv 2023;9:eabn0771. [PMID: 36696494 DOI: 10.1126/sciadv.abn0771] [Reference Citation Analysis]
|
10 |
Tian L, Shi S, Zhang X, Han F, Dong H. Newest perspectives of glycopeptide antibiotics: biosynthetic cascades, novel derivatives, and new appealing antimicrobial applications. World J Microbiol Biotechnol 2023;39:67. [PMID: 36593427 DOI: 10.1007/s11274-022-03512-0] [Reference Citation Analysis]
|
11 |
Wang Z, Rong F, Li Z, Li W, Kaur K, Wang Y. Tailoring gas-releasing nanoplatforms for wound treatment: An emerging approach. Chemical Engineering Journal 2023;452:139297. [DOI: 10.1016/j.cej.2022.139297] [Reference Citation Analysis]
|
12 |
Lin JS, Bekale LA, Molchanova N, Nielsen JE, Wright M, Bacacao B, Diamond G, Jenssen H, Santa Maria PL, Barron AE. Anti-persister and Anti-biofilm Activity of Self-Assembled Antimicrobial Peptoid Ellipsoidal Micelles. ACS Infect Dis 2022;8:1823-30. [PMID: 36018039 DOI: 10.1021/acsinfecdis.2c00288] [Reference Citation Analysis]
|
13 |
Kong Q, Li G, Zhang F, Yu T, Chen X, Jiang Q, Wang Y. N-Arylimidazoliums as Highly Selective Biomimetic Antimicrobial Agents. J Med Chem 2022;65:11309-21. [PMID: 35930690 DOI: 10.1021/acs.jmedchem.2c00818] [Reference Citation Analysis]
|
14 |
Hansen MH, Stegmann E, Cryle MJ. Beyond vancomycin: recent advances in the modification, reengineering, production and discovery of improved glycopeptide antibiotics to tackle multidrug-resistant bacteria. Curr Opin Biotechnol 2022;77:102767. [PMID: 35933924 DOI: 10.1016/j.copbio.2022.102767] [Reference Citation Analysis]
|
15 |
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022. [PMID: 35895325 DOI: 10.1021/acsinfecdis.2c00253] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
16 |
Li Z, Yang Y, Qin Z, Li S, Bai L, Li J, Liu X. Florfenicol-Polyarginine Conjugates Exhibit Promising Antibacterial Activity Against Resistant Strains. Front Chem 2022;10:921091. [DOI: 10.3389/fchem.2022.921091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Yang M, Özdemir Z, Kim H, Nah S, Andris E, Li X, Wimmer Z, Yoon J. Acid-Responsive Nanoporphyrin Evolution for Near-Infrared Fluorescence-Guided Photo-Ablation of Biofilm. Adv Healthc Mater 2022;:e2200529. [PMID: 35536751 DOI: 10.1002/adhm.202200529] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
18 |
Pranantyo D, Zhang K, Si Z, Hou Z, Chan-Park MB. Smart Multifunctional Polymer Systems as Alternatives or Supplements of Antibiotics To Overcome Bacterial Resistance. Biomacromolecules 2022. [PMID: 35471022 DOI: 10.1021/acs.biomac.1c01614] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
19 |
Shinu P, Mouslem AKA, Nair AB, Venugopala KN, Attimarad M, Singh VA, Nagaraja S, Alotaibi G, Deb PK. Progress Report: Antimicrobial Drug Discovery in the Resistance Era. Pharmaceuticals 2022;15:413. [DOI: 10.3390/ph15040413] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
20 |
Wang J, Jiang Z, Wei Y, Wang W, Wang F, Yang Y, Song H, Yuan Q. Multiplexed Identification of Bacterial Biofilm Infections Based on Machine-Learning-Aided Lanthanide Encoding. ACS Nano 2022;16:3300-10. [PMID: 35099174 DOI: 10.1021/acsnano.1c11333] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
|
21 |
Shi Y, Cao Y, Cheng J, Yu W, Liu M, Yin J, Huang C, Liang X, Zhou H, Liu H, Yang Z, Fang Y, Wei H, Zhao G. Construction of Self‐Activated Nanoreactors for Cascade Catalytic Anti‐Biofilm Therapy Based on H 2 O 2 Self‐Generation and Switch‐On NO Release. Adv Funct Materials 2022;32:2111148. [DOI: 10.1002/adfm.202111148] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
22 |
Umstätter F, Werner J, Zerlin L, Mühlberg E, Kleist C, Klika KD, Hertlein T, Beijer B, Domhan C, Zimmermann S, Ohlsen K, Haberkorn U, Mier W, Uhl P. Impact of Linker Modification and PEGylation of Vancomycin Conjugates on Structure-Activity Relationships and Pharmacokinetics. Pharmaceuticals 2022;15:159. [DOI: 10.3390/ph15020159] [Reference Citation Analysis]
|
23 |
Acharya Y, Bhattacharyya S, Dhanda G, Haldar J. Emerging Roles of Glycopeptide Antibiotics: Moving beyond Gram-Positive Bacteria. ACS Infect Dis 2022;8:1-28. [PMID: 34878254 DOI: 10.1021/acsinfecdis.1c00367] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
|
24 |
Acharya Y, Haldar J. Upgrading the Antibiotic Arsenal Against Gram-Positive Bacteria: Chemical Modifications of Vancomycin. Alternatives to Antibiotics 2022. [DOI: 10.1007/978-981-19-1854-4_8] [Reference Citation Analysis]
|
25 |
Liu W, Gao R, Zhou L, Liu N, Chen Z, Wu Z. Combination of vancomycin and guanidinium-functionalized helical polymers for synergistic antibacterial activity and biofilm ablation. Chem Sci . [DOI: 10.1039/d2sc03419k] [Reference Citation Analysis]
|
26 |
Tailhades J. Arylglycine: A Focus on Amino Acid Preparation and Peptide Synthesis. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-021-10308-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
27 |
Etayash H, Alford M, Akhoundsadegh N, Drayton M, Straus SK, Hancock REW. Multifunctional Antibiotic-Host Defense Peptide Conjugate Kills Bacteria, Eradicates Biofilms, and Modulates the Innate Immune Response. J Med Chem 2021;64:16854-63. [PMID: 34784220 DOI: 10.1021/acs.jmedchem.1c01712] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
28 |
Jiao S, Guan D, Xu L, Liu B, Shi W, Li J, Tang F, Huang W. Impurity Identification and Scale-Up of a Novel Glycopeptide Antibiotic. Org Process Res Dev 2021;25:2390-2402. [DOI: 10.1021/acs.oprd.1c00064] [Reference Citation Analysis]
|
29 |
Payne JAE, Tailhades J, Ellett F, Kostoulias X, Fulcher AJ, Fu T, Leung R, Louch S, Tran A, Weber SA, Schittenhelm RB, Lieschke GJ, Qin CH, Irima D, Peleg AY, Cryle MJ. Antibiotic-chemoattractants enhance neutrophil clearance of Staphylococcus aureus. Nat Commun 2021;12:6157. [PMID: 34697316 DOI: 10.1038/s41467-021-26244-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
30 |
Yin M, Qiao Z, Yan D, Yang M, Yang L, Wan X, Chen H, Luo J, Xiao H. Ciprofloxacin conjugated gold nanorods with pH induced surface charge transformable activities to combat drug resistant bacteria and their biofilms. Mater Sci Eng C Mater Biol Appl 2021;128:112292. [PMID: 34474843 DOI: 10.1016/j.msec.2021.112292] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
|
31 |
Gao Q, Huang D, Deng Y, Yu W, Jin Q, Ji J, Fu G. Chlorin e6 (Ce6)-loaded supramolecular polypeptide micelles with enhanced photodynamic therapy effect against Pseudomonas aeruginosa. Chemical Engineering Journal 2021;417:129334. [DOI: 10.1016/j.cej.2021.129334] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
32 |
Trebino MA, Shingare RD, MacMillan JB, Yildiz FH. Strategies and Approaches for Discovery of Small Molecule Disruptors of Biofilm Physiology. Molecules 2021;26:4582. [PMID: 34361735 DOI: 10.3390/molecules26154582] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
33 |
da Silva RAG, Afonina I, Kline KA. Eradicating biofilm infections: an update on current and prospective approaches. Curr Opin Microbiol 2021;63:117-25. [PMID: 34333239 DOI: 10.1016/j.mib.2021.07.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
|
34 |
Yu JH, Xu XF, Hou W, Meng Y, Huang MY, Lin J, Chen WM. Synthetic cajaninstilbene acid derivatives eradicate methicillin-resistant Staphylococcus aureus persisters and biofilms. Eur J Med Chem 2021;224:113691. [PMID: 34274830 DOI: 10.1016/j.ejmech.2021.113691] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
35 |
Sarkar P, Basak D, Mukherjee R, Bandow JE, Haldar J. Alkyl-Aryl-Vancomycins: Multimodal Glycopeptides with Weak Dependence on the Bacterial Metabolic State. J Med Chem 2021;64:10185-202. [PMID: 34233118 DOI: 10.1021/acs.jmedchem.1c00449] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
36 |
Kuehl R, Morata L, Meylan S, Mensa J, Soriano A. When antibiotics fail: a clinical and microbiological perspective on antibiotic tolerance and persistence of Staphylococcus aureus. J Antimicrob Chemother 2020;75:1071-86. [PMID: 32016348 DOI: 10.1093/jac/dkz559] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
|
37 |
Shi W, Chen F, Zou X, Jiao S, Wang S, Hu Y, Lan L, Tang F, Huang W. Design, synthesis, and antibacterial evaluation of vancomycin-LPS binding peptide conjugates. Bioorg Med Chem Lett 2021;45:128122. [PMID: 34015504 DOI: 10.1016/j.bmcl.2021.128122] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
38 |
Hu Y, Zou X, Shi W, Ma C, Chen F, Li J, Jiao S, Pan G, Lan L, Huang W, Tang F, Zhang F. A facile method for vancomycin C-terminus functionalization and derivatization through hydrazide. Bioorg Med Chem Lett 2021;42:128027. [PMID: 33839255 DOI: 10.1016/j.bmcl.2021.128027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
39 |
Ye Z, Zhu H, Zhang S, Li J, Wang J, Wang E. Highly efficient nanomedicine from cationic antimicrobial peptide-protected Ag nanoclusters. J Mater Chem B 2021;9:307-13. [PMID: 33289752 DOI: 10.1039/d0tb02267e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
40 |
Zhao Z, Li H, Tao X, Xie Y, Yang L, Mao ZW, Xia W. Light-Triggered Nitric Oxide Release by a Photosensitizer to Combat Bacterial Biofilm Infections. Chemistry 2021;27:5453-60. [PMID: 33220013 DOI: 10.1002/chem.202004698] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
41 |
Xu M, Li L, Hu Q. The recent progress in photothermal-triggered bacterial eradication. Biomater Sci 2021;9:1995-2008. [PMID: 33564803 DOI: 10.1039/d0bm02057e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
|
42 |
Neville LF, Shalit I, Warn PA, Scheetz MH, Sun J, Chosy MB, Wender PA, Cegelski L, Rendell JT. In Vivo Targeting of Escherichia coli with Vancomycin-Arginine. Antimicrob Agents Chemother 2021;65:e02416-20. [PMID: 33468474 DOI: 10.1128/AAC.02416-20] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
43 |
Jiang Y, Chen Y, Song Z, Tan Z, Cheng J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv Drug Deliv Rev 2021;170:261-80. [PMID: 33400958 DOI: 10.1016/j.addr.2020.12.016] [Cited by in Crossref: 50] [Cited by in F6Publishing: 39] [Article Influence: 25.0] [Reference Citation Analysis]
|
44 |
Bi Y, Xia G, Shi C, Wan J, Liu L, Chen Y, Wu Y, Zhang W, Zhou M, He H, Liu R. Therapeutic strategies against bacterial biofilms. Fundamental Research 2021;1:193-212. [DOI: 10.1016/j.fmre.2021.02.003] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 16.0] [Reference Citation Analysis]
|
45 |
Bai S, Wang J, Yang K, Zhou C, Xu Y, Song J, Gu Y, Chen Z, Wang M, Shoen C, Andrade B, Cynamon M, Zhou K, Wang H, Cai Q, Oldfield E, Zimmerman SC, Bai Y, Feng X. A polymeric approach toward resistance-resistant antimicrobial agent with dual-selective mechanisms of action. Sci Adv 2021;7:eabc9917. [PMID: 33571116 DOI: 10.1126/sciadv.abc9917] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
|
46 |
Xue L, Shen Q, Zhang T, Fan Y, Xu X, Shao J, Yang D, Zhao W, Dong X, Mou X. Fluorescence resonance energy transfer enhanced photothermal and photodynamic antibacterial therapy post a single injection. Mater Chem Front 2021;5:6061-70. [DOI: 10.1039/d1qm00631b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
47 |
Meşeli T, Doğan ŞD, Gündüz MG, Kökbudak Z, Skaro Bogojevic S, Noonan T, Vojnovic S, Wolber G, Nikodinovic-runic J. Design, synthesis, antibacterial activity evaluation and molecular modeling studies of new sulfonamides containing a sulfathiazole moiety. New J Chem 2021;45:8166-77. [DOI: 10.1039/d1nj00150g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
48 |
Jiang Y, Han M, Bo Y, Feng Y, Li W, Wu JR, Song Z, Zhao Z, Tan Z, Chen Y, Xue T, Fu Z, Kuo SH, Lau GW, Luijten E, Cheng J. "Metaphilic" Cell-Penetrating Polypeptide-Vancomycin Conjugate Efficiently Eradicates Intracellular Bacteria via a Dual Mechanism. ACS Cent Sci 2020;6:2267-76. [PMID: 33376787 DOI: 10.1021/acscentsci.0c00893] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|
49 |
Guo S, Huang Q, Chen Y, Wei J, Zheng J, Wang L, Wang Y, Wang R. Synthesis and Bioactivity of Guanidinium‐Functionalized Pillar[5]arene as a Biofilm Disruptor. Angew Chem 2021;133:628-33. [DOI: 10.1002/ange.202013975] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
50 |
Guo S, Huang Q, Chen Y, Wei J, Zheng J, Wang L, Wang Y, Wang R. Synthesis and Bioactivity of Guanidinium‐Functionalized Pillar[5]arene as a Biofilm Disruptor. Angew Chem Int Ed 2021;60:618-23. [DOI: 10.1002/anie.202013975] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 21.3] [Reference Citation Analysis]
|
51 |
Wu ZC, Boger DL. Maxamycins: Durable Antibiotics Derived by Rational Redesign of Vancomycin. Acc Chem Res 2020;53:2587-99. [PMID: 33138354 DOI: 10.1021/acs.accounts.0c00569] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
52 |
Zheng L, Li J, Yu M, Jia W, Duan S, Cao D, Ding X, Yu B, Zhang X, Xu FJ. Molecular Sizes and Antibacterial Performance Relationships of Flexible Ionic Liquid Derivatives. J Am Chem Soc 2020;142:20257-69. [PMID: 33179921 DOI: 10.1021/jacs.0c10771] [Cited by in Crossref: 64] [Cited by in F6Publishing: 70] [Article Influence: 21.3] [Reference Citation Analysis]
|
53 |
Han H, Gao Y, Chai M, Zhang X, Liu S, Huang Y, Jin Q, Grzybowski A, Ji J, Yao K. Biofilm microenvironment activated supramolecular nanoparticles for enhanced photodynamic therapy of bacterial keratitis. Journal of Controlled Release 2020;327:676-87. [DOI: 10.1016/j.jconrel.2020.09.014] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 14.0] [Reference Citation Analysis]
|
54 |
Memar MY, Yekani M, Celenza G, Poortahmasebi V, Naghili B, Bellio P, Baghi HB. The central role of the SOS DNA repair system in antibiotics resistance: A new target for a new infectious treatment strategy. Life Sci 2020;262:118562. [PMID: 33038378 DOI: 10.1016/j.lfs.2020.118562] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
|
55 |
Khan F, Pham DTN, Tabassum N, Oloketuyi SF, Kim Y. Treatment strategies targeting persister cell formation in bacterial pathogens. Critical Reviews in Microbiology 2020;46:665-88. [DOI: 10.1080/1040841x.2020.1822278] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
56 |
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2021;38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
57 |
Umstätter F, Domhan C, Hertlein T, Ohlsen K, Mühlberg E, Kleist C, Zimmermann S, Beijer B, Klika KD, Haberkorn U, Mier W, Uhl P. Berichtigung: Überwindung von Vancomycinresistenzen durch Modifikation mit polykationischen Peptiden. Angew Chem 2020;132:17478-17478. [DOI: 10.1002/ange.202007022] [Reference Citation Analysis]
|
58 |
Umstätter F, Domhan C, Hertlein T, Ohlsen K, Mühlberg E, Kleist C, Zimmermann S, Beijer B, Klika KD, Haberkorn U, Mier W, Uhl P. Corrigendum: Vancomycin Resistance is Overcome by Conjugation of Polycationic Peptides. Angew Chem Int Ed 2020;59:17326-17326. [DOI: 10.1002/anie.202007022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
59 |
Wang C, Zhao W, Cao B, Wang Z, Zhou Q, Lu S, Lu L, Zhan M, Hu X. Biofilm-Responsive Polymeric Nanoparticles with Self-Adaptive Deep Penetration for In Vivo Photothermal Treatment of Implant Infection. Chem Mater 2020;32:7725-38. [DOI: 10.1021/acs.chemmater.0c02055] [Cited by in Crossref: 56] [Cited by in F6Publishing: 38] [Article Influence: 18.7] [Reference Citation Analysis]
|
60 |
Fei Y, Wu J, An HW, Zhu K, Peng B, Cai J, Zhang Y, Li LL, Wang H, Huang Z. Identification of New Nitric Oxide-Donating Peptides with Dual Biofilm Eradication and Antibacterial Activities for Intervention of Device-Related Infections. J Med Chem 2020;63:9127-35. [PMID: 32787095 DOI: 10.1021/acs.jmedchem.9b01832] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
|
61 |
Wu ZC, Cameron MD, Boger DL. Vancomycin C-Terminus Guanidine Modifications and Further Insights into an Added Mechanism of Action Imparted by a Peripheral Structural Modification. ACS Infect Dis 2020;6:2169-80. [PMID: 32598127 DOI: 10.1021/acsinfecdis.0c00258] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
|
62 |
Qi G, Hu F, Kenry, Chong KC, Wu M, Gan YH, Liu B. Bacterium‐Templated Polymer for Self‐Selective Ablation of Multidrug‐Resistant Bacteria. Adv Funct Mater 2020;30:2001338. [DOI: 10.1002/adfm.202001338] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
|
63 |
Mühlberg E, Umstätter F, Domhan C, Hertlein T, Ohlsen K, Krause A, Kleist C, Beijer B, Zimmermann S, Haberkorn U, Mier W, Uhl P. Vancomycin-Lipopeptide Conjugates with High Antimicrobial Activity on Vancomycin-Resistant Enterococci. Pharmaceuticals (Basel) 2020;13:E110. [PMID: 32485876 DOI: 10.3390/ph13060110] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
64 |
Khan F, Pham DTN, Oloketuyi SF, Kim YM. Antibiotics Application Strategies to Control Biofilm Formation in Pathogenic Bacteria. Curr Pharm Biotechnol 2020;21:270-86. [PMID: 31721708 DOI: 10.2174/1389201020666191112155905] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
65 |
Sarkar P, Samaddar S, Ammanathan V, Yarlagadda V, Ghosh C, Shukla M, Kaul G, Manjithaya R, Chopra S, Haldar J. Vancomycin Derivative Inactivates Carbapenem-Resistant Acinetobacter baumannii and Induces Autophagy. ACS Chem Biol 2020;15:884-9. [PMID: 32195571 DOI: 10.1021/acschembio.0c00091] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
66 |
Yuan Z, Lin C, He Y, Tao B, Chen M, Zhang J, Liu P, Cai K. Near-Infrared Light-Triggered Nitric-Oxide-Enhanced Photodynamic Therapy and Low-Temperature Photothermal Therapy for Biofilm Elimination. ACS Nano 2020;14:3546-62. [PMID: 32069025 DOI: 10.1021/acsnano.9b09871] [Cited by in Crossref: 194] [Cited by in F6Publishing: 210] [Article Influence: 64.7] [Reference Citation Analysis]
|
67 |
Guo X, Cao B, Wang C, Lu S, Hu X. In vivo photothermal inhibition of methicillin-resistant Staphylococcus aureus infection by in situ templated formulation of pathogen-targeting phototheranostics. Nanoscale 2020;12:7651-9. [PMID: 32207761 DOI: 10.1039/d0nr00181c] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 20.0] [Reference Citation Analysis]
|
68 |
Bhadoria R, Ping K, Lohk C, Järving I, Starkov P. A phenotypic approach to probing cellular outcomes using heterobivalent constructs. Chem Commun (Camb) 2020;56:4216-9. [PMID: 32181457 DOI: 10.1039/c9cc09595k] [Reference Citation Analysis]
|
69 |
Ju X, Chen J, Zhou M, Zhu M, Li Z, Gao S, Ou J, Xu D, Wu M, Jiang S, Hu Y, Tian Y, Niu Z. Combating Pseudomonas aeruginosa Biofilms by a Chitosan-PEG-Peptide Conjugate via Changes in Assembled Structure. ACS Appl Mater Interfaces 2020;12:13731-8. [DOI: 10.1021/acsami.0c02034] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
|
70 |
Laurent Q, Berthet M, Cheng Y, Sakai N, Barluenga S, Winssinger N, Matile S. Probing for Thiol-Mediated Uptake into Bacteria. Chembiochem 2020;21:69-73. [PMID: 31603284 DOI: 10.1002/cbic.201900378] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
71 |
Konai MM, Barman S, Acharya Y, De K, Haldar J. Recent development of antibacterial agents to combat drug-resistant Gram-positive bacteria. Drug Discovery Targeting Drug-Resistant Bacteria 2020. [DOI: 10.1016/b978-0-12-818480-6.00004-7] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
72 |
Naclerio GA, Abutaleb NS, Onyedibe KI, Seleem MN, Sintim HO. Potent trifluoromethoxy, trifluoromethylsulfonyl, trifluoromethylthio and pentafluorosulfanyl containing (1,3,4-oxadiazol-2-yl)benzamides against drug-resistant Gram-positive bacteria. RSC Med Chem 2020;11:102-10. [PMID: 33479609 DOI: 10.1039/c9md00391f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|
73 |
Bazan EL, Ruan L, Zhou C. Improving the antimicrobial efficacy against resistant Staphylococcus aureus by a combined use of conjugated oligoelectrolytes. PLoS One 2019;14:e0224816. [PMID: 31730663 DOI: 10.1371/journal.pone.0224816] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
|
74 |
Wu ZC, Isley NA, Okano A, Weiss WJ, Boger DL. C1-CBP-vancomycin: Impact of a Vancomycin C-Terminus Trimethylammonium Cation on Pharmacological Properties and Insights into Its Newly Introduced Mechanism of Action. J Org Chem 2020;85:1365-75. [PMID: 31670958 DOI: 10.1021/acs.joc.9b02314] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
75 |
Marschall E, Cryle MJ, Tailhades J. Biological, chemical, and biochemical strategies for modifying glycopeptide antibiotics. J Biol Chem 2019;294:18769-83. [PMID: 31672921 DOI: 10.1074/jbc.REV119.006349] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
|
76 |
Qi G, Hu F, Kenry, Shi L, Wu M, Liu B. An AIEgen‐Peptide Conjugate as a Phototheranostic Agent for Phagosome‐Entrapped Bacteria. Angew Chem 2019;131:16375-81. [DOI: 10.1002/ange.201906099] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
|
77 |
Qi G, Hu F, Kenry, Shi L, Wu M, Liu B. An AIEgen-Peptide Conjugate as a Phototheranostic Agent for Phagosome-Entrapped Bacteria. Angew Chem Int Ed Engl 2019;58:16229-35. [PMID: 31471928 DOI: 10.1002/anie.201906099] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 14.8] [Reference Citation Analysis]
|
78 |
Antonoplis A, Zang X, Wegner T, Wender PA, Cegelski L. Vancomycin-Arginine Conjugate Inhibits Growth of Carbapenem-Resistant E. coli and Targets Cell-Wall Synthesis. ACS Chem Biol 2019;14:2065-70. [PMID: 31479234 DOI: 10.1021/acschembio.9b00565] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 9.3] [Reference Citation Analysis]
|
79 |
Chen X, Zhang X, Lin F, Guo Y, Wu F. One‐Step Synthesis of Epoxy Group‐Terminated Organosilica Nanodots: A Versatile Nanoplatform for Imaging and Eliminating Multidrug‐Resistant Bacteria and Their Biofilms. Small 2019;15:1901647. [DOI: 10.1002/smll.201901647] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
|
80 |
Song S, Gong T, Yamasaki R, Kim J, Wood TK. Identification of a potent indigoid persister antimicrobial by screening dormant cells. Biotechnology and Bioengineering 2019;116:2263-74. [DOI: 10.1002/bit.27078] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
|
81 |
Medeiros-Silva J, Jekhmane S, Breukink E, Weingarth M. Towards the Native Binding Modes of Antibiotics that Target Lipid II. Chembiochem 2019;20:1731-8. [PMID: 30725496 DOI: 10.1002/cbic.201800796] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
|
82 |
Naclerio GA, Karanja CW, Opoku-Temeng C, Sintim HO. Antibacterial Small Molecules That Potently Inhibit Staphylococcus aureus Lipoteichoic Acid Biosynthesis. ChemMedChem 2019;14:1000-4. [PMID: 30939229 DOI: 10.1002/cmdc.201900053] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
|
83 |
Huang J, Liu Y, Yang L, Zhou F. Synthesis of sulfonated chitosan and its antibiofilm formation activity against E. coli and S. aureus. Int J Biol Macromol 2019;129:980-8. [PMID: 30772414 DOI: 10.1016/j.ijbiomac.2019.02.079] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
|