BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dauthal P, Mukhopadhyay M. Biosynthesis of Palladium Nanoparticles Using Delonix regia Leaf Extract and Its Catalytic Activity for Nitro-aromatics Hydrogenation. Ind Eng Chem Res 2013;52:18131-9. [DOI: 10.1021/ie403410z] [Cited by in Crossref: 91] [Cited by in F6Publishing: 76] [Article Influence: 10.1] [Reference Citation Analysis]
Number Citing Articles
1 Morales Santos FJ, Piñón Castillo HA, Quinteroramos A, Zaragoza Galán G, Duran R, Orrantia Borunda E. Comparison of catalytic activity and antimicrobial properties of palladium nanoparticles obtained by Aloe barbadensis and Glycine max extracts, and chemical synthesis. Appl Nanosci. [DOI: 10.1007/s13204-022-02601-8] [Reference Citation Analysis]
2 Sun H, Wang G, Ge J, Wei N, Sui W, Chen Z, Jia H, Parvez AM, Si C. Reduction of lignin heterogeneity for improved catalytic performance of lignin nanosphere supported Pd nanoparticles. Industrial Crops and Products 2022;180:114685. [DOI: 10.1016/j.indcrop.2022.114685] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. Nanomaterials 2022;12:1841. [DOI: 10.3390/nano12111841] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Krishnasamy R, Obbineni JM. Methods for Green Synthesis of Metallic Nanoparticles Using Plant Extracts and their Biological Applications - A Review. JBBBE 2022;56:75-151. [DOI: 10.4028/p-8bf786] [Reference Citation Analysis]
5 Gebre SH. Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. J Clust Sci. [DOI: 10.1007/s10876-022-02276-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Rizwana H, Bokahri NA, Alfarhan A, Aldehaish HA, Alsaggabi NS. Biosynthesis and characterization of silver nanoparticles prepared using seeds of Sisymbrium irio and evaluation of their antifungal and cytotoxic activities. Green Processing and Synthesis 2022;11:478-91. [DOI: 10.1515/gps-2022-0048] [Reference Citation Analysis]
7 Bakur A, Hongyun L, Elshaarani T, Albashir D, Mohammed A, Chen Q. Antioxidant and Anticancer Properties of Biosynthesized GA/Ag-Fe3O4@ Nanocomposites. J Clust Sci 2022;33:903-11. [DOI: 10.1007/s10876-021-02023-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Nipa ST, Akter R, Raihan A, Rasul SB, Som U, Ahmed S, Alam J, Khan MR, Enzo S, Rahman W. State-of-the-art biosynthesis of tin oxide nanoparticles by chemical precipitation method towards photocatalytic application. Environ Sci Pollut Res Int 2022;29:10871-93. [PMID: 34997495 DOI: 10.1007/s11356-021-17933-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Velpula S, Beedu SR, Rupula K. Biopolymer-based trimetallic nanocomposite synthesis, characterization and its application in the catalytic degradation of 4-nitrophenol. J Mater Sci: Mater Electron 2022;33:2677-98. [DOI: 10.1007/s10854-021-07476-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wang Z, Lü S, Yang F, Kabir SF, Mahmud S, Liu H. Hyaluronate macromolecules reduced-stabilized colloidal palladium nanocatalyst for azo contaminated wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;628:127345. [DOI: 10.1016/j.colsurfa.2021.127345] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
11 Saleh EAM, Khan AU, Tahir K, Almehmadi SJ, Al-Abdulkarim HA, Alqarni S, Muhammad N, Dawsari AMA, Nazir S, Ullah A. Phytoassisted synthesis and characterization of palladium nanoparticles (PdNPs); with enhanced antibacterial, antioxidant and hemolytic activities. Photodiagnosis Photodyn Ther 2021;36:102542. [PMID: 34547470 DOI: 10.1016/j.pdpdt.2021.102542] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
12 Siddiquee MA, Parray MUD, Kamli MR, Malik MA, Mehdi SH, Imtiyaz K, Rizvi MMA, Rajor HK, Patel R. Biogenic synthesis, in-vitro cytotoxicity, esterase activity and interaction studies of copper oxide nanoparticles with lysozyme. Journal of Materials Research and Technology 2021;13:2066-77. [DOI: 10.1016/j.jmrt.2021.05.078] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Kiran M, Rajith Kumar C, Shwetha U, Onkarappa H, Betageri V, Latha M. Green synthesis and characterization of gold nanoparticles from Moringa oleifera leaves and assessment of antioxidant, antidiabetic and anticancer properties. Chemical Data Collections 2021;33:100714. [DOI: 10.1016/j.cdc.2021.100714] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
14 Palithya S, Gaddam SA, Kotakadi VS, Penchalaneni J, Golla N, Krishna SBN, Naidu CV. Green synthesis of silver nanoparticles using flower extracts of Aerva lanata and their biomedical applications. Particulate Science and Technology 2022;40:84-96. [DOI: 10.1080/02726351.2021.1919259] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Alhumaydhi FA, Khan I, Rauf A, Qureshi MN, Aljohani ASM, Khan SA, Khalil AA, El-esawi MA, Muhammad N. Synthesis, characterization, biological activities, and catalytic applications of alcoholic extract of saffron ( Crocus sativus ) flower stigma-based gold nanoparticles. Green Processing and Synthesis 2021;10:230-45. [DOI: 10.1515/gps-2021-0024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
16 Mahmoud ME, Amira MF, Seleim SM, Abouelanwar ME. Behavior of surface coated zirconium silicate-nanopolyaniline with nano zerovalent copper (ZrSiO4@NPANI@nZVCu) toward catalytic reduction of nitroanilines. Materials Chemistry and Physics 2021;258:123890. [DOI: 10.1016/j.matchemphys.2020.123890] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
17 Shabaaz Begum J, Manjunath K, Pratibha S, Dhananjaya N, Sahu P, Kashaw S. Bioreduction synthesis of zinc oxide nanoparticles using Delonix regia leaf extract (Gul Mohar) and its agromedicinal applications. Journal of Science: Advanced Materials and Devices 2020;5:468-75. [DOI: 10.1016/j.jsamd.2020.07.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Şahin Ün Ş, Ünlü A, Ün İ, Ok S. Green synthesis, characterization and catalytic activity evaluation of palladium nanoparticles facilitated by Punica granatum peel extract. Inorganic and Nano-Metal Chemistry. [DOI: 10.1080/24701556.2020.1832118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Mevada C, Mukhopadhyay M. Electrochemical performance enhancement of high mass loading H-RuO2NPs electrode and aqueous symmetrical supercapacitor in the neutral electrolyte. Journal of Energy Storage 2020;30:101453. [DOI: 10.1016/j.est.2020.101453] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
20 Kaviya S. Synthesis, self-assembly, sensing methods and mechanism of bio-source facilitated nanomaterials: A review with future outlook. Nano-Structures & Nano-Objects 2020;23:100498. [DOI: 10.1016/j.nanoso.2020.100498] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
21 Satpathy S, Patra A, Ahirwar B, Hussain MD. Process optimization for green synthesis of gold nanoparticles mediated by extract of Hygrophila spinosa T. Anders and their biological applications. Physica E: Low-dimensional Systems and Nanostructures 2020;121:113830. [DOI: 10.1016/j.physe.2019.113830] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
22 Mevada C, Mukhopadhyay M. Enhancement of electrochemical properties of hydrous ruthenium oxide nanoparticles coated on chemically activated carbon cloth for solid-state symmetrical supercapacitor application. Materials Chemistry and Physics 2020;245:122784. [DOI: 10.1016/j.matchemphys.2020.122784] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
23 Mevada C, Chandran PS, Mukhopadhyay M. Room-temperature synthesis of tin oxide nanoparticles using gallic acid monohydrate for symmetrical supercapacitor application. Journal of Energy Storage 2020;28:101197. [DOI: 10.1016/j.est.2020.101197] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
24 Bendre AD, Patil VP, Terdale SS, Kodam KM, Waghmode SB. A simple, efficient and green approach for the synthesis of palladium nanoparticles using Oxytocin: Application for ligand free Suzuki reaction and total synthesis of aspongpyrazine A. Journal of Organometallic Chemistry 2020;909:121093. [DOI: 10.1016/j.jorganchem.2019.121093] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
25 Ramalingam V, Raja S, Harshavardhan M. In situ one-step synthesis of polymer-functionalized palladium nanoparticles: an efficient anticancer agent against breast cancer. Dalton Trans 2020;49:3510-8. [PMID: 32107506 DOI: 10.1039/c9dt04576g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
26 Siddiquee MA, Parray MUD, Mehdi SH, Alzahrani KA, Alshehri AA, Malik MA, Patel R. Green synthesis of silver nanoparticles from Delonix regia leaf extracts: In-vitro cytotoxicity and interaction studies with bovine serum albumin. Materials Chemistry and Physics 2020;242:122493. [DOI: 10.1016/j.matchemphys.2019.122493] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
27 Nasrollahzadeh M, Sajjadi M, Dadashi J, Ghafuri H. Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Adv Colloid Interface Sci 2020;276:102103. [PMID: 31978638 DOI: 10.1016/j.cis.2020.102103] [Cited by in Crossref: 89] [Cited by in F6Publishing: 78] [Article Influence: 44.5] [Reference Citation Analysis]
28 Osonga FJ, Kalra S, Miller RM, Isika D, Sadik OA. Synthesis, characterization and antifungal activities of eco-friendly palladium nanoparticles. RSC Adv 2020;10:5894-904. [DOI: 10.1039/c9ra07800b] [Cited by in Crossref: 11] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
29 Eisa WH, Zayed MF, Anis B, Abbas LM, Ali SS, Mostafa AM. Clean production of powdery silver nanoparticles using Zingiber officinale: The structural and catalytic properties. Journal of Cleaner Production 2019;241:118398. [DOI: 10.1016/j.jclepro.2019.118398] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 18.0] [Reference Citation Analysis]
30 Islam NU, Jalil K, Shahid M, Muhammad N, Rauf A. Pistacia integerrima gall extract mediated green synthesis of gold nanoparticles and their biological activities. Arabian Journal of Chemistry 2019;12:2310-9. [DOI: 10.1016/j.arabjc.2015.02.014] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
31 Ansari A, Badhe RA, Garje SS. Preparation of CdS-TiO2-Based Palladium Heterogeneous Nanocatalyst by Solvothermal Route and Its Catalytic Activity for Reduction of Nitroaromatic Compounds. ACS Omega 2019;4:14937-46. [PMID: 31552334 DOI: 10.1021/acsomega.9b01726] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
32 Mohana S, Sumathi S. Multi-Functional Biological Effects of Palladium Nanoparticles Synthesized Using Agaricus bisporus. J Clust Sci 2020;31:391-400. [DOI: 10.1007/s10876-019-01652-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
33 Peng X, Bai X, Cui Z, Liu X. Green synthesis of Pd truncated octahedrons using of firmiana simplex leaf extract and their catalytic study for electro‐oxidation of methanol and reduction of p‐nitrophenol. Appl Organometal Chem 2019;33. [DOI: 10.1002/aoc.5045] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
34 Vo T, Dang C, Doan V, Dang V, Nguyen T. Biogenic Synthesis of Silver and Gold Nanoparticles from Lactuca indica Leaf Extract and Their Application in Catalytic Degradation of Toxic Compounds. J Inorg Organomet Polym 2020;30:388-99. [DOI: 10.1007/s10904-019-01197-x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 9.3] [Reference Citation Analysis]
35 Amutha V, Deepak P, Kamaraj C, Balasubramani G, Aiswarya D, Arul D, Santhanam P, Ballamurugan AM, Perumal P. Mosquito-Larvicidal Potential of Metal and Oxide nanoparticles Synthesized from Aqueous Extract of the Seagrass, Cymodocea serrulata. J Clust Sci 2019;30:797-812. [DOI: 10.1007/s10876-019-01542-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
36 Guo Y, Gao Y, Li X, Zhuang G, Wang K, Zheng Y, Sun D, Huang J, Li Q. Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. Chemical Engineering Journal 2019;362:41-52. [DOI: 10.1016/j.cej.2019.01.012] [Cited by in Crossref: 43] [Cited by in F6Publishing: 51] [Article Influence: 14.3] [Reference Citation Analysis]
37 Phukan S, Mahanta A, Kakati D, Rashid MH. Green chemical synthesis of Pd nanoparticles for use as efficient catalyst in Suzuki-Miyaura cross-coupling reaction: Pd Nanoparticles as Efficient Catalyst in Cross-Coupling Reaction. Appl Organometal Chem 2019;33:e4758. [DOI: 10.1002/aoc.4758] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
38 Kratošová G, Holišová V, Konvičková Z, Ingle AP, Gaikwad S, Škrlová K, Prokop A, Rai M, Plachá D. From biotechnology principles to functional and low-cost metallic bionanocatalysts. Biotechnol Adv 2019;37:154-76. [PMID: 30481544 DOI: 10.1016/j.biotechadv.2018.11.012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
39 Kora AJ, Rastogi L. Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arabian Journal of Chemistry 2018;11:1097-106. [DOI: 10.1016/j.arabjc.2015.06.024] [Cited by in Crossref: 85] [Cited by in F6Publishing: 78] [Article Influence: 21.3] [Reference Citation Analysis]
40 Wang H, Jiang Y, Zhang Y, Zhang Z, Yang X, Ali MA, Fox EM, Gobius KS, Man C. Silver nanoparticles: A novel antibacterial agent for control of Cronobacter sakazakii. J Dairy Sci 2018;101:10775-91. [PMID: 30316605 DOI: 10.3168/jds.2018-15258] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
41 Chowdhury R, Mollick MMR, Biswas Y, Chattopadhyay D, Rashid MH. Biogenic synthesis of shape-tunable Au-Pd alloy nanoparticles with enhanced catalytic activities. Journal of Alloys and Compounds 2018;763:399-408. [DOI: 10.1016/j.jallcom.2018.05.343] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
42 Shanmugasundaram T, Balagurunathan R. Bio-directed synthesis, structural characterisation of platinum based metal nanocomposites (Pt/Ag, Pt/Au, Pt/Ag/Au) and their biomedical applications. Mater Res Express 2018;5:095402. [DOI: 10.1088/2053-1591/aad7e0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
43 Kundu S, Yi SI, Ma L, Chen Y, Dai W, Sinyukov AM, Liang H. Morphology dependent catalysis and surface enhanced Raman scattering (SERS) studies using Pd nanostructures in DNA, CTAB and PVA scaffolds. Dalton Trans 2017;46:9678-91. [PMID: 28713887 DOI: 10.1039/c7dt01474k] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
44 Ovais M, Khalil AT, Islam NU, Ahmad I, Ayaz M, Saravanan M, Shinwari ZK, Mukherjee S. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 2018;102:6799-814. [DOI: 10.1007/s00253-018-9146-7] [Cited by in Crossref: 98] [Cited by in F6Publishing: 112] [Article Influence: 24.5] [Reference Citation Analysis]
45 Dauthal P, Mukhopadhyay M. Antioxidant activity of phytosynthesized biomatrix-loaded noble metallic nanoparticles. Chinese Journal of Chemical Engineering 2018;26:1200-8. [DOI: 10.1016/j.cjche.2017.12.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
46 Shabbir M, Mohammad F. Multifunctional AgNPs@Wool: colored, UV-protective and antioxidant functional textiles. Appl Nanosci 2018;8:545-55. [DOI: 10.1007/s13204-018-0668-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
47 Gnanasekar S, Murugaraj J, Dhivyabharathi B, Krishnamoorthy V, Jha PK, Seetharaman P, Vilwanathan R, Sivaperumal S. Antibacterial and cytotoxicity effects of biogenic palladium nanoparticles synthesized using fruit extract of Couroupita guianensis Aubl. J Appl Biomed 2018;16:59-65. [DOI: 10.1016/j.jab.2017.10.001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
48 Sharmila G, Haries S, Farzana Fathima M, Geetha S, Manoj Kumar N, Muthukumaran C. Enhanced catalytic and antibacterial activities of phytosynthesized palladium nanoparticles using Santalum album leaf extract. Powder Technology 2017;320:22-6. [DOI: 10.1016/j.powtec.2017.07.026] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
49 Badma Priya D, Asharani IV. Catalytic reduction in 4‐nitrophenol using Actinodaphne madraspatana Bedd leaves‐mediated palladium nanoparticles. IET nanobiotechnol 2018;12:116-26. [DOI: 10.1049/iet-nbt.2017.0027] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
50 Yilmaz E, Soylak M. Facile and green solvothermal synthesis of palladium nanoparticle-nanodiamond-graphene oxide material with improved bifunctional catalytic properties. J IRAN CHEM SOC 2017;14:2503-12. [DOI: 10.1007/s13738-017-1185-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
51 Saratale RG, Shin HS, Kumar G, Benelli G, Kim DS, Saratale GD. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artif Cells Nanomed Biotechnol 2018;46:211-22. [PMID: 28612655 DOI: 10.1080/21691401.2017.1337031] [Cited by in Crossref: 63] [Cited by in F6Publishing: 73] [Article Influence: 12.6] [Reference Citation Analysis]
52 Patil S, Chaudhari G, Paradeshi J, Mahajan R, Chaudhari BL. Instant green synthesis of silver-based herbo-metallic colloidal nanosuspension in Terminalia bellirica fruit aqueous extract for catalytic and antibacterial applications. 3 Biotech 2017;7:36. [PMID: 28409425 DOI: 10.1007/s13205-016-0589-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
53 Cui X, Zheng Y, Tian M, Dong Z. Palladium nanoparticles supported on SiO 2 @Fe 3 O 4 @m-MnO 2 mesoporous microspheres as a highly efficient and recyclable catalyst for hydrodechlorination of 2,4-dichlorophenol and reduction of nitroaromatic compounds and organic dyes. Molecular Catalysis 2017;433:202-11. [DOI: 10.1016/j.mcat.2017.02.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
54 Vishnukumar P, Vivekanandhan S, Muthuramkumar S. Plant-Mediated Biogenic Synthesis of Palladium Nanoparticles: Recent Trends and Emerging Opportunities. ChemBioEng Reviews 2017;4:18-36. [DOI: 10.1002/cben.201600017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 5.6] [Reference Citation Analysis]
55 Dauthal P, Mukhopadhyay M. Phyto-synthesis and structural characterization of catalytically active gold nanoparticles biosynthesized using Delonix regia leaf extract. 3 Biotech 2016;6:118. [PMID: 28330190 DOI: 10.1007/s13205-016-0432-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
56 Guria MK, Majumdar M, Bhattacharyya M. Green synthesis of protein capped nano-gold particle: An excellent recyclable nano-catalyst for the reduction of nitro-aromatic pollutants at higher concentration. Journal of Molecular Liquids 2016;222:549-57. [DOI: 10.1016/j.molliq.2016.07.087] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
57 Liu G, Bai X. Biosynthesis of palladium nanoparticles using Poplar leaf extract and its application in Suzuki coupling reaction. IET nanobiotechnol 2017;11:310-6. [DOI: 10.1049/iet-nbt.2016.0117] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
58 Dauthal P, Mukhopadhyay M. Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications. Ind Eng Chem Res 2016;55:9557-77. [DOI: 10.1021/acs.iecr.6b00861] [Cited by in Crossref: 184] [Cited by in F6Publishing: 138] [Article Influence: 30.7] [Reference Citation Analysis]
59 Chelli VR, Bag SS, Golder AK. A biosynthesis route to nearly spherical AgNPs using chayote fruit extract. Environ Prog Sustainable Energy 2017;36:192-9. [DOI: 10.1002/ep.12440] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
60 Chakraborty S, Chelli VR, Das RK, Giri AS, Golder AK. Bio-mediated silver nanoparticle synthesis: mechanism and microbial inactivation. Toxicological & Environmental Chemistry 2017;99:434-47. [DOI: 10.1080/02772248.2016.1214271] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
61 Roychoudhury P, Bhattacharya A, Dasgupta A, Pal R. Biogenic synthesis of gold nanoparticle using fractioned cellular components from eukaryotic algae and cyanobacteria: Green synthesis of gold nanoparticles. Phycological Res 2016;64:133-40. [DOI: 10.1111/pre.12127] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
62 Dauthal P, Mukhopadhyay M. AuPd bimetallic nanoparticles: Single step biofabrication, structural characterization and catalytic activity. Journal of Industrial and Engineering Chemistry 2016;35:45-53. [DOI: 10.1016/j.jiec.2015.12.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
63 Basavegowda N, Mishra K, Lee YR, Kim SH. Antioxidant and Anti-tyrosinase Activities of Palladium Nanoparticles Synthesized Using Saururus chinensis. J Clust Sci 2016;27:733-44. [DOI: 10.1007/s10876-016-0984-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
64 Qazi F, Hussain Z, Tahir MN. Advances in biogenic synthesis of palladium nanoparticles. RSC Adv 2016;6:60277-86. [DOI: 10.1039/c6ra11695g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
65 Rastogi L, Beedu SR, Kora AJ. Facile synthesis of palladium nanocatalyst using gum kondagogu ( Cochlospermum gossypium ): a natural biopolymer. IET nanobiotechnol 2015;9:362-7. [DOI: 10.1049/iet-nbt.2014.0055] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
66 Kuppusamy S, Thavamani P, Megharaj M, Naidu R. Bioremediation potential of natural polyphenol rich green wastes: A review of current research and recommendations for future directions. Environmental Technology & Innovation 2015;4:17-28. [DOI: 10.1016/j.eti.2015.04.001] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 6.7] [Reference Citation Analysis]
67 Ganaie SU, Abbasi T, Abbasi SA. Low-cost, environment-friendly synthesis of palladium nanoparticles by utilizing a terrestrial weed Antigonon leptopus. Particulate Science and Technology 2015;34:201-8. [DOI: 10.1080/02726351.2015.1058874] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
68 Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S. RETRACTED: Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015;143:158-64. [DOI: 10.1016/j.saa.2015.02.011] [Cited by in Crossref: 127] [Cited by in F6Publishing: 101] [Article Influence: 18.1] [Reference Citation Analysis]
69 Cao Z, Chen H, Zhu S, Zhang W, Wu X, Shan G, Ziener U, Qi D. Preparation of Janus Pd/SiO₂ nanocomposite particles in inverse miniemulsions. Langmuir 2015;31:4341-50. [PMID: 25804935 DOI: 10.1021/acs.langmuir.5b00437] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
70 Chen H, Huang D, Su X, Huang J, Jing X, Du M, Sun D, Jia L, Li Q. Fabrication of Pd/γ-Al2O3 catalysts for hydrogenation of 2-ethyl-9,10-anthraquinone assisted by plant-mediated strategy. Chemical Engineering Journal 2015;262:356-63. [DOI: 10.1016/j.cej.2014.09.117] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.7] [Reference Citation Analysis]
71 Gavade N, Kadam A, Suwarnkar M, Ghodake V, Garadkar K. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015;136:953-60. [DOI: 10.1016/j.saa.2014.09.118] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 9.3] [Reference Citation Analysis]
72 Dauthal P, Mukhopadhyay M. Biofabrication, characterization, and possible bio-reduction mechanism of platinum nanoparticles mediated by agro-industrial waste and their catalytic activity. Journal of Industrial and Engineering Chemistry 2015;22:185-91. [DOI: 10.1016/j.jiec.2014.07.009] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
73 Dauthal P, Mukhopadhyay M. Agro-industrial waste-mediated synthesis and characterization of gold and silver nanoparticles and their catalytic activity for 4-nitroaniline hydrogenation. Korean J Chem Eng 2015;32:837-44. [DOI: 10.1007/s11814-014-0277-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
74 Basavegowda N, Mishra K, Lee YR. Ultrasonic-assisted green synthesis of palladium nanoparticles and their nanocatalytic application in multicomponent reaction. New J Chem 2015;39:972-7. [DOI: 10.1039/c4nj01543f] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
75 Edayadulla N, Basavegowda N, Lee YR. Green synthesis and characterization of palladium nanoparticles and their catalytic performance for the efficient synthesis of biologically interesting di(indolyl)indolin-2-ones. Journal of Industrial and Engineering Chemistry 2015;21:1365-72. [DOI: 10.1016/j.jiec.2014.06.007] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
76 Veerakumar P, Madhu R, Chen S, Veeramani V, Hung C, Tang P, Wang C, Liu S. Highly stable and active palladium nanoparticles supported on porous carbon for practical catalytic applications. J Mater Chem A 2014;2:16015-22. [DOI: 10.1039/c4ta03097d] [Cited by in Crossref: 67] [Cited by in F6Publishing: 67] [Article Influence: 8.4] [Reference Citation Analysis]