BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huynh VT, Binauld S, de Souza PL, Stenzel MH. Acid Degradable Cross-Linked Micelles for the Delivery of Cisplatin: A Comparison with Nondegradable Cross-Linker. Chem Mater 2012;24:3197-211. [DOI: 10.1021/cm301556b] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Moad G. Dithioesters in RAFT Polymerization. In: Moad G, Rizzardo E, editors. RAFT Polymerization. Wiley; 2021. pp. 223-358. [DOI: 10.1002/9783527821358.ch8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
2 Sohn H, Shin HW, Lee SM. Metal-Mediated Morphology Regulation of Self-Assembled Double-Hydrophilic Block Copolymers. ACS Macro Lett 2020;9:600-5. [PMID: 35648493 DOI: 10.1021/acsmacrolett.0c00120] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
3 Gruber A, Navarro L, Klinger D. Reactive Precursor Particles as Synthetic Platform for the Generation of Functional Nanoparticles, Nanogels, and Microgels. Adv Mater Interfaces 2020;7:1901676. [DOI: 10.1002/admi.201901676] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
4 Guo X, Carter MCD, Appadoo V, Lynn DM. Tunable and Selective Degradation of Amine-Reactive Multilayers in Acidic Media. Biomacromolecules 2019;20:3464-74. [DOI: 10.1021/acs.biomac.9b00756] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
5 Dag A, Omurtag Ozgen PS, Atasoy S. Glyconanoparticles for Targeted Tumor Therapy of Platinum Anticancer Drug. Biomacromolecules 2019;20:2962-72. [DOI: 10.1021/acs.biomac.9b00528] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
6 Deirram N, Zhang C, Kermaniyan SS, Johnston APR, Such GK. pH‐Responsive Polymer Nanoparticles for Drug Delivery. Macromol Rapid Commun 2019;40:1800917. [DOI: 10.1002/marc.201800917] [Cited by in Crossref: 181] [Cited by in F6Publishing: 183] [Article Influence: 60.3] [Reference Citation Analysis]
7 Abdelaziz H, Abdelmoneem M, Abdelsalam K, Freag M, Elkhodairy K, Elzoghby AO. Poly(Amino Acid) Nanoparticles as a Promising Tool for Anticancer Therapeutics. Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics 2019. [DOI: 10.1016/b978-0-12-816963-6.00009-1] [Reference Citation Analysis]
8 Chen T, Hua L, Zhang S, Xu Z, Zhou L, Wang J. Synthesis of zinc(II) complex-containing thermo-responsive copolymer based on activated ester functionalization and its catalysis application. European Polymer Journal 2018;109:473-82. [DOI: 10.1016/j.eurpolymj.2018.10.022] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
9 Bai Y, Liu CP, Song X, Zhuo L, Bu H, Tian W. Photo- and pH- Dual-Responsive β-Cyclodextrin-Based Supramolecular Prodrug Complex Self-Assemblies for Programmed Drug Delivery. Chem Asian J 2018;13:3903-11. [DOI: 10.1002/asia.201801366] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
10 Zhang K, Liu J, Ma X, Lei L, Li Y, Yang H, Lei Z. Temperature, pH, and reduction triple-stimuli-responsive inner-layer crosslinked micelles as nanocarriers for controlled release. J Appl Polym Sci 2018;135:46714. [DOI: 10.1002/app.46714] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
11 Zheng L, Zhang X, Wang Y, Liu F, Peng J, Zhao X, Yang H, Ma L, Wang B, Chang C, Wei H. Fabrication of Acidic pH-Cleavable Polymer for Anticancer Drug Delivery Using a Dual Functional Monomer. Biomacromolecules 2018;19:3874-82. [PMID: 30107727 DOI: 10.1021/acs.biomac.8b01001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
12 Zheng L, Wang Y, Zhang X, Ma L, Wang B, Ji X, Wei H. Fabrication of Hyperbranched Block-Statistical Copolymer-Based Prodrug with Dual Sensitivities for Controlled Release. Bioconjugate Chem 2018;29:190-202. [DOI: 10.1021/acs.bioconjchem.7b00699] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
13 Louage B, De Wever O, Hennink WE, De Geest BG. Developments and future clinical outlook of taxane nanomedicines. Journal of Controlled Release 2017;253:137-52. [DOI: 10.1016/j.jconrel.2017.03.027] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 5.2] [Reference Citation Analysis]
14 Xiong D, Yao N, Gu H, Wang J, Zhang L. Stimuli-responsive shell cross-linked micelles from amphiphilic four-arm star copolymers as potential nanocarriers for “pH/redox-triggered” anticancer drug release. Polymer 2017;114:161-72. [DOI: 10.1016/j.polymer.2017.03.002] [Cited by in Crossref: 48] [Cited by in F6Publishing: 37] [Article Influence: 9.6] [Reference Citation Analysis]
15 Liu X, Liu B, Gao S, Wang Z, Tian Y, Wu M, Jiang S, Niu Z. Glyco-decorated tobacco mosaic virus as a vector for cisplatin delivery. J Mater Chem B 2017;5:2078-85. [PMID: 32263681 DOI: 10.1039/c7tb00100b] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
16 Moad G. RAFT polymerization to form stimuli-responsive polymers. Polym Chem 2017;8:177-219. [DOI: 10.1039/c6py01849a] [Cited by in Crossref: 233] [Cited by in F6Publishing: 236] [Article Influence: 46.6] [Reference Citation Analysis]
17 Lee W, Loo C, Young PM, Traini D, Rohanizadeh R. The Development and Achievement of Polymeric Nanoparticles for Cancer Drug Treatment. Particulate Technology for Delivery of Therapeutics 2017. [DOI: 10.1007/978-981-10-3647-7_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
18 Kim YH, Cao XT, Hong S, Gal YS, Lim KT. Redox-responsive core cross-linked micelles of poly(ethylene oxide)- b -poly(glycidyl methacrylate) by click chemistry. Molecular Crystals and Liquid Crystals 2016;635:107-13. [DOI: 10.1080/15421406.2016.1200370] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
19 Bao Y, Boissenot T, Guégain E, Desmaële D, Mura S, Couvreur P, Nicolas J. Simple Synthesis of Cladribine-Based Anticancer Polymer Prodrug Nanoparticles with Tunable Drug Delivery Properties. Chem Mater 2016;28:6266-75. [DOI: 10.1021/acs.chemmater.6b02502] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
20 Cao XT, Kim YH, Park JM, Lim KT. One-pot syntheses of dual-responsive core cross-linked polymeric micelles and covalently entrapped drug by click chemistry. European Polymer Journal 2016;78:264-73. [DOI: 10.1016/j.eurpolymj.2016.03.039] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
21 Liu X, Yang G, Zhang L, Liu Z, Cheng Z, Zhu X. Photosensitizer cross-linked nano-micelle platform for multimodal imaging guided synergistic photothermal/photodynamic therapy. Nanoscale 2016;8:15323-39. [DOI: 10.1039/c6nr04835h] [Cited by in Crossref: 63] [Cited by in F6Publishing: 63] [Article Influence: 10.5] [Reference Citation Analysis]
22 Tian M, Cheng R, Zhang J, Liu Z, Liu Z, Jiang J. Amphiphilic Polymer Micellar Disruption Based on Main-Chain Photodegradation. Langmuir 2016;32:12-8. [DOI: 10.1021/acs.langmuir.5b03856] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
23 Xu L, Li N, Zhang B, Chen J, Kang E. PEGylated Fluorescent Nanoparticles from One-Pot Atom Transfer Radical Polymerization and “Click Chemistry”. Polymers 2015;7:2119-30. [DOI: 10.3390/polym7101504] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
24 Das A, Theato P. Activated Ester Containing Polymers: Opportunities and Challenges for the Design of Functional Macromolecules. Chem Rev 2016;116:1434-95. [DOI: 10.1021/acs.chemrev.5b00291] [Cited by in Crossref: 279] [Cited by in F6Publishing: 285] [Article Influence: 39.9] [Reference Citation Analysis]
25 Shirbin SJ, Ladewig K, Fu Q, Klimak M, Zhang X, Duan W, Qiao GG. Cisplatin-Induced Formation of Biocompatible and Biodegradable Polypeptide-Based Vesicles for Targeted Anticancer Drug Delivery. Biomacromolecules 2015;16:2463-74. [PMID: 26166192 DOI: 10.1021/acs.biomac.5b00692] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 5.4] [Reference Citation Analysis]
26 Kim J, Pramanick S, Lee D, Park H, Kim WJ. Polymeric biomaterials for the delivery of platinum-based anticancer drugs. Biomater Sci 2015;3:1002-17. [PMID: 26221935 DOI: 10.1039/c5bm00039d] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 9.1] [Reference Citation Analysis]
27 Cao Y, Zou X, Xiong S, Li Y, Shen Y, Hu X, Wang L. Supramolecular Prodrug Micelles Constructed by Drug-Drug Conjugate with Water Soluble Pillar[6]arene for Controllable and Rapid Drug Release. Chin J Chem 2015;33:329-34. [DOI: 10.1002/cjoc.201400844] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
28 Cao Y, Li Y, Hu X, Zou X, Xiong S, Lin C, Wang L. Supramolecular Nanoparticles Constructed by DOX-Based Prodrug with Water-Soluble Pillar[6]arene for Self-Catalyzed Rapid Drug Release. Chem Mater 2015;27:1110-9. [DOI: 10.1021/cm504445r] [Cited by in Crossref: 86] [Cited by in F6Publishing: 86] [Article Influence: 12.3] [Reference Citation Analysis]
29 Kawamura M, Kanazawa A, Kanaoka S, Aoshima S. Sequence-controlled degradable polymers by controlled cationic copolymerization of vinyl ethers and aldehydes: precise placement of cleavable units at predetermined positions. Polym Chem 2015;6:4102-8. [DOI: 10.1039/c5py00493d] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
30 Liu H, Li C, Tang D, An X, Guo Y, Zhao Y. Multi-responsive graft copolymer micelles comprising acetal and disulfide linkages for stimuli-triggered drug delivery. J Mater Chem B 2015;3:3959-71. [DOI: 10.1039/c5tb00473j] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
31 Fu Q, Xu J, Ladewig K, Henderson TMA, Qiao GG. Degradable cross-linked polymer vesicles for the efficient delivery of platinum drugs. Polym Chem 2015;6:35-43. [DOI: 10.1039/c4py01123f] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
32 Tabatabaei Rezaei SJ, Amani V, Nabid MR, Safari N, Niknejad H. Folate-decorated polymeric Pt( ii ) prodrug micelles for targeted intracellular delivery and cytosolic glutathione-triggered release of platinum anticancer drugs. Polym Chem 2015;6:2844-53. [DOI: 10.1039/c5py00156k] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 7.1] [Reference Citation Analysis]
33 Scarano W, de Souza P, Stenzel MH. Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multidrug-resistant cancer. Biomater Sci 2015;3:163-74. [PMID: 26214199 DOI: 10.1039/c4bm00272e] [Cited by in Crossref: 107] [Cited by in F6Publishing: 110] [Article Influence: 13.4] [Reference Citation Analysis]
34 Pourmoazzen Z, Bagheri M, Akbar Entezami A. Cholesteryl-modified poly (monomethyl itaconate)s micelles as nano-carriers for pH-responsive drug delivery. Polym J 2014;46:806-12. [DOI: 10.1038/pj.2014.71] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
35 Maksimenko A, Bui DT, Desmaële D, Couvreur P, Nicolas J. Significant Tumor Growth Inhibition from Naturally Occurring Lipid-Containing Polymer Prodrug Nanoparticles Obtained by the Drug-Initiated Method. Chem Mater 2014;26:3606-9. [DOI: 10.1021/cm501500k] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
36 Ahmed M, Narain R. Applications of Bioconjugates. Chemistry of Bioconjugates 2014. [DOI: 10.1002/9781118775882.ch19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
37 Zhuang J, Chacko R, Amado Torres DF, Wang H, Thayumanavan S. Dual Stimuli - Dual Response Nanoassemblies Prepared from a Simple Homopolymer. ACS Macro Lett 2014;3:1-5. [PMID: 24516780 DOI: 10.1021/mz400515s] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.8] [Reference Citation Analysis]
38 Wang J, Zhao D, Wang Y, Wu G. Imine bond cross-linked poly(ethylene glycol)-block-poly(aspartamide) complex micelle as a carrier to deliver anticancer drugs. RSC Adv 2014;4:11244. [DOI: 10.1039/c3ra46160b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
39 Delplace V, Couvreur P, Nicolas J. Recent trends in the design of anticancer polymer prodrug nanocarriers. Polym Chem 2014;5:1529-44. [DOI: 10.1039/c3py01384g] [Cited by in Crossref: 217] [Cited by in F6Publishing: 217] [Article Influence: 27.1] [Reference Citation Analysis]
40 Miao K, Shao W, Liu H, Zhao Y. Synthesis and properties of a dually cleavable graft copolymer comprising pendant acetal linkages. Polym Chem 2014;5:1191-201. [DOI: 10.1039/c3py01049j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
41 Peng J, Qi T, Liao J, Chu B, Yang Q, Li W, Qu Y, Luo F, Qian Z. Controlled release of cisplatin from pH-thermal dual responsive nanogels. Biomaterials 2013;34:8726-40. [PMID: 23948167 DOI: 10.1016/j.biomaterials.2013.07.092] [Cited by in Crossref: 96] [Cited by in F6Publishing: 95] [Article Influence: 10.7] [Reference Citation Analysis]
42 Meng L, Huang W, Wang D, Huang X, Zhu X, Yan D. Chitosan-based nanocarriers with pH and light dual response for anticancer drug delivery. Biomacromolecules. 2013;14:2601-2610. [PMID: 23819825 DOI: 10.1021/bm400451v] [Cited by in Crossref: 105] [Cited by in F6Publishing: 108] [Article Influence: 11.7] [Reference Citation Analysis]
43 Ahmed M, Mamba S, Yang X, Darkwa J, Kumar P, Narain R. Synthesis and Evaluation of Polymeric Gold Glyco-Conjugates as Anti-Cancer Agents. Bioconjugate Chem 2013;24:979-86. [DOI: 10.1021/bc4000993] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 3.8] [Reference Citation Analysis]
44 Scarano W, Duong HT, Lu H, De Souza PL, Stenzel MH. Folate conjugation to polymeric micelles via boronic acid ester to deliver platinum drugs to ovarian cancer cell lines. Biomacromolecules 2013;14:962-75. [PMID: 23469757 DOI: 10.1021/bm400121q] [Cited by in Crossref: 94] [Cited by in F6Publishing: 96] [Article Influence: 10.4] [Reference Citation Analysis]
45 Huynh VT, Pearson S, Noy JM, Abboud A, Utama RH, Lu H, Stenzel MH. Nanodiamonds with Surface Grafted Polymer Chains as Vehicles for Cell Imaging and Cisplatin Delivery: Enhancement of Cell Toxicity by POEGMEMA Coating. ACS Macro Lett 2013;2:246-50. [PMID: 35581890 DOI: 10.1021/mz4000199] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.3] [Reference Citation Analysis]
46 Binauld S, Stenzel MH. Acid-degradable polymers for drug delivery: a decade of innovation. Chem Commun 2013;49:2082. [DOI: 10.1039/c2cc36589h] [Cited by in Crossref: 309] [Cited by in F6Publishing: 312] [Article Influence: 34.3] [Reference Citation Analysis]
47 Shao W, Miao K, Liu H, Ye C, Du J, Zhao Y. Acid and reduction dually cleavable amphiphilic comb-like copolymer micelles for controlled drug delivery. Polym Chem 2013;4:3398. [DOI: 10.1039/c3py00252g] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 4.1] [Reference Citation Analysis]
48 Binauld S, Scarano W, Stenzel MH. pH-Triggered Release of Platinum Drugs Conjugated to Micelles via an Acid-Cleavable Linker. Macromolecules 2012;45:6989-99. [DOI: 10.1021/ma3012812] [Cited by in Crossref: 63] [Cited by in F6Publishing: 65] [Article Influence: 6.3] [Reference Citation Analysis]