BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Meng L, Huang W, Wang D, Huang X, Zhu X, Yan D. Chitosan-based nanocarriers with pH and light dual response for anticancer drug delivery. Biomacromolecules. 2013;14:2601-2610. [PMID: 23819825 DOI: 10.1021/bm400451v] [Cited by in Crossref: 105] [Cited by in F6Publishing: 108] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Farjadian F, Ghasemi S, Akbarian M, Hoseini-ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022;10:952675. [DOI: 10.3389/fchem.2022.952675] [Reference Citation Analysis]
2 Mena-Giraldo P, Orozco J. Photosensitive Polymeric Janus Micromotor for Enzymatic Activity Protection and Enhanced Substrate Degradation. ACS Appl Mater Interfaces 2022;14:5897-907. [PMID: 34978178 DOI: 10.1021/acsami.1c14663] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
3 Wang G, Huang P, Wang L, Chen X, Zhou Y, Huang W, Yan D. ROS‐responsive thioether‐containing hyperbranched polymer micelles for light‐triggered drug release. SmartMat. [DOI: 10.1002/smm2.1092] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 Mena-Giraldo P, Orozco J. Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers (Basel) 2021;13:3920. [PMID: 34833219 DOI: 10.3390/polym13223920] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
5 Li M, Zhao Y, Zhang W, Zhang S, Zhang S. Multiple-therapy strategies via polysaccharides-based nano-systems in fighting cancer. Carbohydr Polym 2021;269:118323. [PMID: 34294335 DOI: 10.1016/j.carbpol.2021.118323] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Murugan B, Sagadevan S, Fatimah I, Oh W, Motalib Hossain MA, Johan MR. Smart stimuli-responsive nanocarriers for the cancer therapy – nanomedicine. Nanotechnology Reviews 2021;10:933-53. [DOI: 10.1515/ntrev-2021-0067] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
7 McCarthy PC, Zhang Y, Abebe F. Recent Applications of Dual-Stimuli Responsive Chitosan Hydrogel Nanocomposites as Drug Delivery Tools. Molecules 2021;26:4735. [PMID: 34443323 DOI: 10.3390/molecules26164735] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
8 Sun Q, Hu X, Zheng H, An Y, Qu J, Zhang Z, Khan S. Permanganate release from silica-based hollow mesoporous coagulant combined with UV for spatiotemporal enrichment and degradation of diclofenac sodium. Chemosphere 2021;284:131306. [PMID: 34225128 DOI: 10.1016/j.chemosphere.2021.131306] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Khan A, Alamry KA. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydr Res 2021;506:108368. [PMID: 34111686 DOI: 10.1016/j.carres.2021.108368] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 13.5] [Reference Citation Analysis]
10 Herdiana Y, Wathoni N, Shamsuddin S, Joni IM, Muchtaridi M. Chitosan-Based Nanoparticles of Targeted Drug Delivery System in Breast Cancer Treatment. Polymers (Basel) 2021;13:1717. [PMID: 34074020 DOI: 10.3390/polym13111717] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
11 Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Elaissari A. pH ‐sensitive polymers: Classification and some fine potential applications. Polym Adv Technol 2021;32:1455-84. [DOI: 10.1002/pat.5230] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 21.5] [Reference Citation Analysis]
12 Chen H, Zhi H, Liang J, Yu M, Cui B, Zhao X, Sun C, Wang Y, Cui H, Zeng Z. Development of leaf-adhesive pesticide nanocapsules with pH-responsive release to enhance retention time on crop leaves and improve utilization efficiency. J Mater Chem B 2021;9:783-92. [PMID: 33333547 DOI: 10.1039/d0tb02430a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
13 Verma N, Thapa K, Dua K. Material and strategies used in oncology drug delivery. Advanced Drug Delivery Systems in the Management of Cancer 2021. [DOI: 10.1016/b978-0-323-85503-7.00015-8] [Reference Citation Analysis]
14 Mosaiab T, Farr DC, Kiefel MJ, Houston TA. Carbohydrate Modified Non-Metallic Nanomaterials and Their Application Against Infectious Diseases. Comprehensive Glycoscience 2021. [DOI: 10.1016/b978-0-12-819475-1.00096-1] [Reference Citation Analysis]
15 Arora S, Trivedi R, Lamptey RN, Chaulagain B, Layek B, Singh J. Smart biopolymers for controlled drug delivery applications. Tailor-Made and Functionalized Biopolymer Systems 2021. [DOI: 10.1016/b978-0-12-821437-4.00005-0] [Reference Citation Analysis]
16 Ryu JH, Yoon HY, Sun IC, Kwon IC, Kim K. Tumor-Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. Adv Mater 2020;32:e2002197. [PMID: 33051905 DOI: 10.1002/adma.202002197] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
17 Huguet-Casquero A, Gainza E, Pedraz JL. Towards Green Nanoscience: From extraction to nanoformulation. Biotechnol Adv 2021;46:107657. [PMID: 33181241 DOI: 10.1016/j.biotechadv.2020.107657] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
18 Feng S, Wang J, Zhang L, Chen Q, Yue W, Ke N, Xie H. Coumarin-Containing Light-Responsive Carboxymethyl Chitosan Micelles as Nanocarriers for Controlled Release of Pesticide. Polymers (Basel) 2020;12:E2268. [PMID: 33019778 DOI: 10.3390/polym12102268] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
19 Dariva CG, Figueiredo JPH, Ferreira C, Laranjo M, Botelho MF, Fonseca AC, Coelho JFJ, Serra AC. Development of red-light cleavable PEG-PLA nanoparticles as delivery systems for cancer therapy. Colloids Surf B Biointerfaces 2020;196:111354. [PMID: 32971440 DOI: 10.1016/j.colsurfb.2020.111354] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
20 Wong KH, Lu A, Chen X, Yang Z. Natural Ingredient-Based Polymeric Nanoparticles for Cancer Treatment. Molecules 2020;25:E3620. [PMID: 32784890 DOI: 10.3390/molecules25163620] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
21 Zhang J, Tang X, Huang C, Liu Z, Ye Y. Oleic Acid Copolymer as A Novel Upconversion Nanomaterial to Make Doxorubicin-Loaded Nanomicelles with Dual Responsiveness to pH and NIR. Pharmaceutics 2020;12:E680. [PMID: 32698309 DOI: 10.3390/pharmaceutics12070680] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 De Souza C, Ma Z, Lindstrom AR, Chatterji BP. Nanomaterials as potential transporters of HDAC inhibitors. Medicine in Drug Discovery 2020;6:100040. [DOI: 10.1016/j.medidd.2020.100040] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
23 Liu Q, Yang D, Shang T, Guo L, Yang B, Xu X. Chain conformation transition induced host–guest assembly between triple helical curdlan and β -CD for drug delivery. Biomater Sci 2020;8:1638-48. [DOI: 10.1039/c9bm01439j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
24 Sabourian P, Tavakolian M, Yazdani H, Frounchi M, van de Ven TG, Maysinger D, Kakkar A. Stimuli-responsive chitosan as an advantageous platform for efficient delivery of bioactive agents. Journal of Controlled Release 2020;317:216-31. [DOI: 10.1016/j.jconrel.2019.11.029] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 17.3] [Reference Citation Analysis]
25 Jazani AM, Oh JK. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym Chem 2020;11:2934-54. [DOI: 10.1039/d0py00234h] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
26 Lin F, Jia HR, Wu FG. Glycol Chitosan: A Water-Soluble Polymer for Cell Imaging and Drug Delivery. Molecules 2019;24:E4371. [PMID: 31795385 DOI: 10.3390/molecules24234371] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
27 Mosaiab T, Farr DC, Kiefel MJ, Houston TA. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv Drug Deliv Rev 2019;151-152:94-129. [PMID: 31513827 DOI: 10.1016/j.addr.2019.09.002] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 10.3] [Reference Citation Analysis]
28 Wang G, Huang P, Qi M, Li C, Fan W, Zhou Y, Zhang R, Huang W, Yan D. Facile Synthesis of a H2O2-Responsive Alternating Copolymer Bearing Thioether Side Groups for Drug Delivery and Controlled Release. ACS Omega 2019;4:17600-6. [PMID: 31656936 DOI: 10.1021/acsomega.9b02923] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
29 Kim MW, Niidome T, Lee R. Glycol Chitosan-Docosahexaenoic Acid Liposomes for Drug Delivery: Synergistic Effect of Doxorubicin-Rapamycin in Drug-Resistant Breast Cancer. Mar Drugs 2019;17:E581. [PMID: 31614820 DOI: 10.3390/md17100581] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
30 Chen L, Xu S, Li W, Ren T, Yuan L, Zhang S, Zhang XB. Tumor-acidity activated surface charge conversion of two-photon fluorescent nanoprobe for enhanced cellular uptake and targeted imaging of intracellular hydrogen peroxide. Chem Sci 2019;10:9351-7. [PMID: 32110299 DOI: 10.1039/c9sc03781k] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
31 Tian J, Zhang W. Synthesis, self-assembly and applications of functional polymers based on porphyrins. Progress in Polymer Science 2019;95:65-117. [DOI: 10.1016/j.progpolymsci.2019.05.002] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 20.8] [Reference Citation Analysis]
32 Wang X, Liu Z, Huang L. pH and thermo dual-responsive starch-g-P(DEAEMA-co-PEGMA): Synthesis via SET-LRP, self-assembly and drug release behaviors. Reactive and Functional Polymers 2019;141:165-71. [DOI: 10.1016/j.reactfunctpolym.2019.05.011] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
33 Choi Y, Lim S, Yoon HY, Kim B, Kwon IC, Kim K. Tumor-targeting glycol chitosan nanocarriers: overcoming the challenges posed by chemotherapeutics. Expert Opinion on Drug Delivery 2019;16:835-46. [DOI: 10.1080/17425247.2019.1648426] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
34 Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 2019;6:23. [PMID: 31304563 DOI: 10.1186/s40580-019-0193-2] [Cited by in Crossref: 262] [Cited by in F6Publishing: 273] [Article Influence: 65.5] [Reference Citation Analysis]
35 Hailemeskel BZ, Hsu WH, Addisu KD, Andrgie AT, Chou HY, Lai JY, Tsai HC. Diselenide linkage containing triblock copolymer nanoparticles based on Bi(methoxyl poly(ethylene glycol))-poly(ε-carprolactone): Selective intracellular drug delivery in cancer cells. Mater Sci Eng C Mater Biol Appl 2019;103:109803. [PMID: 31349440 DOI: 10.1016/j.msec.2019.109803] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
36 Zhang Y, Cao X, Liang T, Tong Z. Acid/light dual-responsive biodegradable polymeric nanocarriers for efficient intracellular drug delivery. Polym Bull 2019;76:1775-92. [DOI: 10.1007/s00289-018-2470-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
37 Hu X, Gao Z, Tan H, Zhang L. A pH-Responsive Multifunctional Nanocarrier in the Application of Chemo-Photodynamic Therapy. Journal of Nanomaterials 2019;2019:1-12. [DOI: 10.1155/2019/3898564] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
38 Yang J, Wang Y, Li M, Wu H, Zhen T, Xiong L, Sun Q. pH-Sensitive Chitosan-Sodium Phytate Core-Shell Hollow Beads and Nanocapsules for the Encapsulation of Active Ingredients. J Agric Food Chem 2019;67:2894-905. [PMID: 30789724 DOI: 10.1021/acs.jafc.8b03919] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
39 Alp E, Damkaci F, Guven E, Tenniswood M. Starch nanoparticles for delivery of the histone deacetylase inhibitor CG-1521 in breast cancer treatment. Int J Nanomedicine 2019;14:1335-46. [PMID: 30863064 DOI: 10.2147/IJN.S191837] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
40 Zohreh N, Alipour S, Hosseini SH, Xaba MS, Meijboom R, Ramandi MF, Gholipour N, Akhlaghi M. Natural Salep/PEGylated Chitosan Double Layer toward a More Sustainable pH-Responsive Magnetite Nanocarrier for Targeted Delivery of DOX and Hyperthermia Application. ACS Appl Nano Mater 2019;2:853-66. [DOI: 10.1021/acsanm.8b02076] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
41 Naveen C, Shastri NR. Polysaccharide nanomicelles as drug carriers. Polysaccharide Carriers for Drug Delivery 2019. [DOI: 10.1016/b978-0-08-102553-6.00012-x] [Reference Citation Analysis]
42 Johnson RP, Preman NK. Dual and multistimuli-responsive block copolymers for drug delivery applications. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications 2019. [DOI: 10.1016/b978-0-08-101995-5.00011-8] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
43 Chien Y, Chan KK, Anderson T, Kong KV, Ng BK, Yong K. Advanced Near-Infrared Light-Responsive Nanomaterials as Therapeutic Platforms for Cancer Therapy. Adv Therap 2019;2:1800090. [DOI: 10.1002/adtp.201800090] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
44 Barrio J, Piñol M, Oriol L. Light‐Controlled Encapsulation and Release Enabled by Photoresponsive Polymer Self‐Assemblies. In: Li Q, editor. Photoactive Functional Soft Materials. Wiley; 2019. pp. 413-48. [DOI: 10.1002/9783527816774.ch13] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
45 Carvalho SM, Mansur AA, Capanema NS, Carvalho IC, Chagas P, de Oliveira LCA, Mansur HS. Synthesis and in vitro assessment of anticancer hydrogels composed by carboxymethylcellulose-doxorubicin as potential transdermal delivery systems for treatment of skin cancer. Journal of Molecular Liquids 2018;266:425-40. [DOI: 10.1016/j.molliq.2018.06.085] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
46 Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018;3:7. [PMID: 29560283 DOI: 10.1038/s41392-017-0004-3] [Cited by in Crossref: 867] [Cited by in F6Publishing: 930] [Article Influence: 173.4] [Reference Citation Analysis]
47 Xie Y, Chen S, Qian Y, Zhao W, Zhao C. Photo-responsive membrane surface: Switching from bactericidal to bacteria-resistant property. Materials Science and Engineering: C 2018;84:52-9. [DOI: 10.1016/j.msec.2017.11.036] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
48 Yang X, Shi X, D'arcy R, Tirelli N, Zhai G. Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. Journal of Controlled Release 2018;272:114-44. [DOI: 10.1016/j.jconrel.2017.12.033] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 9.2] [Reference Citation Analysis]
49 Cao P, Naguib M, Du Z, Stacy E, Li B, Hong T, Xing K, Voylov DN, Li J, Wood DL, Sokolov AP, Nanda J, Saito T. Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries. ACS Appl Mater Interfaces 2018;10:3470-8. [DOI: 10.1021/acsami.7b13205] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 12.4] [Reference Citation Analysis]
50 Tao Y, Liu S, Zhang Y, Chi Z, Xu J. A pH-responsive polymer based on dynamic imine bonds as a drug delivery material with pseudo target release behavior. Polym Chem 2018;9:878-84. [DOI: 10.1039/c7py02108a] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 12.0] [Reference Citation Analysis]
51 Fathi M, Sahandi Zangabad P, Majidi S, Barar J, Erfan-Niya H, Omidi Y. Stimuli-responsive chitosan-based nanocarriers for cancer therapy. Bioimpacts 2017;7:269-77. [PMID: 29435435 DOI: 10.15171/bi.2017.32] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 7.2] [Reference Citation Analysis]
52 Li Y, Song L, Lin J, Ma J, Pan Z, Zhang Y, Su G, Ye S, Luo FH, Zhu X, Hou Z. Programmed Nanococktail Based on pH-Responsive Function Switch for Self-Synergistic Tumor-Targeting Therapy. ACS Appl Mater Interfaces 2017;9:39127-42. [PMID: 29039650 DOI: 10.1021/acsami.7b08218] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
53 Tian J, Xu L, Xue Y, Jiang X, Zhang W. Enhancing Photochemical Internalization of DOX through a Porphyrin-based Amphiphilic Block Copolymer. Biomacromolecules. 2017;18:3992-4001. [PMID: 29035561 DOI: 10.1021/acs.biomac.7b01037] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 6.2] [Reference Citation Analysis]
54 Kim SE, Kim HJ, Rhee JK, Park K. Versatile Chemical Derivatizations to Design Glycol Chitosan-Based Drug Carriers. Molecules 2017;22:E1662. [PMID: 28981451 DOI: 10.3390/molecules22101662] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
55 Hang C, Zou Y, Zhong Y, Zhong Z, Meng F. NIR and UV-responsive degradable hyaluronic acid nanogels for CD44-targeted and remotely triggered intracellular doxorubicin delivery. Colloids and Surfaces B: Biointerfaces 2017;158:547-55. [DOI: 10.1016/j.colsurfb.2017.07.041] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 7.0] [Reference Citation Analysis]
56 Chen D, Huang Y, Xu S, Jiang H, Wu J, Jin X, Zhu X. Self-Assembled Polyprodrug Amphiphile for Subcutaneous Xenograft Tumor Inhibition with Prolonged Acting Time In Vivo. Macromol Biosci 2017;17. [PMID: 28737832 DOI: 10.1002/mabi.201700174] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
57 Owonubi S, Agwuncha S, Mukwevho E, Aderibigbe B, Sadiku E, Biotidara O, Varaprasad K. Application of Hydrogel Biocomposites for Multiple Drug Delivery. Handbook of Composites from Renewable Materials 2017. [DOI: 10.1002/9781119441632.ch110] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
58 Shen H, Xia Y, Qin Z, Wu J, Zhang L, Lu Y, Xia X, Xu W. Photoresponsive biodegradable poly(carbonate)s with pendent o -nitrobenzyl ester. J Polym Sci Part A: Polym Chem 2017;55:2770-80. [DOI: 10.1002/pola.28679] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
59 Li C, Pan R, Li P, Guan Q, Ao J, Wang K, Xu L, Liang X, Jin X, Zhang C, Zhu X. Hydrogen Peroxide-Responsive Nanoprobe Assists Circulating Tumor Cell Identification and Colorectal Cancer Diagnosis. Anal Chem 2017;89:5966-75. [DOI: 10.1021/acs.analchem.7b00497] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
60 Karthik S, Jana A, Selvakumar M, Venkatesh Y, Paul A, Shah SS, Singh NDP. Coumarin polycaprolactone polymeric nanoparticles: light and tumor microenvironment activated cocktail drug delivery. J Mater Chem B 2017;5:1734-41. [DOI: 10.1039/c6tb02944b] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
61 Hiruta Y, Kanda Y, Katsuyama N, Kanazawa H. Dual temperature- and pH-responsive polymeric micelle for selective and efficient two-step doxorubicin delivery. RSC Adv 2017;7:29540-9. [DOI: 10.1039/c7ra03579a] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
62 Barman S, Das J, Biswas S, Maiti TK, Pradeep Singh ND. A spiropyran–coumarin platform: an environment sensitive photoresponsive drug delivery system for efficient cancer therapy. J Mater Chem B 2017;5:3940-4. [DOI: 10.1039/c7tb00379j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
63 Lee W, Loo C, Young PM, Traini D, Rohanizadeh R. The Development and Achievement of Polymeric Nanoparticles for Cancer Drug Treatment. Particulate Technology for Delivery of Therapeutics 2017. [DOI: 10.1007/978-981-10-3647-7_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
64 Wang Y, Huang P, Hu M, Huang W, Zhu X, Yan D. Self-Delivery Nanoparticles of Amphiphilic Methotrexate-Gemcitabine Prodrug for Synergistic Combination Chemotherapy via Effect of Deoxyribonucleotide Pools. Bioconjugate Chem 2016;27:2722-33. [DOI: 10.1021/acs.bioconjchem.6b00503] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 5.7] [Reference Citation Analysis]
65 He G, Zhu C, Ye S, Cai W, Yin Y, Zheng H, Yi Y. Preparation and properties of novel hydrogel based on chitosan modified by poly(amidoamine) dendrimer. International Journal of Biological Macromolecules 2016;91:828-37. [DOI: 10.1016/j.ijbiomac.2016.05.091] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
66 Lv J, Qiao W, Li Z. Vesicles from pH-regulated reversible gemini amino-acid surfactants as nanocapsules for delivery. Colloids and Surfaces B: Biointerfaces 2016;146:523-31. [DOI: 10.1016/j.colsurfb.2016.06.054] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
67 Wu C, Yang J, Xu X, Gao C, Lü S, Liu M. Redox-responsive core-cross-linked mPEGylated starch micelles as nanocarriers for intracellular anticancer drug release. European Polymer Journal 2016;83:230-43. [DOI: 10.1016/j.eurpolymj.2016.08.018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
68 Baskar G, Angayarkanny S, Mandal AB. Nanocarriers of Functional Materials From Amino Acid Surfactants. Encyclopedia of Biocolloid and Biointerface Science 2V Set 2016. [DOI: 10.1002/9781119075691.ch62] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
69 Du X, Jiang Y, Zhuo R, Jiang X. Thermosensitive and photocleavable polyaspartamide derivatives for drug delivery. J Polym Sci Part A: Polym Chem 2016;54:2855-63. [DOI: 10.1002/pola.28171] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
70 Yu L, Ren N, Yang K, Zhang M, Su L. Photo/pH dual-responsive biocompatible poly(methacrylic acid)-based particles for triggered drug delivery. J Appl Polym Sci 2016;133. [DOI: 10.1002/app.44003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
71 Du B, Han S, Zhao F, Lim KH, Xi H, Su X, Yao H, Zhou J. A smart upconversion-based light-triggered polymer for synergetic chemo-photodynamic therapy and dual-modal MR/UCL imaging. Nanomedicine 2016;12:2071-80. [PMID: 27184094 DOI: 10.1016/j.nano.2016.05.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
72 Lin Y, Wang Y, Qiao S, An H, Zhang R, Qiao Z, Rajapaksha RPYJ, Wang L, Wang H. pH-Sensitive Polymeric Nanoparticles Modulate Autophagic Effect via Lysosome Impairment. Small 2016;12:2921-31. [DOI: 10.1002/smll.201503709] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.7] [Reference Citation Analysis]
73 E A K N, S D, A R, V N, A S. A comparative study of 5-Fluorouracil release from chitosan/silver and chitosan/silver/MWCNT nanocomposites and their cytotoxicity towards MCF-7. Mater Sci Eng C Mater Biol Appl 2016;66:244-50. [PMID: 27207060 DOI: 10.1016/j.msec.2016.04.080] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 4.9] [Reference Citation Analysis]
74 Jeong K, Kang CS, Kim Y, Lee Y, Kwon IC, Kim S. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Letters 2016;374:31-43. [DOI: 10.1016/j.canlet.2016.01.050] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 6.6] [Reference Citation Analysis]
75 Liu H, Yang Q, Zhang L, Zhuo R, Jiang X. Synthesis of carboxymethyl chitin in aqueous solution and its thermo- and pH-sensitive behaviors. Carbohydrate Polymers 2016;137:600-7. [DOI: 10.1016/j.carbpol.2015.11.025] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 8.4] [Reference Citation Analysis]
76 Zhao H, Hou B, Tang Y, Hu W, Yin C, Ji Y, Lu X, Fan Q, Huang W. O-Nitrobenzyl-alt-(phenylethynyl)benzene copolymer-based nanoaggregates with highly efficient two-photon-triggered degradable properties via a FRET process. Polym Chem 2016;7:3117-25. [DOI: 10.1039/c6py00420b] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
77 Liu K, Jiang X, Hunziker P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. Nanoscale 2016;8:16091-156. [DOI: 10.1039/c6nr04489a] [Cited by in Crossref: 117] [Cited by in F6Publishing: 121] [Article Influence: 16.7] [Reference Citation Analysis]
78 Chen M, Gao C, Lü S, Chen Y, Liu M. Dual redox-triggered shell-sheddable micelles self-assembled from mPEGylated starch conjugates for rapid drug release. RSC Adv 2016;6:9164-74. [DOI: 10.1039/c5ra23618e] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
79 Chen M, Gao C, Lü S, Chen Y, Liu M. Preparation of redox-sensitive, core-crosslinked micelles self-assembled from mPEGylated starch conjugates: remarkable extracellular stability and rapid intracellular drug release. RSC Adv 2016;6:46159-69. [DOI: 10.1039/c6ra06585f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
80 Wang Y, Qin F, Tan H, Zhang Y, Jiang M, Lu M, Yao X. pH-responsive glycol chitosan-cross-linked carboxymethyl-β-cyclodextrin nanoparticles for controlled release of anticancer drugs. Int J Nanomedicine 2015;10:7359-69. [PMID: 26677325 DOI: 10.2147/IJN.S91906] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
81 Ye Z, Guo J, Wu D, Tan M, Xiong X, Yin Y, He G. Photo-responsive shell cross-linked micelles based on carboxymethyl chitosan and their application in controlled release of pesticide. Carbohydrate Polymers 2015;132:520-8. [DOI: 10.1016/j.carbpol.2015.06.077] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 7.5] [Reference Citation Analysis]
82 Tian Y, Kong Y, Li X, Wu J, Ko AC, Xing M. Light- and pH-activated intracellular drug release from polymeric mesoporous silica nanoparticles. Colloids and Surfaces B: Biointerfaces 2015;134:147-55. [DOI: 10.1016/j.colsurfb.2015.04.069] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
83 Lin Y, Gao Y, Wang Y, Qiao Z, Fan G, Qiao S, Zhang R, Wang L, Wang H. pH-Sensitive Polymeric Nanoparticles with Gold(I) Compound Payloads Synergistically Induce Cancer Cell Death through Modulation of Autophagy. Mol Pharmaceutics 2015;12:2869-78. [DOI: 10.1021/acs.molpharmaceut.5b00060] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 4.5] [Reference Citation Analysis]
84 Huang Y, Dong R, Zhu X, Yan D. Photo-responsive polymeric micelles. Soft Matter 2014;10:6121-38. [PMID: 25046479 DOI: 10.1039/c4sm00871e] [Cited by in Crossref: 137] [Cited by in F6Publishing: 138] [Article Influence: 17.1] [Reference Citation Analysis]
85 Strong LE, West JL. Optically modulated cancer therapeutic delivery: past, present and future. Therapeutic Delivery 2015;6:545-58. [DOI: 10.4155/tde.15.17] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
86 Hilmi ABM, Halim AS. Vital roles of stem cells and biomaterials in skin tissue engineering. World J Stem Cells 2015; 7(2): 428-436 [PMID: 25815126 DOI: 10.4252/wjsc.v7.i2.428] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
87 Shen H, Zhou M, Zhang Q, Keller A, Shen Y. Zwitterionic light-responsive polymeric micelles for controlled drug delivery. Colloid Polym Sci 2015;293:1685-94. [DOI: 10.1007/s00396-015-3550-7] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
88 Bao C, Zhu L, Lin Q, Tian H. Building biomedical materials using photochemical bond cleavage. Adv Mater 2015;27:1647-62. [PMID: 25655424 DOI: 10.1002/adma.201403783] [Cited by in Crossref: 82] [Cited by in F6Publishing: 83] [Article Influence: 10.3] [Reference Citation Analysis]
89 He L, Liang H, Lin L, Shah BR, Li Y, Chen Y, Li B. Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin. Colloids and Surfaces B: Biointerfaces 2015;126:288-96. [DOI: 10.1016/j.colsurfb.2014.12.024] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 8.0] [Reference Citation Analysis]
90 Zhang F, Zhang S, Pollack SF, Li R, Gonzalez AM, Fan J, Zou J, Leininger SE, Pavía-sanders A, Johnson R, Nelson LD, Raymond JE, Elsabahy M, Hughes DMP, Lenox MW, Gustafson TP, Wooley KL. Improving Paclitaxel Delivery: In Vitro and In Vivo Characterization of PEGylated Polyphosphoester-Based Nanocarriers. J Am Chem Soc 2015;137:2056-66. [DOI: 10.1021/ja512616s] [Cited by in Crossref: 154] [Cited by in F6Publishing: 157] [Article Influence: 19.3] [Reference Citation Analysis]
91 Dai L, Li C, Liu K, Su H, Chen B, Zhang G, He J, Lei J. Self-assembled serum albumin–poly( l -lactic acid) nanoparticles: a novel nanoparticle platform for drug delivery in cancer. RSC Adv 2015;5:15612-20. [DOI: 10.1039/c4ra16346j] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
92 Mo B, Liu H, Zhou X, Zhao Y. Facile synthesis of photolabile dendritic-unit-bridged hyperbranched graft copolymers for stimuli-triggered topological transition and controlled release of Nile red. Polym Chem 2015;6:3489-501. [DOI: 10.1039/c5py00132c] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
93 Hu S, Sun L, Liu M, Zhu H, Guo H, Sun H, Sun H. A highly dispersible silica pH nanosensor with expanded measurement ranges. New J Chem 2015;39:4568-74. [DOI: 10.1039/c4nj02419b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
94 Guerry A, Cottaz S, Fleury E, Bernard J, Halila S. Redox-stimuli responsive micelles from DOX-encapsulating polycaprolactone-g-chitosan oligosaccharide. Carbohydrate Polymers 2014;112:746-52. [DOI: 10.1016/j.carbpol.2014.06.052] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 5.2] [Reference Citation Analysis]
95 Choi W, Kang S, Mok Y, Park E, Song Y, Choi SJ, Lee Y. Unlocking the pH-Responsive Degradability of Fumaramic Acid Derivatives Using Photoisomerization. Chem Eur J 2014;20:15715-8. [DOI: 10.1002/chem.201405205] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
96 Yang J, Gao C, Lü S, Wang X, Chen M, Liu M. Novel self-assembled amphiphilic mPEGylated starch-deoxycholic acid polymeric micelles with pH-response for anticancer drug delivery. RSC Adv 2014;4:55139-49. [DOI: 10.1039/c4ra07315k] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
97 Knipe JM, Peppas NA. Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regen Biomater 2014;1:57-65. [PMID: 26816625 DOI: 10.1093/rb/rbu006] [Cited by in Crossref: 114] [Cited by in F6Publishing: 114] [Article Influence: 12.7] [Reference Citation Analysis]
98 Jin Q, Wang Y, Cai T, Wang H, Ji J. Bioinspired photo-degradable amphiphilic hyperbranched poly(amino ester)s: Facile synthesis and intracellular drug delivery. Polymer 2014;55:4641-50. [DOI: 10.1016/j.polymer.2014.07.053] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
99 Zhu XM, Zhao TT, Huang R. A Review on the Synthesis and Controlled Release Properties of Novel Responsive Carrier. AMR 2014;1002:1-6. [DOI: 10.4028/www.scientific.net/amr.1002.1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
100 Lee SJ, Min HS, Ku SH, Son S, Kwon IC, Kim SH, Kim K. Tumor-targeting glycol chitosan nanoparticles as a platform delivery carrier in cancer diagnosis and therapy. Nanomedicine 2014;9:1697-713. [DOI: 10.2217/nnm.14.99] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 4.6] [Reference Citation Analysis]
101 Jin Q, Cai T, Han H, Wang H, Wang Y, Ji J. Light and pH Dual-Degradable Triblock Copolymer Micelles for Controlled Intracellular Drug Release. Macromol Rapid Commun 2014;35:1372-8. [DOI: 10.1002/marc.201400171] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 5.4] [Reference Citation Analysis]
102 Duan Z, Gao Y, Qiao Z, Fan G, Liu Y, Zhang D, Wang H. A photoacoustic approach for monitoring the drug release of pH-sensitive poly(β-amino ester)s. J Mater Chem B 2014;2:6271-82. [DOI: 10.1039/c4tb00319e] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 3.6] [Reference Citation Analysis]
103 Wang J, Zhao D, Wang Y, Wu G. Imine bond cross-linked poly(ethylene glycol)-block-poly(aspartamide) complex micelle as a carrier to deliver anticancer drugs. RSC Adv 2014;4:11244. [DOI: 10.1039/c3ra46160b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
104 Ji J, Jin Q. Photo-Responsive Polymeric Nanocarriers for On-Demand Drug Delivery. Intracellular Delivery II 2014. [DOI: 10.1007/978-94-017-8896-0_5] [Reference Citation Analysis]
105 Zhang R, Yao R, Ding B, Shen Y, Shui S, Wang L, Li Y, Yang X, Tao W. Fabrication of Upconverting Hybrid Nanoparticles for Near-Infrared Light Triggered Drug Release. Advances in Materials Science and Engineering 2014;2014:1-9. [DOI: 10.1155/2014/169210] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
106 Dai L, Yang T, He J, Deng L, Liu J, Wang L, Lei J, Wang L. Cellulose-graft-poly( l -lactic acid) nanoparticles for efficient delivery of anti-cancer drugs. J Mater Chem B 2014;2:6749-57. [DOI: 10.1039/c4tb00956h] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]