BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kim Y, Binauld S, Stenzel MH. Zwitterionic guanidine-based oligomers mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles. Biomacromolecules 2012;13:3418-26. [PMID: 22946476 DOI: 10.1021/bm301351e] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 5.2] [Reference Citation Analysis]
Number Citing Articles
1 Wu Y, Wu C, Tsai S, Chen H, Liu W, Lin D, Gong T, Yong K, Kong KV. Merocyanine Complexes Coupled with Plasmonic Au Nanoparticles for Inhibiting Tau Aggregation. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c03326] [Reference Citation Analysis]
2 Pham P, Oliver S, Nguyen DT, Boyer C. Effect of Cationic Groups on the Selectivity of Ternary Antimicrobial Polymers. Macromol Rapid Commun 2022;:e2200377. [PMID: 35894165 DOI: 10.1002/marc.202200377] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Wuhao W, Zhang Y, Lin Z, Wu X, Fan W, Chen J. Advances, challenge and prospects in cell-mediated nanodrug delivery for cancer therapy: a review. J Drug Target 2022;:1-27. [PMID: 35857432 DOI: 10.1080/1061186X.2022.2104299] [Reference Citation Analysis]
4 Wang Q, Li T, Yang J, Zhao Z, Tan K, Tang S, Wan M, Mao C. Engineered Exosomes with Independent Module/Cascading Function for Therapy of Parkinson's Disease by Multistep Targeting and Multistage Intervention Method. Adv Mater 2022;:e2201406. [PMID: 35435282 DOI: 10.1002/adma.202201406] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Kim D, Honda H, Matsuoka H, Yusa S, Saruwatari Y. Morphology transition of polyion complex (PIC) micelles with carboxybetaine as a shell induced at different block ratios and their pH-responsivity. Colloid Polym Sci. [DOI: 10.1007/s00396-021-04921-7] [Reference Citation Analysis]
6 Lau SK, Yong WF. Recent Progress of Zwitterionic Materials as Antifouling Membranes for Ultrafiltration, Nanofiltration, and Reverse Osmosis. ACS Appl Polym Mater 2021;3:4390-412. [DOI: 10.1021/acsapm.1c00779] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
7 Rasouliyan F, Eskandani M, Jaymand M, Akbari Nakhjavani S, Farahzadi R, Vandghanooni S, Eskandani M. Preparation, physicochemical characterization, and anti-proliferative properties of Lawsone-loaded solid lipid nanoparticles. Chem Phys Lipids 2021;239:105123. [PMID: 34403685 DOI: 10.1016/j.chemphyslip.2021.105123] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
8 Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Cited by in Crossref: 41] [Cited by in F6Publishing: 51] [Article Influence: 41.0] [Reference Citation Analysis]
9 Schönemann E, Koc J, Karthäuser JF, Özcan O, Schanzenbach D, Schardt L, Rosenhahn A, Laschewsky A. Sulfobetaine Methacrylate Polymers of Unconventional Polyzwitterion Architecture and Their Antifouling Properties. Biomacromolecules 2021;22:1494-508. [PMID: 33709699 DOI: 10.1021/acs.biomac.0c01705] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
10 Kanto R, Yonenuma R, Yamamoto M, Furusawa H, Yano S, Haruki M, Mori H. Mixed Polyplex Micelles with Thermoresponsive and Lysine-Based Zwitterionic Shells Derived from Two Poly(vinyl amine)-Based Block Copolymers. Langmuir 2021;37:3001-14. [PMID: 33650430 DOI: 10.1021/acs.langmuir.0c02197] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
11 Jana B, Kim D, Choi H, Kim M, Kim K, Kim S, Jin S, Park MH, Lee KH, Yoon C, Lee BS, Kang MS, Lim HJ, Park EJ, Jeong Y, Ryu JH, Kim C. Drug resistance-free cytotoxic nanodrugs in composites for cancer therapy. J Mater Chem B 2021;9:3143-52. [PMID: 33586760 DOI: 10.1039/d0tb02850a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Hassan D, Omolo CA, Fasiku VO, Elrashedy AA, Mocktar C, Nkambule B, Soliman MES, Govender T. Formulation of pH-Responsive Quatsomes from Quaternary Bicephalic Surfactants and Cholesterol for Enhanced Delivery of Vancomycin against Methicillin Resistant Staphylococcus aureus. Pharmaceutics 2020;12:E1093. [PMID: 33202629 DOI: 10.3390/pharmaceutics12111093] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
13 Han H, Liu C, Zhu J, Li FX, Wang XL, Yu JY, Qin XH, Wu DQ. Contact/Release Coordinated Antibacterial Cotton Fabrics Coated with N-Halamine and Cationic Antibacterial Agent for Durable Bacteria-Killing Application. Int J Mol Sci 2020;21:E6531. [PMID: 32906715 DOI: 10.3390/ijms21186531] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Richter F, Martin L, Leer K, Moek E, Hausig F, Brendel JC, Traeger A. Tuning of endosomal escape and gene expression by functional groups, molecular weight and transfection medium: a structure-activity relationship study. J Mater Chem B 2020;8:5026-41. [PMID: 32319993 DOI: 10.1039/d0tb00340a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
15 Imamura R, Mori H. Protein-Stabilizing Effect of Amphiphilic Block Copolymers with a Tertiary Sulfonium-Containing Zwitterionic Segment. ACS Omega 2019;4:18234-47. [PMID: 31720524 DOI: 10.1021/acsomega.9b02209] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
16 Han YJ, Liu YL. Preparation of Cross-Linkable Zwitterionic Polybenzoxazine with Sulfobetaine Groups and Corresponding Zwitterionic Thermosetting Resin for Antifouling Surface Coating. ACS Appl Bio Mater 2019;2:3799-807. [PMID: 35021353 DOI: 10.1021/acsabm.9b00412] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
17 Ulkoski D, Bak A, Wilson JT, Krishnamurthy VR. Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opin Drug Deliv 2019;16:1149-67. [PMID: 31498013 DOI: 10.1080/17425247.2019.1663822] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 10.0] [Reference Citation Analysis]
18 Zhang Y, Liu Y, Ren B, Zhang D, Xie S, Chang Y, Yang J, Wu J, Xu L, Zheng J. Fundamentals and applications of zwitterionic antifouling polymers. J Phys D: Appl Phys 2019;52:403001. [DOI: 10.1088/1361-6463/ab2cbc] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 21.7] [Reference Citation Analysis]
19 Piloni A, Simonutti R, Stenzel MH. The effect of cationic groups on the stability of 19 F MRI contrast agents in nanoparticles. J Polym Sci Part A: Polym Chem 2019;57:1994-2001. [DOI: 10.1002/pola.29387] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
20 Kanto R, Qiao Y, Masuko K, Furusawa H, Yano S, Nakabayashi K, Mori H. Synthesis, Assembled Structures, and DNA Complexation of Thermoresponsive Lysine-Based Zwitterionic and Cationic Block Copolymers. Langmuir 2019;35:4646-59. [DOI: 10.1021/acs.langmuir.8b04303] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
21 Zhai S, Hu X, Ji Z, Qin H, Wang Z, Hu Y, Xing D. Pulsed Microwave-Pumped Drug-Free Thermoacoustic Therapy by Highly Biocompatible and Safe Metabolic Polyarginine Probes. Nano Lett 2019;19:1728-35. [DOI: 10.1021/acs.nanolett.8b04723] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
22 Blackman LD, Gunatillake PA, Cass P, Locock KES. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem Soc Rev 2019;48:757-70. [PMID: 30548039 DOI: 10.1039/c8cs00508g] [Cited by in Crossref: 204] [Cited by in F6Publishing: 209] [Article Influence: 68.0] [Reference Citation Analysis]
23 Piloni A, Wong CK, Chen F, Lord M, Walther A, Stenzel MH. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake. Nanoscale 2019;11:23259-67. [DOI: 10.1039/c9nr06835j] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 15.0] [Reference Citation Analysis]
24 Wang Z, Zhang Y, Cao B, Ji Z, Luo W, Zhai S, Zhang D, Wang W, Xing D, Hu X. Explosible nanocapsules excited by pulsed microwaves for efficient thermoacoustic-chemo combination therapy. Nanoscale 2019;11:1710-9. [DOI: 10.1039/c8nr08498j] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
25 Imamura R, Mori H. Synthesis of Zwitterionic Polymers Containing a Tertiary Sulfonium Group for Protein Stabilization. Biomacromolecules 2019;20:904-15. [DOI: 10.1021/acs.biomac.8b01542] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
26 Zhao J, Stenzel MH. Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym Chem 2018;9:259-72. [DOI: 10.1039/c7py01603d] [Cited by in Crossref: 220] [Cited by in F6Publishing: 228] [Article Influence: 55.0] [Reference Citation Analysis]
27 Wu DQ, Zhu J, Han H, Zhang JZ, Wu FF, Qin XH, Yu JY. Synthesis and characterization of arginine-NIPAAm hybrid hydrogel as wound dressing: In vitro and in vivo study. Acta Biomater 2018;65:305-16. [PMID: 28867649 DOI: 10.1016/j.actbio.2017.08.048] [Cited by in Crossref: 85] [Cited by in F6Publishing: 88] [Article Influence: 21.3] [Reference Citation Analysis]
28 Ramírez-estrada A, Mena-cervantes VY, Elizalde I, Manzo-robledo A, Zamudio-rivera LS, Nieto-álvarez DA, Farelas F, Hernández-altamirano R. Development of a Zwitterionic Compound Derived from β-Amino Acid as a Green Inhibitor for CO 2 Corrosive Environments. ACS Sustainable Chem Eng 2017;5:10396-406. [DOI: 10.1021/acssuschemeng.7b02434] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
29 Xu G, Liu X, Liu P, Pranantyo D, Neoh K, Kang E. Arginine-Based Polymer Brush Coatings with Hydrolysis-Triggered Switchable Functionalities from Antimicrobial (Cationic) to Antifouling (Zwitterionic). Langmuir 2017;33:6925-36. [DOI: 10.1021/acs.langmuir.7b01000] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
30 Wang S, Chen R. pH-Responsive, Lysine-Based, Hyperbranched Polymers Mimicking Endosomolytic Cell-Penetrating Peptides for Efficient Intracellular Delivery. Chem Mater 2017;29:5806-15. [DOI: 10.1021/acs.chemmater.7b00054] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
31 Heydari A, Pardakhti A, Sheibani H. Preparation and Characterization of Zwitterionic Poly(β-cyclodextrin- co -guanidinocitrate) Hydrogels for Ciprofloxacin Controlled Release. Macromol Mater Eng 2017;302:1600501. [DOI: 10.1002/mame.201600501] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
32 Ni S, Xie Y, Tang Y, Liu Y, Chen J, Zhu S. Nebulized anionic guanidinylated O-carboxymethyl chitosan/N-2-hydroxypropyltimehyl ammonium chloride chitosan nanoparticles for siRNA pulmonary delivery: preparation, characterization and in vitro evaluation. J Drug Target 2017;25:451-62. [PMID: 28110554 DOI: 10.1080/1061186X.2016.1278219] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
33 Kumar JN, Pang VYT, Aik SXL. Calcium triggered self-assembly of alginate-graft-POEGMA via RAFT for the encapsulation of lipophillic actives. J Mater Chem B 2017;5:8254-63. [DOI: 10.1039/c7tb01670k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
34 Yadav AK, Dey N, Chattopadhyay S, Ganguli M, Fernandes M. Dendrimeric amide- and carbamate-linked lysine-based efficient molecular transporters. Org Biomol Chem 2017;15:9579-84. [DOI: 10.1039/c7ob02552a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
35 Santa Chalarca CF, Emrick T. Reactive polymer zwitterions: Sulfonium sulfonates. J Polym Sci Part A: Polym Chem 2017;55:83-92. [DOI: 10.1002/pola.28359] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
36 Khine YY, Callari M, Lu H, Stenzel MH. Direct Correlation Between Zeta Potential and Cellular Uptake of Poly(methacrylic acid) Post‐Modified with Guanidinium Functionalities. Macromol Chem Phys 2016;217:2302-9. [DOI: 10.1002/macp.201600161] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
37 Sprouse D, Reineke T, Davis M. Polymeric Delivery Vehicles for Exogenous Nucleic Acid Delivery. Reference Module in Materials Science and Materials Engineering 2016. [DOI: 10.1016/b978-0-12-803581-8.01516-2] [Reference Citation Analysis]
38 Callari M, Thomas DS, Stenzel MH. The dual-role of Pt( iv ) complexes as active drug and crosslinker for micelles based on β-cyclodextrin grafted polymer. J Mater Chem B 2016;4:2114-23. [DOI: 10.1039/c5tb02429c] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
39 Huang X, Huang Y. Solubilization of organic compounds by arginine-derived polymers. Chinese Chemical Letters 2015;26:636-40. [DOI: 10.1016/j.cclet.2015.04.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
40 Purkayastha N, Capone S, Beck AK, Seebach D, Leeds J, Thompson K, Moser HE. Antibacterial Activity of Enrofloxacin and Ciprofloxacin Derivatives of β -Octaarginine. Chemistry & Biodiversity 2015;12:179-93. [DOI: 10.1002/cbdv.201400456] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
41 Sajeesh S, Choe JY, Lee TY, Lee D. Guanidine modified polyethyleneimine-g-polyethylene glycol nanocarriers for long interfering RNA (liRNA) based advanced anticancer therapy. J Mater Chem B 2015;3:207-16. [DOI: 10.1039/c4tb01621a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
42 Hu P, Chen Y, Liu Y. Cyclodextrin-based switchable DNA condenser. Chem Commun 2015;51:10839-42. [DOI: 10.1039/c5cc03248b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
43 Laschewsky A. Structures and Synthesis of Zwitterionic Polymers. Polymers 2014;6:1544-601. [DOI: 10.3390/polym6051544] [Cited by in Crossref: 280] [Cited by in F6Publishing: 281] [Article Influence: 35.0] [Reference Citation Analysis]
44 Timin AS, Solomonov AV, Rumyantsev EV. Polyacrylate guanidine and polymethacrylate guanidine as novel cationic polymers for effective bilirubin binding. J Polym Res 2014;21. [DOI: 10.1007/s10965-014-0400-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
45 Locock KE, Meagher L, Haeussler M. Oligomeric cationic polymethacrylates: a comparison of methods for determining molecular weight. Anal Chem 2014;86:2131-7. [PMID: 24483846 DOI: 10.1021/ac403735n] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
46 Wan Y, Gan Z, Li Z. Effects of the surface charge on the stability of PEG-b-PCL micelles: simulation of the interactions between charged micelles and plasma components. Polym Chem 2014;5:1720-7. [DOI: 10.1039/c3py01281f] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
47 Alegre-requena JV, Marqués-lópez E, Herrera RP. Guanidine Motif in Biologically Active Peptides. Aust J Chem 2014;67:965. [DOI: 10.1071/ch14043] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
48 Abd Karim KJ, Utama RH, Lu H, Stenzel MH. Enhanced drug toxicity by conjugation of platinum drugs to polymers with guanidine containing zwitterionic functional groups that mimic cell-penetrating peptides. Polym Chem 2014;5:6600-10. [DOI: 10.1039/c4py00802b] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
49 Bang E, Ward S, Gasparini G, Sakai N, Matile S. Cell-penetrating poly(disulfide)s: focus on substrate-initiated co-polymerization. Polym Chem 2014;5:2433. [DOI: 10.1039/c3py01570j] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
50 Zhao Y, Lord MS, Stenzel MH. A polyion complex micelle with heparin for growth factor delivery and uptake into cells. J Mater Chem B 2013;1:1635. [DOI: 10.1039/c3tb00360d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
51 Drappier C, Wirotius A, Bathany K, Ibarboure E, Condassamy O, Garanger E, Lecommandoux S. Biofunctional micellar nanoparticles from peptide-b-polymer chimeras. Polym Chem 2013;4:2011. [DOI: 10.1039/c2py21044d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]