BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen J, Qiu X, Ouyang J, Kong J, Zhong W, Xing MM. pH and reduction dual-sensitive copolymeric micelles for intracellular doxorubicin delivery. Biomacromolecules 2011;12:3601-11. [PMID: 21853982 DOI: 10.1021/bm200804j] [Cited by in Crossref: 213] [Cited by in F6Publishing: 205] [Article Influence: 19.4] [Reference Citation Analysis]
Number Citing Articles
1 Kumar A, Anuradha, Biswas A, Jewrajka SK. Injectable amphiphilic hydrogel systems from the self-assembly of partially alkylated poly(2-dimethyl aminoethyl) methacrylate with inherent antimicrobial property and sustained release behaviour. European Polymer Journal 2022;179:111559. [DOI: 10.1016/j.eurpolymj.2022.111559] [Reference Citation Analysis]
2 Pan W, Liu C, Li Y, Yang Y, Li W, Feng C, Li L. Ultrathin tellurium nanosheets for simultaneous cancer thermo-chemotherapy. Bioactive Materials 2022;13:96-104. [DOI: 10.1016/j.bioactmat.2021.11.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
3 Yuan J, Yin X, Qiu Z, Shen Y, Fang L, Liang Z, Kong Q, Zhu B. Fabricating superhydrophobic surfaces via coating amine-containing fluorinated emulsion and Michael addition reaction. J Coat Technol Res. [DOI: 10.1007/s11998-021-00600-y] [Reference Citation Analysis]
4 Wang Y, Wang F, Zhang H, Yu B, Cong H, Shen Y. Antibacterial material surfaces/interfaces for biomedical applications. Applied Materials Today 2021;25:101192. [DOI: 10.1016/j.apmt.2021.101192] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
5 Kanwal S, Naveed M, Arshad A, Arshad A, Firdous F, Faisal A, Yameen B. Reduction-Sensitive Dextran-Paclitaxel Polymer-Drug Conjugate: Synthesis, Self-Assembly into Nanoparticles, and In Vitro Anticancer Efficacy. Bioconjug Chem 2021. [PMID: 34762796 DOI: 10.1021/acs.bioconjchem.1c00492] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
6 Kawamura A, Harada A, Ueno S, Miyata T. Weakly Acidic pH and Reduction Dual Stimuli-Responsive Gel Particles. Langmuir 2021;37:11484-92. [PMID: 34565150 DOI: 10.1021/acs.langmuir.1c01677] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Singam A, Killi N, Patel PR, Gundloori RVN. PEGylated ethyl cellulose micelles as a nanocarrier for drug delivery. RSC Adv 2021;11:30532-43. [PMID: 35479870 DOI: 10.1039/d1ra04242d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Qin G, Hu C, Jiang Y, Dong S, Liu L, Zhao H. pH /enzyme/light triple‐responsive vesicles from lysine‐based amphiphilic diblock copolymers. Journal of Polymer Science 2021;59:1958-71. [DOI: 10.1002/pol.20210245] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Dhas N, Kudarha R, Pandey A, Nikam AN, Sharma S, Singh A, Garkal A, Hariharan K, Singh A, Bangar P, Yadhav D, Parikh D, Sawant K, Mutalik S, Garg N, Mehta T. Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. Journal of Controlled Release 2021;333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
10 Kazemi M, Ashjari M, Nazarabi M. Multi-sensitive curcumin-loaded nanomicelle based on ABC-CBA block copolymer for sustained drug delivery. Drug Dev Ind Pharm 2021;47:552-61. [PMID: 33629638 DOI: 10.1080/03639045.2021.1890769] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Kim MK, Ki DH, Na YG, Lee HS, Baek JS, Lee JY, Lee HK, Cho CW. Optimization of Mesoporous Silica Nanoparticles through Statistical Design of Experiment and the Application for the Anticancer Drug. Pharmaceutics 2021;13:184. [PMID: 33572523 DOI: 10.3390/pharmaceutics13020184] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
12 Patil AS, Gadad AP, Dandagi PM. Mono and Multi‐Stimuli Responsive Polymers: Application as Intelligent Nano‐Drug Delivery Systems. In: Dave V, Gupta N, Sur S, editors. Nanopharmaceutical Advanced Delivery Systems. Wiley; 2021. pp. 237-65. [DOI: 10.1002/9781119711698.ch11] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
13 Jin R, Sun J, Zhou L, Guo X, Cao A. Dual-responsive click-crosslinked micelles designed for enhanced chemotherapy for solid tumors. Biomater Sci 2020;8:2507-13. [PMID: 32211707 DOI: 10.1039/d0bm00078g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
14 Lin X, Song X, Zhang Y, Cao Y, Xue Y, Wu F, Yu F, Wu M, Zhu X. Multifunctional theranostic nanosystems enabling photothermal-chemo combination therapy of triple-stimuli-responsive drug release with magnetic resonance imaging. Biomater Sci 2020;8:1875-84. [PMID: 32010912 DOI: 10.1039/c9bm01482a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
15 Garcia EA, Pessoa D, Herrera-Alonso M. Oxidative instability of boronic acid-installed polycarbonate nanoparticles. Soft Matter 2020;16:2473-9. [PMID: 32043107 DOI: 10.1039/c9sm02499a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
16 Tsai MF, Lo YL, Huang YC, Yu CC, Wu YT, Su CH, Wang LF. Multi-Stimuli-Responsive DOX Released from Magnetosome for Tumor Synergistic Theranostics. Int J Nanomedicine 2020;15:8623-39. [PMID: 33177822 DOI: 10.2147/IJN.S275655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
17 Lo YL, Huang XS, Chen HY, Huang YC, Liao ZX, Wang LF. ROP and ATRP fabricated redox sensitive micelles based on PCL-SS-PMAA diblock copolymers to co-deliver PTX and CDDP for lung cancer therapy. Colloids Surf B Biointerfaces 2021;198:111443. [PMID: 33203600 DOI: 10.1016/j.colsurfb.2020.111443] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
18 Mirhadi E, Mashreghi M, Faal Maleki M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Redox-sensitive nanoscale drug delivery systems for cancer treatment. International Journal of Pharmaceutics 2020;589:119882. [DOI: 10.1016/j.ijpharm.2020.119882] [Cited by in Crossref: 14] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
19 Song F, Wang Z, Gao W, Fu Y, Wu Q, Liu S. Novel Temperature/Reduction Dual-Stimulus Responsive Triblock Copolymer [P(MEO2MA-co- OEGMA)-b-PLLA-SS-PLLA-b-P(MEO2MA-co-OEGMA)] via a Combination of ROP and ATRP: Synthesis, Characterization and Application of Self-Assembled Micelles. Polymers (Basel) 2020;12:E2482. [PMID: 33114693 DOI: 10.3390/polym12112482] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
20 Singh R, Pal D, Chattopadhyay S. Target-Specific Superparamagnetic Hydrogel with Excellent pH Sensitivity and Reversibility: A Promising Platform for Biomedical Applications. ACS Omega 2020;5:21768-80. [PMID: 32905505 DOI: 10.1021/acsomega.0c02817] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
21 Santra S, Sk MA, Mondal A, Molla MR. Self-Immolative Polyurethane-Based Nanoassemblies: Surface Charge Modulation at Tumor-Relevant pH and Redox-Responsive Guest Release. Langmuir 2020;36:8282-9. [PMID: 32579366 DOI: 10.1021/acs.langmuir.0c01474] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
22 Lo Y, Tsai M, Soorni Y, Hsu C, Liao Z, Wang L. Dual Stimuli-Responsive Block Copolymers with Adjacent Redox- and Photo-Cleavable Linkages for Smart Drug Delivery. Biomacromolecules 2020;21:3342-52. [DOI: 10.1021/acs.biomac.0c00773] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
23 Yu K, Yang X, He L, Zheng R, Min J, Su H, Shan S, Jia Q. Facile preparation of pH/reduction dual-stimuli responsive dextran nanogel as environment-sensitive carrier of doxorubicin. Polymer 2020;200:122585. [DOI: 10.1016/j.polymer.2020.122585] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
24 Shi L, Jin Y, Du W, Lai S, Shen Y, Zhou R. Diselenide-containing nonionic gemini polymeric micelles as a smart redox-responsive carrier for potential programmable drug release. Polymer 2020;198:122551. [DOI: 10.1016/j.polymer.2020.122551] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
25 Fan L, Wang J, Xia C, Zhang Q, Pu Y, Chen L, Chen J, Wang Y. Glutathione-sensitive and folate-targeted nanoparticles loaded with paclitaxel to enhance oral squamous cell carcinoma therapy. J Mater Chem B 2020;8:3113-22. [PMID: 32207763 DOI: 10.1039/c9tb02818h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
26 Alle M, G BR, Kim TH, Park SH, Lee S, Kim J. Doxorubicin-carboxymethyl xanthan gum capped gold nanoparticles: Microwave synthesis, characterization, and anti-cancer activity. Carbohydrate Polymers 2020;229:115511. [DOI: 10.1016/j.carbpol.2019.115511] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 13.5] [Reference Citation Analysis]
27 Zhang L, Ding Y, Wen Q, Ni C. Synthesis of core-crosslinked zwitterionic polymer nano aggregates and pH/Redox responsiveness in drug controlled release. Materials Science and Engineering: C 2020;106:110288. [DOI: 10.1016/j.msec.2019.110288] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
28 Liu Y, Xie C, Zhang F, Xiao X. pH-Responsive TiO 2 Nanotube Drug Delivery System Based on Iron Coordination. Journal of Nanomaterials 2019;2019:1-7. [DOI: 10.1155/2019/6395760] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Bej R, Dey P, Ghosh S. Disulfide chemistry in responsive aggregation of amphiphilic systems. Soft Matter 2020;16:11-26. [PMID: 31776542 DOI: 10.1039/c9sm01960j] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
30 Kumar A, Nutan B, Jewrajka SK. Stability and acidic pH-mediated leakage of guest molecules from self-assembly of poly(amidoamine)-graft-alkyl copolymers. Polymer 2019;183:121894. [DOI: 10.1016/j.polymer.2019.121894] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
31 Smith TKT, Kahiel Z, LeBlond ND, Ghorbani P, Farah E, Al-Awosi R, Cote M, Gadde S, Fullerton MD. Characterization of Redox-Responsive LXR-Activating Nanoparticle Formulations in Primary Mouse Macrophages. Molecules 2019;24:E3751. [PMID: 31635211 DOI: 10.3390/molecules24203751] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
32 Singh P, Srivastava S, Singh SK. Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications. ACS Biomater Sci Eng 2019;5:4882-98. [PMID: 33455238 DOI: 10.1021/acsbiomaterials.9b00464] [Cited by in Crossref: 31] [Cited by in F6Publishing: 43] [Article Influence: 10.3] [Reference Citation Analysis]
33 Wang Y, Liu Y, Liu M, Qian W, Zhou D, Liu T, Luo G, Xing M. Short fluorocarbon chains containing hydrophobic nanofibrous membranes with improved hemocompatibility, anticoagulation and anti-fouling performance. Colloids and Surfaces B: Biointerfaces 2019;180:49-57. [DOI: 10.1016/j.colsurfb.2019.01.025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
34 Zhou X, Chen F, Lu H, Kong L, Zhang S, Zhang W, Nie J, Du B, Wang X. Ionic Microgel Loaded with Gold Nanoparticles for the Synergistic Dual-Drug Delivery of Doxorubicin and Diclofenac Sodium. Ind Eng Chem Res 2019;58:10922-30. [DOI: 10.1021/acs.iecr.9b01904] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
35 Korde JM, Kandasubramanian B. Fundamentals and Effects of Biomimicking Stimuli-Responsive Polymers for Engineering Functions. Ind Eng Chem Res 2019;58:9709-57. [DOI: 10.1021/acs.iecr.9b00683] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
36 Sun G, Liu J, Wang X, Li M, Cui X, Zhang L, Wu D, Tang P. Fabrication of dual-sensitive poly(β-hydroxyl amine) micelles for controlled drug delivery. European Polymer Journal 2019;114:338-45. [DOI: 10.1016/j.eurpolymj.2019.02.048] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
37 Luo Y, Yin X, Yin X, Chen A, Zhao L, Zhang G, Liao W, Huang X, Li J, Zhang CY. Dual pH/Redox-Responsive Mixed Polymeric Micelles for Anticancer Drug Delivery and Controlled Release. Pharmaceutics 2019;11:E176. [PMID: 30978912 DOI: 10.3390/pharmaceutics11040176] [Cited by in Crossref: 20] [Cited by in F6Publishing: 27] [Article Influence: 6.7] [Reference Citation Analysis]
38 Zhuang J, Zhao B, Thayumanavan S. Cascaded Step-Growth Polymerization for Functional Polyamides with Diverse Architectures and Stimuli Responsive Characteristics. ACS Macro Lett 2019;8:245-9. [PMID: 31673480 DOI: 10.1021/acsmacrolett.9b00094] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
39 Liu Y, Li Y, Keskin D, Shi L. Poly(β-Amino Esters): Synthesis, Formulations, and Their Biomedical Applications. Adv Healthc Mater 2019;8:e1801359. [PMID: 30549448 DOI: 10.1002/adhm.201801359] [Cited by in Crossref: 29] [Cited by in F6Publishing: 37] [Article Influence: 9.7] [Reference Citation Analysis]
40 Meng Q, Hu H, Zhou L, Zhang Y, Yu B, Shen Y, Cong H. Logical design and application of prodrug platforms. Polym Chem 2019;10:306-24. [DOI: 10.1039/c8py01160e] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 13.3] [Reference Citation Analysis]
41 Zhou M, Zhang X, Xie J, Qi R, Lu H, Leporatti S, Chen J, Hu Y. pH-Sensitive Poly(β-amino ester)s Nanocarriers Facilitate the Inhibition of Drug Resistance in Breast Cancer Cells. Nanomaterials 2018;8:952. [DOI: 10.3390/nano8110952] [Cited by in Crossref: 31] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
42 Li Y, Du W, Fu Z, Wang H, Wang J, Le Y, Zhang J, Wen N. pH-Responsive Polycarbonate Copolymer-based Nanoparticles for Targeted Anticancer Drug Delivery. Chem Res Chin Univ 2018;34:1041-50. [DOI: 10.1007/s40242-018-8147-5] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
43 Patil SS, Shinde VS, Misra RDK. pH and reduction dual-stimuli-responsive PEGDA/PAMAM injectable network hydrogels via aza-michael addition for anticancer drug delivery. J Polym Sci Part A: Polym Chem 2018;56:2080-95. [DOI: 10.1002/pola.29168] [Cited by in Crossref: 15] [Cited by in F6Publishing: 22] [Article Influence: 3.8] [Reference Citation Analysis]
44 You C, Wu H, Wang M, Gao Z, Sun B, Zhang X. Synthesis and biological evaluation of redox/NIR dual stimulus-responsive polymeric nanoparticles for targeted delivery of cisplatin. Mater Sci Eng C Mater Biol Appl 2018;92:453-62. [PMID: 30184771 DOI: 10.1016/j.msec.2018.06.044] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
45 Zou Y, Zhou Y, Jin Y, He C, Deng Y, Han S, Zhou C, Li X, Zhou Y, Liu Y. Synergistically Enhanced Antimetastasis Effects by Honokiol-Loaded pH-Sensitive Polymer-Doxorubicin Conjugate Micelles. ACS Appl Mater Interfaces 2018;10:18585-600. [PMID: 29749228 DOI: 10.1021/acsami.8b04854] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
46 Xue Y, Tao L, Zhou Y, Liu J, Yu B, Long S, Huang S, Yu F. Enhanced Targeted Delivery of Doxorubicin Based on Acid Induced Charge Reversal and Combinational Stimuli-Responsive Nanocarrier. Adv Eng Mater 2018;20:1701151. [DOI: 10.1002/adem.201701151] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
47 Morey M, Pandit A. Responsive triggering systems for delivery in chronic wound healing. Adv Drug Deliv Rev 2018;129:169-93. [PMID: 29501700 DOI: 10.1016/j.addr.2018.02.008] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
48 Pan C, Liu Y, Zhou M, Wang W, Shi M, Xing M, Liao W. Theranostic pH-sensitive nanoparticles for highly efficient targeted delivery of doxorubicin for breast tumor treatment. Int J Nanomedicine 2018;13:1119-37. [PMID: 29520140 DOI: 10.2147/IJN.S147464] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 6.8] [Reference Citation Analysis]
49 Akyol E, Tatliyuz M, Demir Duman F, Guven MN, Acar HY, Avci D. Phosphonate-functionalized poly(β-amino ester) macromers as potential biomaterials: Phosphonate-functionalized poly(β-amino ester) macromers as potential biomaterials. J Biomed Mater Res 2018;106:1390-9. [DOI: 10.1002/jbm.a.36339] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
50 Chen L, Liu Z, Jin R, Yang X, Bai Y, Liu S, Chen X. Stepwise co-delivery of an enzyme and prodrug based on a multi-responsive nanoplatform for accurate tumor therapy. J Mater Chem B 2018;6:6262-8. [DOI: 10.1039/c8tb01182f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
51 Chen Y, Li X, Xiao H, Xiao J, Li B, Chen X, Wang Y, Cheng D, Shuai X. Reduction and pH dual-sensitive nanovesicles co-delivering doxorubicin and gefitinib for effective tumor therapy. RSC Adv 2018;8:2082-91. [DOI: 10.1039/c7ra12620d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
52 Yang S, Ren Z, Chen M, Wang Y, You B, Chen W, Qu C, Liu Y, Zhang X. Nucleolin-Targeting AS1411-Aptamer-Modified Graft Polymeric Micelle with Dual pH/Redox Sensitivity Designed To Enhance Tumor Therapy through the Codelivery of Doxorubicin/TLR4 siRNA and Suppression of Invasion. Mol Pharm 2018;15:314-25. [PMID: 29250957 DOI: 10.1021/acs.molpharmaceut.7b01093] [Cited by in Crossref: 32] [Cited by in F6Publishing: 38] [Article Influence: 6.4] [Reference Citation Analysis]
53 Jazani AM, Oh JK. Dual Location, Dual Acidic pH/Reduction-Responsive Degradable Block Copolymer: Synthesis and Investigation of Ketal Linkage Instability under ATRP Conditions. Macromolecules 2017;50:9427-36. [DOI: 10.1021/acs.macromol.7b02070] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
54 Wang X, Gao J, Wang Z, Xu J, Li C, Sun S, Hu S. Dissipative particle dynamics simulation on the self-assembly and disassembly of pH-sensitive polymeric micelle with coating repair agent. Chemical Physics Letters 2017;685:328-37. [DOI: 10.1016/j.cplett.2017.07.070] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
55 Zhang L, Zhou Y, Shi G, Sang X, Ni C. Preparations of hyperbranched polymer nano micelles and the pH/redox controlled drug release behaviors. Materials Science and Engineering: C 2017;79:116-22. [DOI: 10.1016/j.msec.2017.05.027] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
56 Yang Z, Sun Y, Xian L, Xun Z, Yu J, Yang T, Zhao X, Cai C, Wang D, Ding P. Disulfide‐bond‐containing agamatine‐cystaminebisacrylamide polymer demonstrates better transfection efficiency and lower cytotoxicity than polyethylenimine in NIH/3T3 cells. J Cell Biochem 2018;119:1767-79. [DOI: 10.1002/jcb.26338] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
57 Gao S, Li L, Vohra I, Zha D, You L. Differential metal-binding properties of dynamic acylhydrazone polymers and their sensing applications. R Soc Open Sci 2017;4:170466. [PMID: 28878993 DOI: 10.1098/rsos.170466] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
58 Poupart R, Le Droumaguet B, Guerrouache M, Grande D, Carbonnier B. Gold nanoparticles immobilized on porous monoliths obtained from disulfide-based dimethacrylate: Application to supported catalysis. Polymer 2017;126:455-62. [DOI: 10.1016/j.polymer.2017.04.034] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
59 Chen Y, Su M, Li Y, Gao J, Zhang C, Cao Z, Zhou J, Liu J, Jiang Z. Enzymatic PEG-Poly(amine- co -disulfide ester) Nanoparticles as pH- and Redox-Responsive Drug Nanocarriers for Efficient Antitumor Treatment. ACS Appl Mater Interfaces 2017;9:30519-35. [DOI: 10.1021/acsami.7b10148] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
60 Xiao L, Huang L, Moingeon F, Gauthier M, Yang G. pH-Responsive Poly(Ethylene Glycol)- block -Polylactide Micelles for Tumor-Targeted Drug Delivery. Biomacromolecules 2017;18:2711-22. [DOI: 10.1021/acs.biomac.7b00509] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
61 Gao YE, Ma X, Hou M, Bai S, Xue P, Kang Y, Xu Z. Highly cell-penetrating and ultra-pH-responsive nanoplatform for controlled drug release and enhanced tumor therapy. Colloids Surf B Biointerfaces 2017;159:484-92. [PMID: 28841498 DOI: 10.1016/j.colsurfb.2017.08.018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
62 He Y, Luo L, Liang S, Long M, Xu H. Amino-functionalized mesoporous silica nanoparticles as efficient carriers for anticancer drug delivery. J Biomater Appl 2017;32:524-32. [DOI: 10.1177/0885328217724638] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 5.4] [Reference Citation Analysis]
63 Baghbani F, Chegeni M, Moztarzadeh F, Mohandesi JA, Mokhtari-dizaji M. Ultrasonic nanotherapy of breast cancer using novel ultrasound-responsive alginate-shelled perfluorohexane nanodroplets: In vitro and in vivo evaluation. Materials Science and Engineering: C 2017;77:698-707. [DOI: 10.1016/j.msec.2017.02.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
64 Lin Y, Wang S, Yu Y, Lee R. Thermoresponsive and acid-cleavable amphiphilic copolymer micelles for controlled drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials 2017;66:943-54. [DOI: 10.1080/00914037.2017.1291514] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
65 Cai Z, Zhang H, Wei Y, Wei Y, Xie Y, Cong F. Reduction- and pH-Sensitive Hyaluronan Nanoparticles for Delivery of Iridium(III) Anticancer Drugs. Biomacromolecules 2017;18:2102-17. [DOI: 10.1021/acs.biomac.7b00445] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 5.4] [Reference Citation Analysis]
66 Feng L, Wang Y, Luo Z, Huang Z, Zhang Y, Guo K, Ye D. Dual Stimuli-Responsive Nanoparticles for Controlled Release of Anticancer and Anti-inflammatory Drugs Combination. Chem Eur J 2017;23:9397-406. [DOI: 10.1002/chem.201701524] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
67 Shen X, Li T, Chen Z, Geng Y, Xie X, Li S, Yang H, Wu C, Liu Y. Luminescent/magnetic PLGA-based hybrid nanocomposites: a smart nanocarrier system for targeted codelivery and dual-modality imaging in cancer theranostics. Int J Nanomedicine 2017;12:4299-322. [PMID: 28652734 DOI: 10.2147/IJN.S136766] [Cited by in Crossref: 23] [Cited by in F6Publishing: 32] [Article Influence: 4.6] [Reference Citation Analysis]
68 Lian H, Du Y, Chen X, Duan L, Gao G, Xiao C, Zhuang X. Core cross-linked poly(ethylene glycol)-graft-Dextran nanoparticles for reduction and pH dual responsive intracellular drug delivery. Journal of Colloid and Interface Science 2017;496:201-10. [DOI: 10.1016/j.jcis.2017.02.032] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 6.4] [Reference Citation Analysis]
69 Behara KK, Rajesh Y, Chaudhuri A, Biswas S, Mandal M, Singh NDP. Wavelength Dependent, Sequentially Activated, Dual Anticancer Drug Delivery System with Photoinduced Fluorescence off-on for Real Time Imaging. ChemistrySelect 2017;2:4033-8. [DOI: 10.1002/slct.201700559] [Reference Citation Analysis]
70 Wang J, Wu B, Li S, He Y. NIR light and enzyme dual stimuli-responsive amphiphilic diblock copolymer assemblies. J Polym Sci Part A: Polym Chem 2017;55:2450-7. [DOI: 10.1002/pola.28632] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
71 Sun Q, Zhou Z, Qiu N, Shen Y. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. Adv Mater 2017;29. [PMID: 28234430 DOI: 10.1002/adma.201606628] [Cited by in Crossref: 529] [Cited by in F6Publishing: 543] [Article Influence: 105.8] [Reference Citation Analysis]
72 Lin S, Feng S, Mo Y, Tu Y, Guo Y, Hu J, Liu G, Zhong Z, Miao L, Zou H, Liu F. Dual-responsive crosslinked micelles of a multifunctional graft copolymer for drug delivery applications. J Polym Sci Part A: Polym Chem 2017;55:1536-46. [DOI: 10.1002/pola.28520] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
73 Guven MN, Seckin Altuncu M, Demir Duman F, Eren TN, Yagci Acar H, Avci D. Bisphosphonate-functionalized poly(β-amino ester) network polymers. J Biomed Mater Res A 2017;105:1412-21. [PMID: 28165665 DOI: 10.1002/jbm.a.36026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
74 Wang D, Chen J, Ren L, Li Q, Li D, Yu J. AIEgen-functionalised mesoporous silica nanoparticles as a FRET donor for monitoring drug delivery. Inorg Chem Front 2017;4:468-72. [DOI: 10.1039/c6qi00488a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
75 Fang J, Lin Y, Wang S, Yu Y, Lee R. Acid and light dual- stimuli-cleavable polymeric micelles. J Polym Res 2017;24. [DOI: 10.1007/s10965-016-1166-3] [Reference Citation Analysis]
76 Yu J, Zhang J, Xing H, Sun Y, Yang Z, Yang T, Cai C, Zhao X, Yang L, Ding P. Novel guanidinylated bioresponsive poly(amidoamine)s designed for short hairpin RNA delivery. Int J Nanomedicine 2016;11:6651-66. [PMID: 27994462 DOI: 10.2147/IJN.S115773] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
77 He C, Yang Q, Tan L, Liu B, Zhu Z, Gong B, Shen Y, Shao Z. Design and synthesis of redox and oxidative dual responsive block copolymer micelles for intracellular drug delivery. European Polymer Journal 2016;85:38-52. [DOI: 10.1016/j.eurpolymj.2016.09.047] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
78 Wang M. Emerging Multifunctional NIR Photothermal Therapy Systems Based on Polypyrrole Nanoparticles. Polymers (Basel) 2016;8:E373. [PMID: 30974650 DOI: 10.3390/polym8100373] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 4.5] [Reference Citation Analysis]
79 Teo JY, Chin W, Ke X, Gao S, Liu S, Cheng W, Hedrick JL, Yang YY. pH and redox dual-responsive biodegradable polymeric micelles with high drug loading for effective anticancer drug delivery. Nanomedicine 2017;13:431-42. [PMID: 27720991 DOI: 10.1016/j.nano.2016.09.016] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 8.2] [Reference Citation Analysis]
80 Song M, Xue Y, Lin X, Xia X, Chen L, Zhang L, Yu B, Long S, Huang S, Yu F. Achievement of Release Mode under Combinational Stimuli by Acid and Reduction for Reduced Adverse Effect in Antitumor Efficacy. Macromol Mater Eng 2016;301:1255-66. [DOI: 10.1002/mame.201600184] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
81 Song M, Xue Y, Chen L, Xia X, Zhou Y, Liu L, Yu B, Long S, Huang S, Yu F. Acid and reduction stimulated logic “and”-type combinational release mode achieved in DOX-loaded superparamagnetic nanogel. Materials Science and Engineering: C 2016;65:354-63. [DOI: 10.1016/j.msec.2016.04.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
82 Chen WL, Yang SD, Li F, Li JZ, Yuan ZQ, Zhu WJ, Liu Y, Zhou XF, Liu C, Zhang XN. Tumor microenvironment-responsive micelles for pinpointed intracellular release of doxorubicin and enhanced anti-cancer efficiency. Int J Pharm 2016;511:728-40. [PMID: 27484835 DOI: 10.1016/j.ijpharm.2016.07.060] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 3.2] [Reference Citation Analysis]
83 Wu Y, Zhou D, Zhang Q, Xie Z, Chen X, Jing X, Huang Y. Dual-Sensitive Charge-Conversional Polymeric Prodrug for Efficient Codelivery of Demethylcantharidin and Doxorubicin. Biomacromolecules 2016;17:2650-61. [DOI: 10.1021/acs.biomac.6b00705] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
84 Gao Y, Qiao Z, Wang H. Polymers with tertiary amine groups for drug delivery and bioimaging. Sci China Chem 2016;59:991-1002. [DOI: 10.1007/s11426-015-0516-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
85 Deng B, Ma P, Xie Y. Reduction-sensitive polymeric nanocarriers in cancer therapy: a comprehensive review. Nanoscale 2015;7:12773-95. [PMID: 26176593 DOI: 10.1039/c5nr02878g] [Cited by in Crossref: 92] [Cited by in F6Publishing: 96] [Article Influence: 15.3] [Reference Citation Analysis]
86 Gao H, Bi Y, Chen J, Peng L, Wen K, Ji P, Ren W, Li X, Zhang N, Gao J, Chai Z, Hu Y. Near-Infrared Light-Triggered Switchable Nanoparticles for Targeted Chemo/Photothermal Cancer Therapy. ACS Appl Mater Interfaces 2016;8:15103-12. [DOI: 10.1021/acsami.6b03905] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 6.2] [Reference Citation Analysis]
87 Kozielski KL, Rui Y, Green JJ. Non-viral nucleic acid containing nanoparticles as cancer therapeutics. Expert Opin Drug Deliv 2016;13:1475-87. [PMID: 27248202 DOI: 10.1080/17425247.2016.1190707] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
88 Aydin O, Youssef I, Yuksel Durmaz Y, Tiruchinapally G, Elsayed MEH. Formulation of Acid-Sensitive Micelles for Delivery of Cabazitaxel into Prostate Cancer Cells. Mol Pharmaceutics 2016;13:1413-29. [DOI: 10.1021/acs.molpharmaceut.6b00147] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
89 Wang L, Tian B, Zhang J, Li K, Liang Y, Sun Y, Ding Y, Han J. Coordinated pH/redox dual-sensitive and hepatoma-targeted multifunctional polymeric micelle system for stimuli-triggered doxorubicin release: Synthesis, characterization and in vitro evaluation. International Journal of Pharmaceutics 2016;501:221-35. [DOI: 10.1016/j.ijpharm.2016.02.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
90 Wu L, Ni C, Zhang L, Shi G. Preparation of pH-sensitive zwitterionic nano micelles and drug controlled release for enhancing cellular uptake. J Biomater Sci Polym Ed 2016;27:643-56. [PMID: 26813767 DOI: 10.1080/09205063.2016.1147797] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
91 Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016;116:2602-63. [PMID: 26854975 DOI: 10.1021/acs.chemrev.5b00346] [Cited by in Crossref: 1136] [Cited by in F6Publishing: 1257] [Article Influence: 189.3] [Reference Citation Analysis]
92 Yang HY, Jang M, Gao GH, Lee JH, Lee DS. Construction of redox/pH dual stimuli-responsive PEGylated polymeric micelles for intracellular doxorubicin delivery in liver cancer. Polym Chem 2016;7:1813-25. [DOI: 10.1039/c5py01808k] [Cited by in Crossref: 49] [Cited by in F6Publishing: 38] [Article Influence: 8.2] [Reference Citation Analysis]
93 Das D, Patra P, Ghosh P, Rameshbabu AP, Dhara S, Pal S. Dextrin and poly(lactide)-based biocompatible and biodegradable nanogel for cancer targeted delivery of doxorubicin hydrochloride. Polym Chem 2016;7:2965-75. [DOI: 10.1039/c6py00213g] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
94 Wang Y, Ren JW, Zhang CY, Chan He M, Wu ZM, Guo XD. Compatibility studies between an amphiphilic pH-sensitive polymer and hydrophobic drug using multiscale simulations. RSC Adv 2016;6:101323-33. [DOI: 10.1039/c6ra15950h] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
95 Wang J, Yan J, Zhou H, Huang H, Zhang X, Tang H. Prodrug Micelles Based on Norbornene-Functional Poly(lactide)s Backbone for Redox-Responsive Release of Paclitaxel. Aust J Chem 2016;69:1140. [DOI: 10.1071/ch16100] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
96 Sang L, Liu Y, Hua W, Xu K, Wang G, Zhong W, Wang L, Xu S, Xing MMQ, Qiu X. Thermally sensitive conductive hydrogel using amphiphilic crosslinker self-assembled carbon nanotube to enhance neurite outgrowth and promote spinal cord regeneration. RSC Adv 2016;6:26341-51. [DOI: 10.1039/c5ra20780k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
97 Lin C, Lou B, Zhao J, Jin R, Zhao P, Li J, Ren J. Self-assembled micelles of PEG–poly(disulfide carbamate amine) copolymers for intracellular dual-responsive drug delivery. J Mater Chem B 2016;4:902-9. [DOI: 10.1039/c5tb01770j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
98 Li D, Bu Y, Zhang L, Wang X, Yang Y, Zhuang Y, Yang F, Shen H, Wu D. Facile Construction of pH- and Redox-Responsive Micelles from a Biodegradable Poly(β-hydroxyl amine) for Drug Delivery. Biomacromolecules 2016;17:291-300. [PMID: 26682612 DOI: 10.1021/acs.biomac.5b01394] [Cited by in Crossref: 68] [Cited by in F6Publishing: 67] [Article Influence: 9.7] [Reference Citation Analysis]
99 Wu L, Ni C, Zhang L, Shi G, Bai X, Zhou Y, He F. Surface Charge Convertible and Biodegradable Synthetic Zwitterionic Nanoparticles for Enhancing Cellular Drug Uptake. Macromol Biosci 2016;16:308-13. [DOI: 10.1002/mabi.201500299] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
100 Bilalis P, Varlas S, Kiafa A, Velentzas A, Stravopodis D, Iatrou H. Preparation of hybrid triple-stimuli responsive nanogels based on poly(L-histidine). J Polym Sci Part A: Polym Chem 2016;54:1278-88. [DOI: 10.1002/pola.27971] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
101 Fang J, Lin Y, Wang S, Li Y, Lee R. Synthesis and characterization of dual-stimuli-responsive micelles based on poly(N-isopropylacrylamide) and polycarbonate with photocleavable moieties. Reactive and Functional Polymers 2015;95:46-54. [DOI: 10.1016/j.reactfunctpolym.2015.08.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
102 Tian Y, Kong Y, Li X, Wu J, Ko AC, Xing M. Light- and pH-activated intracellular drug release from polymeric mesoporous silica nanoparticles. Colloids and Surfaces B: Biointerfaces 2015;134:147-55. [DOI: 10.1016/j.colsurfb.2015.04.069] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
103 Bao B, Liu M, Liu Y, Zhang X, Zang Y, Li J, Lu W. NIR absorbing DICPO derivatives applied to wide range of pH and detection of glutathione in tumor. Tetrahedron 2015;71:7865-8. [DOI: 10.1016/j.tet.2015.08.020] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
104 Zhang Y, Ren J, Ma R, An Y, Shi L. Synthesis and research on pH and redox dual responsive UV-cross-linked micelle. Journal of Controlled Release 2015;213:e131-2. [DOI: 10.1016/j.jconrel.2015.05.222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
105 Sun T, Li P, Oh JK. Dual Location Dual Reduction/Photoresponsive Block Copolymer Micelles: Disassembly and Synergistic Release. Macromol Rapid Commun 2015;36:1742-8. [DOI: 10.1002/marc.201500306] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
106 Ma S, Zhou J, Wali ARM, He Y, Xu X, Tang JZ, Gu Z. Self-assembly of pH-sensitive fluorinated peptide dendron functionalized dextran nanoparticles for on-demand intracellular drug delivery. J Mater Sci: Mater Med 2015;26. [DOI: 10.1007/s10856-015-5550-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
107 Guo J, Peng L, Yuan J. When dual and multi-responsiveness meet molecular brushes. European Polymer Journal 2015;69:449-59. [DOI: 10.1016/j.eurpolymj.2015.03.033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
108 Guragain S, Bastakoti BP, Malgras V, Nakashima K, Yamauchi Y. Multi-Stimuli-Responsive Polymeric Materials. Chemistry 2015;21:13164-74. [PMID: 26219746 DOI: 10.1002/chem.201501101] [Cited by in Crossref: 132] [Cited by in F6Publishing: 127] [Article Influence: 18.9] [Reference Citation Analysis]
109 Yameen B, Vilos C, Choi WI, Whyte A, Huang J, Pollit L, Farokhzad OC. Drug Delivery Nanocarriers from a Fully Degradable PEG‐Conjugated Polyester with a Reduction‐Responsive Backbone. Chem Eur J 2015;21:11325-9. [DOI: 10.1002/chem.201502233] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
110 Muzzalupo R, Tavano L, Rossi CO, Picci N, Ranieri GA. Novel pH sensitive ferrogels as new approach in cancer treatment: Effect of the magnetic field on swelling and drug delivery. Colloids Surf B Biointerfaces 2015;134:273-8. [PMID: 26209777 DOI: 10.1016/j.colsurfb.2015.06.065] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.9] [Reference Citation Analysis]
111 Hu X, Chen Y, Liu Y. Redox-responsive supramolecular nanoparticles based on amphiphilic sulfonatocalixarene and selenocystamine dihydrochloride. Chinese Chemical Letters 2015;26:862-6. [DOI: 10.1016/j.cclet.2015.01.003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
112 Lu Y, Mo R, Tai W, Sun W, Pacardo DB, Qian C, Shen Q, Ligler FS, Gu Z. Self-folded redox/acid dual-responsive nanocarriers for anticancer drug delivery. Chem Commun (Camb) 2014;50:15105-8. [PMID: 25331017 DOI: 10.1039/c4cc07004f] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
113 Qin Y, Chen J, Bi Y, Xu X, Zhou H, Gao J, Hu Y, Zhao Y, Chai Z. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Acta Biomater 2015;17:201-9. [PMID: 25644449 DOI: 10.1016/j.actbio.2015.01.026] [Cited by in Crossref: 118] [Cited by in F6Publishing: 111] [Article Influence: 16.9] [Reference Citation Analysis]
114 Kaur S, Prasad C, Balakrishnan B, Banerjee R. Trigger responsive polymeric nanocarriers for cancer therapy. Biomater Sci 2015;3:955-87. [PMID: 26221933 DOI: 10.1039/c5bm00002e] [Cited by in Crossref: 103] [Cited by in F6Publishing: 98] [Article Influence: 14.7] [Reference Citation Analysis]
115 Huang G, Li H, Feng S, Li X, Tong G, Liu J, Quan C, Jiang Q, Zhang C, Li Z. Self-assembled UCST-Type Micelles as Potential Drug Carriers for Cancer Therapeutics. Macromol Chem Phys 2015;216:1014-23. [DOI: 10.1002/macp.201400546] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 5.9] [Reference Citation Analysis]
116 Therrien B. Biologically relevant arene ruthenium metalla-assemblies. CrystEngComm 2015;17:484-91. [DOI: 10.1039/c4ce02146k] [Cited by in Crossref: 69] [Cited by in F6Publishing: 58] [Article Influence: 9.9] [Reference Citation Analysis]
117 Qiao Z, Hou C, Zhang D, Liu Y, Lin Y, An H, Li X, Wang H. Self-assembly of cytotoxic peptide conjugated poly(β-amino ester)s for synergistic cancer chemotherapy. J Mater Chem B 2015;3:2943-53. [DOI: 10.1039/c4tb02144d] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 5.3] [Reference Citation Analysis]
118 Zhao Z, Zhu F, Qu X, Wu Q, Wang Q, Zhang G, Liang F. pH-Responsive polymeric Janus containers for controlled drug delivery. Polym Chem 2015;6:4144-53. [DOI: 10.1039/c5py00267b] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
119 Suhag D, Bhatia R, Das S, Shakeel A, Ghosh A, Singh A, Sinha OP, Chakrabarti S, Mukherjee M. Physically cross-linked pH-responsive hydrogels with tunable formulations for controlled drug delivery. RSC Adv 2015;5:53963-72. [DOI: 10.1039/c5ra07424j] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
120 Liu B, Zhang X, Chen Y, Yao Z, Yang Z, Gao D, Jiang Q, Liu J, Jiang Z. Enzymatic synthesis of poly(ω-pentadecalactone-co-butylene-co-3,3′-dithiodipropionate) copolyesters and self-assembly of the PEGylated copolymer micelles as redox-responsive nanocarriers for doxorubicin delivery. Polym Chem 2015;6:1997-2010. [DOI: 10.1039/c4py01321b] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
121 Qiao Z, Zhang D, Hou C, Zhao S, Liu Y, Gao Y, Tan N, Wang H. A pH-responsive natural cyclopeptide RA-V drug formulation for improved breast cancer therapy. J Mater Chem B 2015;3:4514-23. [DOI: 10.1039/c5tb00445d] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
122 Zhu W, Wang Y, Cai X, Zha G, Luo Q, Sun R, Li X, Shen Z. Reduction-triggered release of paclitaxel from in situ formed biodegradable core-cross-linked micelles. J Mater Chem B 2015;3:3024-31. [DOI: 10.1039/c4tb01834f] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 5.3] [Reference Citation Analysis]
123 Zhang H, Xue Y, Huang J, Xia X, Song M, Wen K, Zhang X, Luo X, Cai N, Long S, Yu F. Tailor-made magnetic nanocarriers with pH-induced charge reversal and pH-responsiveness to guide subcellular release of doxorubicin. J Mater Sci 2015;50:2429-42. [DOI: 10.1007/s10853-014-8798-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
124 Frisch H, Besenius P. pH-switchable self-assembled materials. Macromol Rapid Commun 2015;36:346-63. [PMID: 25534871 DOI: 10.1002/marc.201400623] [Cited by in Crossref: 56] [Cited by in F6Publishing: 59] [Article Influence: 7.0] [Reference Citation Analysis]
125 Zhao Q, Wang Y, Yan Y, Huang J. Smart nanocarrier: self-assembly of bacteria-like vesicles with photoswitchable cilia. ACS Nano 2014;8:11341-9. [PMID: 25363552 DOI: 10.1021/nn5042366] [Cited by in Crossref: 69] [Cited by in F6Publishing: 63] [Article Influence: 8.6] [Reference Citation Analysis]
126 Cui L, Lin H, Yang C, Han X, Zhang T, Qu F. Synthesis of Multifunctional Fe 3 O 4 @mSiO 2 @Au Core-Shell Nanocomposites for pH-Responsive Drug Delivery: Multifunctional Fe 3 O 4 @mSiO 2 @Au Core-Shell Nanocomposites. Eur J Inorg Chem 2014;2014:6156-64. [DOI: 10.1002/ejic.201402671] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
127 Thambi T, You DG, Han HS, Deepagan VG, Jeon SM, Suh YD, Choi KY, Kim K, Kwon IC, Yi GR, Lee JY, Lee DS, Park JH. Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery. Adv Healthc Mater 2014;3:1829-38. [PMID: 24753360 DOI: 10.1002/adhm.201300691] [Cited by in Crossref: 61] [Cited by in F6Publishing: 54] [Article Influence: 7.6] [Reference Citation Analysis]
128 Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014;13:813-27. [PMID: 25287120 DOI: 10.1038/nrd4333] [Cited by in Crossref: 922] [Cited by in F6Publishing: 923] [Article Influence: 115.3] [Reference Citation Analysis]
129 Torchilin VP. Multifunctional nanocarriers. Advanced Drug Delivery Reviews 2012;64:302-15. [DOI: 10.1016/j.addr.2012.09.031] [Cited by in Crossref: 259] [Cited by in F6Publishing: 165] [Article Influence: 32.4] [Reference Citation Analysis]
130 Huang J, Xue Y, Cai N, Zhang H, Wen K, Luo X, Long S, Yu F. Efficient reduction and pH co-triggered DOX-loaded magnetic nanogel carrier using disulfide crosslinking. Mater Sci Eng C Mater Biol Appl 2015;46:41-51. [PMID: 25491958 DOI: 10.1016/j.msec.2014.10.003] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 4.1] [Reference Citation Analysis]
131 Nie SY, Lin WJ, Yao N, Guo XD, Zhang LJ. Drug release from pH-sensitive polymeric micelles with different drug distributions: insight from coarse-grained simulations. ACS Appl Mater Interfaces 2014;6:17668-78. [PMID: 25275994 DOI: 10.1021/am503920m] [Cited by in Crossref: 45] [Cited by in F6Publishing: 50] [Article Influence: 5.6] [Reference Citation Analysis]
132 Chen X, Soeriyadi AH, Lu X, Sagnella SM, Kavallaris M, Gooding JJ. Dual Bioresponsive Mesoporous Silica Nanocarrier as an “AND” Logic Gate for Targeted Drug Delivery Cancer Cells. Adv Funct Mater 2014;24:6999-7006. [DOI: 10.1002/adfm.201402339] [Cited by in Crossref: 92] [Cited by in F6Publishing: 73] [Article Influence: 11.5] [Reference Citation Analysis]
133 Wang Y, Wang H, Chen Y, Liu X, Jin Q, Ji J. pH and hydrogen peroxide dual responsive supramolecular prodrug system for controlled release of bioactive molecules. Colloids and Surfaces B: Biointerfaces 2014;121:189-95. [DOI: 10.1016/j.colsurfb.2014.06.024] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 4.0] [Reference Citation Analysis]
134 An FF, Cao W, Liang XJ. Nanostructural systems developed with positive charge generation to drug delivery. Adv Healthc Mater 2014;3:1162-81. [PMID: 24550201 DOI: 10.1002/adhm.201300600] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 4.6] [Reference Citation Analysis]
135 Liu X, Yu D, Jin C, Song X, Cheng J, Zhao X, Qi X, Zhang G. A dual responsive targeted drug delivery system based on smart polymer coated mesoporous silica for laryngeal carcinoma treatment. New J Chem 2014;38:4830-6. [DOI: 10.1039/c4nj00579a] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 5.6] [Reference Citation Analysis]
136 Shi J, Guobao W, Chen H, Zhong W, Qiu X, Xing MMQ. Schiff based injectable hydrogel for in situ pH-triggered delivery of doxorubicin for breast tumor treatment. Polym Chem 2014;5:6180-9. [DOI: 10.1039/c4py00631c] [Cited by in Crossref: 76] [Cited by in F6Publishing: 69] [Article Influence: 9.5] [Reference Citation Analysis]
137 Li X, Zhou J, Liu Z, Chen J, Lü S, Sun H, Li J, Lin Q, Yang B, Duan C, Xing M(, Wang C. A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair. Biomaterials 2014;35:5679-88. [DOI: 10.1016/j.biomaterials.2014.03.067] [Cited by in Crossref: 101] [Cited by in F6Publishing: 117] [Article Influence: 12.6] [Reference Citation Analysis]
138 Wang Y, Luo Q, Gao L, Gao C, Du H, Zha G, Li X, Shen Z, Zhu W. A facile strategy to prepare redox-responsive amphiphilic PEGylated prodrug with high drug loading content and low critical micelle concentration. Biomater Sci 2014;2:1367-76. [PMID: 32481913 DOI: 10.1039/c4bm00065j] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
139 Lau JT, Lo PC, Jiang XJ, Wang Q, Ng DK. A dual activatable photosensitizer toward targeted photodynamic therapy. J Med Chem 2014;57:4088-97. [PMID: 24793456 DOI: 10.1021/jm500456e] [Cited by in Crossref: 86] [Cited by in F6Publishing: 91] [Article Influence: 10.8] [Reference Citation Analysis]
140 Feng W, Nie W, He C, Zhou X, Chen L, Qiu K, Wang W, Yin Z. Effect of pH-Responsive Alginate/Chitosan Multilayers Coating on Delivery Efficiency, Cellular Uptake and Biodistribution of Mesoporous Silica Nanoparticles Based Nanocarriers. ACS Appl Mater Interfaces 2014;6:8447-60. [DOI: 10.1021/am501337s] [Cited by in Crossref: 155] [Cited by in F6Publishing: 162] [Article Influence: 19.4] [Reference Citation Analysis]
141 Wang Z, Sun J, Jia X. Self-immolative nanoparticles triggered by hydrogen peroxide and pH. J Polym Sci Part A: Polym Chem 2014;52:1962-9. [DOI: 10.1002/pola.27203] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
142 Kozielski KL, Tzeng SY, De Mendoza BA, Green JJ. Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. ACS Nano 2014;8:3232-41. [PMID: 24673565 DOI: 10.1021/nn500704t] [Cited by in Crossref: 130] [Cited by in F6Publishing: 127] [Article Influence: 16.3] [Reference Citation Analysis]
143 Chu Y, Yu H, Ma Y, Zhang Y, Chen W, Zhang G, Wei H, Zhang X, Zhuo R, Jiang X. Synthesis and characterization of biodegradable pH and reduction dual-sensitive polymeric micelles for doxorubicin delivery. J Polym Sci Part A: Polym Chem 2014;52:1771-80. [DOI: 10.1002/pola.27192] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
144 Cai M, Zhu K, Qiu Y, Liu X, Chen Y, Luo X. pH and redox-responsive mixed micelles for enhanced intracellular drug release. Colloids and Surfaces B: Biointerfaces 2014;116:424-31. [DOI: 10.1016/j.colsurfb.2014.01.012] [Cited by in Crossref: 53] [Cited by in F6Publishing: 49] [Article Influence: 6.6] [Reference Citation Analysis]
145 He Y, Nie Y, Cheng G, Xie L, Shen Y, Gu Z. Viral mimicking ternary polyplexes: a reduction-controlled hierarchical unpacking vector for gene delivery. Adv Mater 2014;26:1534-40. [PMID: 24757715 DOI: 10.1002/adma.201304592] [Cited by in Crossref: 104] [Cited by in F6Publishing: 101] [Article Influence: 13.0] [Reference Citation Analysis]
146 Sun H, Meng F, Cheng R, Deng C, Zhong Z. Reduction-responsive polymeric micelles and vesicles for triggered intracellular drug release. Antioxid Redox Signal 2014;21:755-67. [PMID: 24279980 DOI: 10.1089/ars.2013.5733] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 6.5] [Reference Citation Analysis]
147 Li Y, Xiao K, Zhu W, Deng W, Lam KS. Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv Drug Deliv Rev 2014;66:58-73. [PMID: 24060922 DOI: 10.1016/j.addr.2013.09.008] [Cited by in Crossref: 226] [Cited by in F6Publishing: 211] [Article Influence: 28.3] [Reference Citation Analysis]
148 Zhuang J, Chacko R, Amado Torres DF, Wang H, Thayumanavan S. Dual Stimuli - Dual Response Nanoassemblies Prepared from a Simple Homopolymer. ACS Macro Lett 2014;3:1-5. [PMID: 24516780 DOI: 10.1021/mz400515s] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
149 Duan Z, Gao Y, Qiao Z, Fan G, Liu Y, Zhang D, Wang H. A photoacoustic approach for monitoring the drug release of pH-sensitive poly(β-amino ester)s. J Mater Chem B 2014;2:6271-82. [DOI: 10.1039/c4tb00319e] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 3.8] [Reference Citation Analysis]
150 Wong S, Shim MS, Kwon YJ. Synthetically designed peptide-based biomaterials with stimuli-responsive and membrane-active properties for biomedical applications. J Mater Chem B 2014;2:595-615. [DOI: 10.1039/c3tb21344g] [Cited by in Crossref: 52] [Cited by in F6Publishing: 42] [Article Influence: 6.5] [Reference Citation Analysis]
151 Zhang Y, He J, Cao D, Zhang M, Ni P. Galactosylated reduction and pH dual-responsive triblock terpolymer Gal-PEEP-a-PCL-ss-PDMAEMA: a multifunctional carrier for the targeted and simultaneous delivery of doxorubicin and DNA. Polym Chem 2014;5:5124-38. [DOI: 10.1039/c4py00538d] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
152 Miao K, Shao W, Liu H, Zhao Y. Synthesis and properties of a dually cleavable graft copolymer comprising pendant acetal linkages. Polym Chem 2014;5:1191-201. [DOI: 10.1039/c3py01049j] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
153 Liu H, Miao K, Zhao G, Li C, Zhao Y. Synthesis of an amphiphilic PEG-PCL-PSt-PLLA-PAA star quintopolymer and its self-assembly for pH-sensitive drug delivery. Polym Chem 2014;5:3071-80. [DOI: 10.1039/c3py01601c] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
154 Chen J, Shi M, Liu P, Ko A, Zhong W, Liao W, Xing MM. Reducible polyamidoamine-magnetic iron oxide self-assembled nanoparticles for doxorubicin delivery. Biomaterials 2014;35:1240-8. [DOI: 10.1016/j.biomaterials.2013.10.057] [Cited by in Crossref: 63] [Cited by in F6Publishing: 60] [Article Influence: 7.9] [Reference Citation Analysis]
155 Liu B, Chen H, Li X, Zhao C, Liu Y, Zhu L, Deng H, Li J, Li G, Guo F, Zhu X. pH-responsive flower-like micelles constructed via oxime linkage for anticancer drug delivery. RSC Adv 2014;4:48943-51. [DOI: 10.1039/c4ra08719d] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
156 Guo W, Yang C, Lin H, Qu F. P(EO-co-LLA) functionalized Fe 3 O 4 @mSiO 2 nanocomposites for thermo/pH responsive drug controlled release and hyperthermia. Dalton Trans 2014;43:18056-65. [DOI: 10.1039/c4dt02441a] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
157 Wu Y, Kuang H, Xie Z, Chen X, Jing X, Huang Y. Novel hydroxyl-containing reduction-responsive pseudo-poly(aminoacid) via click polymerization as an efficient drug carrier. Polym Chem 2014;5:4488. [DOI: 10.1039/c4py00227j] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
158 Liu X, He J, Hu D, Niu Y, Xia X, Lu Y. Facile synthesis of a reduction-responsive amphiphilic triblock polymer via a selective thiol–disulfide exchange reaction. RSC Adv 2014;4:48897-900. [DOI: 10.1039/c4ra07792j] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
159 Pasanphan W, Rattanawongwiboon T, Rimdusit P, Piroonpan T. Radiation-induced graft copolymerization of poly(ethylene glycol) monomethacrylate onto deoxycholate-chitosan nanoparticles as a drug carrier. Radiation Physics and Chemistry 2014;94:199-204. [DOI: 10.1016/j.radphyschem.2013.06.026] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
160 Liu S, Ko AC, Li W, Zhong W, Xing M. NIR initiated and pH sensitive single-wall carbon nanotubes for doxorubicin intracellular delivery. J Mater Chem B 2014;2:1125. [DOI: 10.1039/c3tb21362e] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
161 Qiao Z, Qiao S, Fan G, Fan Y, Chen Y, Wang H. One-pot synthesis of pH-sensitive poly(RGD-co-β-amino ester)s for targeted intracellular drug delivery. Polym Chem 2014;5:844-53. [DOI: 10.1039/c3py01117h] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 5.8] [Reference Citation Analysis]
162 Chen X, Cheng X, Soeriyadi AH, Sagnella SM, Lu X, Scott JA, Lowe SB, Kavallaris M, Gooding JJ. Stimuli-responsive functionalized mesoporous silica nanoparticles for drug release in response to various biological stimuli. Biomater Sci 2014;2:121-30. [DOI: 10.1039/c3bm60148j] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 8.6] [Reference Citation Analysis]
163 Xuan J, Han D, Xia H, Zhao Y. Dual-Stimuli-Responsive Micelle of an ABC Triblock Copolymer Bearing a Redox-Cleavable Unit and a Photocleavable Unit at Two Block Junctions. Langmuir 2014;30:410-7. [DOI: 10.1021/la404493n] [Cited by in Crossref: 64] [Cited by in F6Publishing: 62] [Article Influence: 7.1] [Reference Citation Analysis]
164 Kozielski KL, Tzeng SY, Green JJ. A bioreducible linear poly(β-amino ester) for siRNA delivery. Chem Commun (Camb) 2013;49:5319-21. [PMID: 23646347 DOI: 10.1039/c3cc40718g] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 5.8] [Reference Citation Analysis]
165 Zhang Y, Li J, Du Z, Lang M. Synthesis and pH‐responsive assembly of methoxy poly(ethylene glycol)‐ b ‐poly(ε‐caprolactone) with pendant carboxyl groups. J Polym Sci Part A: Polym Chem 2014;52:188-99. [DOI: 10.1002/pola.26987] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
166 Nie SY, Sun Y, Lin WJ, Wu WS, Guo XD, Qian Y, Zhang LJ. Dissipative particle dynamics studies of doxorubicin-loaded micelles assembled from four-arm star triblock polymers 4AS-PCL-b-PDEAEMA-b-PPEGMA and their pH-release mechanism. J Phys Chem B 2013;117:13688-97. [PMID: 24079339 DOI: 10.1021/jp407529u] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 6.3] [Reference Citation Analysis]
167 Li J, Li J, Xu S, Zhang D, Liu D. Hydrophobic oligopeptide-based star-block copolymers as unimolecular nanocarriers for poorly water-soluble drugs. Colloids and Surfaces B: Biointerfaces 2013;110:183-90. [DOI: 10.1016/j.colsurfb.2013.04.049] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
168 Cheng W, Kumar JN, Zhang Y, Liu Y. pH- and redox-responsive poly(ethylene glycol) and cholesterol-conjugated poly(amido amine)s based micelles for controlled drug delivery. Macromol Biosci 2014;14:347-58. [PMID: 24106152 DOI: 10.1002/mabi.201300339] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
169 Tian Y, Chen J, Zahtabi F, Keijzer R, Xing M. Nanomedicine as an innovative therapeutic strategy for pediatric lung diseases. Pediatr Pulmonol 2013;48:1098-111. [PMID: 23997035 DOI: 10.1002/ppul.22657] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
170 Kong M, Park H, Cheng X, Chen X. Spatial-temporal event adaptive characteristics of nanocarrier drug delivery in cancer therapy. J Control Release 2013;172:281-91. [PMID: 24004884 DOI: 10.1016/j.jconrel.2013.08.022] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
171 Zhao S, Tan S, Guo Y, Huang J, Chu M, Liu H, Zhang Z. pH-Sensitive Docetaxel-Loaded d -α-Tocopheryl Polyethylene Glycol Succinate–Poly(β-amino ester) Copolymer Nanoparticles for Overcoming Multidrug Resistance. Biomacromolecules 2013;14:2636-46. [DOI: 10.1021/bm4005113] [Cited by in Crossref: 63] [Cited by in F6Publishing: 70] [Article Influence: 7.0] [Reference Citation Analysis]
172 Nguyen DH, Bae JW, Choi JH, Lee JS, Park KD. Bioreducible cross-linked Pluronic micelles: pH-triggered release of doxorubicin and folate-mediated cellular uptake. Journal of Bioactive and Compatible Polymers 2013;28:341-54. [DOI: 10.1177/0883911513491642] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
173 Zhu L, Torchilin VP. Stimulus-responsive nanopreparations for tumor targeting. Integr Biol (Camb) 2013;5:96-107. [PMID: 22869005 DOI: 10.1039/c2ib20135f] [Cited by in Crossref: 153] [Cited by in F6Publishing: 137] [Article Influence: 17.0] [Reference Citation Analysis]
174 Deshayes S, Kasko AM. Polymeric biomaterials with engineered degradation. J Polym Sci Part A: Polym Chem 2013;51:3531-66. [DOI: 10.1002/pola.26765] [Cited by in Crossref: 52] [Cited by in F6Publishing: 44] [Article Influence: 5.8] [Reference Citation Analysis]
175 Zhuang J, Gordon MR, Ventura J, Li L, Thayumanavan S. Multi-stimuli responsive macromolecules and their assemblies. Chem Soc Rev 2013;42:7421-35. [PMID: 23765263 DOI: 10.1039/c3cs60094g] [Cited by in Crossref: 452] [Cited by in F6Publishing: 449] [Article Influence: 50.2] [Reference Citation Analysis]
176 Cheng R, Meng F, Deng C, Klok H, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013;34:3647-57. [DOI: 10.1016/j.biomaterials.2013.01.084] [Cited by in Crossref: 886] [Cited by in F6Publishing: 867] [Article Influence: 98.4] [Reference Citation Analysis]
177 Guo H, Lai Q, Wang W, Wu Y, Zhang C, Liu Y, Yuan Z. Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy. Int J Pharm. 2013;451:1-11. [PMID: 23618965 DOI: 10.1016/j.ijpharm.2013.04.025] [Cited by in Crossref: 77] [Cited by in F6Publishing: 67] [Article Influence: 8.6] [Reference Citation Analysis]
178 Shao Y, Huang W, Shi C, Atkinson ST, Luo J. Reversibly crosslinked nanocarriers for on-demand drug delivery in cancer treatment. Ther Deliv 2012;3:1409-27. [PMID: 23323559 DOI: 10.4155/tde.12.106] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 4.3] [Reference Citation Analysis]
179 Chen J, Ouyang J, Kong J, Zhong W, Xing MM. Photo-cross-linked and pH-Sensitive Biodegradable Micelles for Doxorubicin Delivery. ACS Appl Mater Interfaces 2013;5:3108-17. [DOI: 10.1021/am400017q] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 5.4] [Reference Citation Analysis]
180 Yang YQ, Lin WJ, Zhang LJ, Cai CZ, Jiang W, Guo XD, Qian Y. Synthesis, characterization and pH-Responsive self-assembly behavior of amphiphilic multiarm star triblock copolymers based on PCL, PDEAEMA, and PEG. Macromol Res 2013;21:1011-20. [DOI: 10.1007/s13233-013-1133-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
181 Zhang X, Yang P, Dai Y, Ma P, Li X, Cheng Z, Hou Z, Kang X, Li C, Lin J. Multifunctional Up-Converting Nanocomposites with Smart Polymer Brushes Gated Mesopores for Cell Imaging and Thermo/pH Dual-Responsive Drug Controlled Release. Adv Funct Mater 2013;23:4067-78. [DOI: 10.1002/adfm.201300136] [Cited by in Crossref: 188] [Cited by in F6Publishing: 151] [Article Influence: 20.9] [Reference Citation Analysis]
182 Sun H, Meng F, Cheng R, Deng C, Zhong Z. Reduction-sensitive degradable micellar nanoparticles as smart and intuitive delivery systems for cancer chemotherapy. Expert Opinion on Drug Delivery 2013;10:1109-22. [DOI: 10.1517/17425247.2013.783009] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 6.2] [Reference Citation Analysis]
183 Wei H, Zhuo R, Zhang X. Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Progress in Polymer Science 2013;38:503-35. [DOI: 10.1016/j.progpolymsci.2012.07.002] [Cited by in Crossref: 389] [Cited by in F6Publishing: 354] [Article Influence: 43.2] [Reference Citation Analysis]
184 Li Y, Gao GH, Lee DS. Stimulus-sensitive polymeric nanoparticles and their applications as drug and gene carriers. Adv Healthc Mater 2013;2:388-417. [PMID: 23184586 DOI: 10.1002/adhm.201200313] [Cited by in Crossref: 118] [Cited by in F6Publishing: 111] [Article Influence: 13.1] [Reference Citation Analysis]
185 Chen W, Zhong P, Meng F, Cheng R, Deng C, Feijen J, Zhong Z. Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. J Control Release 2013;169:171-9. [PMID: 23306022 DOI: 10.1016/j.jconrel.2013.01.001] [Cited by in Crossref: 288] [Cited by in F6Publishing: 295] [Article Influence: 32.0] [Reference Citation Analysis]
186 Zhang Y, Ma L, Deng X, Cheng J. Trigger-responsive chain-shattering polymers. Polym Chem 2013;4:224-8. [DOI: 10.1039/c2py20838e] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
187 Wu Y, Yang D, Kang X, Ma P, Huang S, Zhang Y, Li C, Lin J. Core–shell structured luminescent and mesoporous β-NaYF4:Ce3+/Tb3+@mSiO2-PEG nanospheres for anti-cancer drug delivery. Dalton Trans 2013;42:9852. [DOI: 10.1039/c3dt50658d] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.7] [Reference Citation Analysis]
188 Tian Y, Glogowska A, Zhong W, Klonisch T, Xing M. Polymeric mesoporous silica nanoparticles as a pH-responsive switch to control doxorubicin intracellular delivery. J Mater Chem B 2013;1:5264. [DOI: 10.1039/c3tb20544d] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
189 Yuan W, Zou H, Guo W, Shen T, Ren J. Supramolecular micelles with dual temperature and redox responses for multi-controlled drug release. Polym Chem 2013;4:2658. [DOI: 10.1039/c3py00211j] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.2] [Reference Citation Analysis]
190 Huang X, Jiang X, Yang Q, Chu Y, Zhang G, Yang B, Zhuo R. Triple-stimuli (pH/thermo/reduction) sensitive copolymers for intracellular drug delivery. J Mater Chem B 2013;1:1860. [DOI: 10.1039/c3tb00424d] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 4.9] [Reference Citation Analysis]
191 Li M, Tang Z, Sun H, Ding J, Song W, Chen X. pH and reduction dual-responsive nanogel cross-linked by quaternization reaction for enhanced cellular internalization and intracellular drug delivery. Polym Chem 2013;4:1199-207. [DOI: 10.1039/c2py20871g] [Cited by in Crossref: 108] [Cited by in F6Publishing: 103] [Article Influence: 12.0] [Reference Citation Analysis]
192 Shao W, Miao K, Liu H, Ye C, Du J, Zhao Y. Acid and reduction dually cleavable amphiphilic comb-like copolymer micelles for controlled drug delivery. Polym Chem 2013;4:3398. [DOI: 10.1039/c3py00252g] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 4.0] [Reference Citation Analysis]
193 Wang H, Xu F, Wang Y, Liu X, Jin Q, Ji J. pH-responsive and biodegradable polymeric micelles based on poly(β-amino ester)-graft-phosphorylcholine for doxorubicin delivery. Polym Chem 2013;4:3012. [DOI: 10.1039/c3py00139c] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 4.7] [Reference Citation Analysis]
194 Sun Q, Radosz M, Shen Y. Challenges in design of translational nanocarriers. Journal of Controlled Release 2012;164:156-69. [DOI: 10.1016/j.jconrel.2012.05.042] [Cited by in Crossref: 172] [Cited by in F6Publishing: 169] [Article Influence: 17.2] [Reference Citation Analysis]
195 Dai Y, Yang D, Ma P, Kang X, Zhang X, Li C, Hou Z, Cheng Z, Lin J. Doxorubicin conjugated NaYF(4):Yb(3+)/Tm(3+) nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer. Biomaterials 2012;33:8704-13. [PMID: 22938822 DOI: 10.1016/j.biomaterials.2012.08.029] [Cited by in Crossref: 86] [Cited by in F6Publishing: 83] [Article Influence: 8.6] [Reference Citation Analysis]
196 Ko NR, Yao K, Tang C, Oh JK. Synthesis and thiol-responsive degradation of polylactide-based block copolymers having disulfide junctions using ATRP and ROP. J Polym Sci Part A: Polym Chem 2013;51:3071-80. [DOI: 10.1002/pola.26335] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 2.7] [Reference Citation Analysis]
197 Song W, Tang Z, Li M, Lv S, Yu H, Ma L, Zhuang X, Huang Y, Chen X. Tunable pH-Sensitive Poly( β -amino ester)s Synthesized from Primary Amines and Diacrylates for Intracellular Drug Delivery: Tunable pH-Sensitive Poly( β -amino ester)s Synthesized from Primary Amines and Diacrylates …. Macromol Biosci 2012;12:1375-83. [DOI: 10.1002/mabi.201200122] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 3.8] [Reference Citation Analysis]
198 K C RB, Thapa B, Xu P. pH and redox dual responsive nanoparticle for nuclear targeted drug delivery. Mol Pharm 2012;9:2719-29. [PMID: 22876763 DOI: 10.1021/mp300274g] [Cited by in Crossref: 116] [Cited by in F6Publishing: 114] [Article Influence: 11.6] [Reference Citation Analysis]
199 Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, van Blitterswijk C, Moroni L, Dubruel P. Cationic polymers and their therapeutic potential. Chem Soc Rev 2012;41:7147-94. [PMID: 22885409 DOI: 10.1039/c2cs35094g] [Cited by in Crossref: 415] [Cited by in F6Publishing: 429] [Article Influence: 41.5] [Reference Citation Analysis]
200 Khan M, Ong ZY, Wiradharma N, Attia AB, Yang YY. Advanced materials for co-delivery of drugs and genes in cancer therapy. Adv Healthc Mater 2012;1:373-92. [PMID: 23184770 DOI: 10.1002/adhm.201200109] [Cited by in Crossref: 111] [Cited by in F6Publishing: 105] [Article Influence: 11.1] [Reference Citation Analysis]
201 Yue J, Liu S, Wang R, Hu X, Xie Z, Huang Y, Jing X. Transferrin-conjugated micelles: enhanced accumulation and antitumor effect for transferrin-receptor-overexpressing cancer models. Mol Pharm 2012;9:1919-31. [PMID: 22616905 DOI: 10.1021/mp300213g] [Cited by in Crossref: 62] [Cited by in F6Publishing: 61] [Article Influence: 6.2] [Reference Citation Analysis]
202 Dai Y, Ma P, Cheng Z, Kang X, Zhang X, Hou Z, Li C, Yang D, Zhai X, Lin J. Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres. ACS Nano 2012;6:3327-38. [PMID: 22435911 DOI: 10.1021/nn300303q] [Cited by in Crossref: 280] [Cited by in F6Publishing: 268] [Article Influence: 28.0] [Reference Citation Analysis]
203 Pinnel P, Mendez-nelson A, Noh SM, Nam JH, Oh JK. Rapid and Tunable Reductive Degradation of Disulfide-Labeled Polyesters. Macromol Chem Phys 2012;213:678-85. [DOI: 10.1002/macp.201100662] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
204 Chen J, Zehtabi F, Ouyang J, Kong J, Zhong W, Xing MMQ. Reducible self-assembled micelles for enhanced intracellular delivery of doxorubicin. J Mater Chem 2012;22:7121. [DOI: 10.1039/c2jm15277k] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
205 Aleksanian S, Khorsand B, Schmidt R, Oh JK. Rapidly thiol-responsive degradable block copolymer nanocarriers with facile bioconjugation. Polym Chem 2012;3:2138. [DOI: 10.1039/c2py20154b] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 3.4] [Reference Citation Analysis]
206 Zhang Q, Re Ko N, Kwon Oh J. Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chem Commun 2012;48:7542. [DOI: 10.1039/c2cc32408c] [Cited by in Crossref: 293] [Cited by in F6Publishing: 284] [Article Influence: 29.3] [Reference Citation Analysis]