BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sun D, Ding J, Xiao C, Chen J, Zhuang X, Chen X. Preclinical Evaluation of Antitumor Activity of Acid-Sensitive PEGylated Doxorubicin. ACS Appl Mater Interfaces 2014;6:21202-14. [DOI: 10.1021/am506178c] [Cited by in Crossref: 72] [Cited by in F6Publishing: 72] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang T, Jiao X, Peng X, Wang H, Zou Y, Xiao Y, Liu R, Li Z. Non-invasive drug delivery systems mediated by nanocarriers and molecular dynamics simulation for posterior eye disease therapeutics: Virtual screening, construction and comparison. Journal of Molecular Liquids 2022;363:119805. [DOI: 10.1016/j.molliq.2022.119805] [Reference Citation Analysis]
2 Bargathulla I, Babu AA, Shanavas A, Vellaichamy E, Nasar AS. PEGylated bis-indolyl polyurethane dendrimers with anti-cancer activity as carriers for doxorubicin to treat lung cancer cells. Chem Pap . [DOI: 10.1007/s11696-022-02394-8] [Reference Citation Analysis]
3 Viswanathan TM, Chitradevi K, Zochedh A, Vijayabhaskar R, Sukumaran S, Kunjiappan S, Kumar NS, Sundar K, Babkiewicz E, Maszczyk P, Kathiresan T. Guanidine–Curcumin Complex-Loaded Amine-Functionalised Hollow Mesoporous Silica Nanoparticles for Breast Cancer Therapy. Cancers 2022;14:3490. [DOI: 10.3390/cancers14143490] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 Ng YM, Coghi P, Ng JPL, Ali F, Wong VKW, Coluccini C. Synthesis and Coordination Properties of a Water-Soluble Material by Cross-Linking Low Molecular Weight Polyethyleneimine with Armed Cyclotriveratrilene. Polymers (Basel) 2021;13:4133. [PMID: 34883636 DOI: 10.3390/polym13234133] [Reference Citation Analysis]
5 Zhang Q, Xu J, Peng J, Liu Z. A targeted self-assembling photosensitizer nanofiber constructed by multicomponent coordination. Biomater Sci 2021. [PMID: 34796886 DOI: 10.1039/d1bm01559a] [Reference Citation Analysis]
6 Jiang G, Wang X, Zhou Y, Zou C, Wang L, Wang W, Zhang D, Xu H, Li J, Li F, Luo D, Ma X, Ma D, Tan S, Wei R, Xi L. TMTP1-Modified, Tumor Microenvironment Responsive Nanoparticles Co-Deliver Cisplatin and Paclitaxel Prodrugs for Effective Cervical Cancer Therapy. Int J Nanomedicine 2021;16:4087-104. [PMID: 34163161 DOI: 10.2147/IJN.S298252] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
7 Kawasaki R, Sasaki Y, Nishimura T, Katagiri K, Morita KI, Sekine Y, Sawada SI, Mukai SA, Akiyoshi K. Magnetically Navigated Protein Transduction In Vivo using Iron Oxide-Nanogel Chaperone Hybrid. Adv Healthc Mater 2021;10:e2001988. [PMID: 33694289 DOI: 10.1002/adhm.202001988] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Zhang B, Wan S, Peng X, Zhao M, Li S, Pu Y, He B. Human serum albumin-based doxorubicin prodrug nanoparticles with tumor pH-responsive aggregation-enhanced retention and reduced cardiotoxicity. J Mater Chem B 2020;8:3939-48. [PMID: 32236239 DOI: 10.1039/d0tb00327a] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 38.0] [Reference Citation Analysis]
9 Yim MS, Hwang YS, Bang JK, Jung DW, Kim JM, Yi GR, Lee G, Ryu EK. Morphologically homogeneous, pH-responsive gold nanoparticles for non-invasive imaging of HeLa cancer. Nanomedicine 2021;34:102394. [PMID: 33857687 DOI: 10.1016/j.nano.2021.102394] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
10 Xu C, Xu J, Zheng Y, Fang Q, Lv X, Wang X, Tang R. Active-targeting and acid-sensitive pluronic prodrug micelles for efficiently overcoming MDR in breast cancer. J Mater Chem B 2020;8:2726-37. [PMID: 32154530 DOI: 10.1039/c9tb02328c] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
11 Ma W, Yang H, Hu Y, Chen L. Fabrication of PEGylated porphyrin/reduced graphene oxide/doxorubicin nanoplatform for tumour combination therapy. Polym Int 2021;70:1413-20. [DOI: 10.1002/pi.6216] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Liu J, Sun L, Li L, Zhang R, Xu ZP. Synergistic Cancer Photochemotherapy via Layered Double Hydroxide-Based Trimodal Nanomedicine at Very Low Therapeutic Doses. ACS Appl Mater Interfaces 2021;13:7115-26. [PMID: 33543935 DOI: 10.1021/acsami.0c23143] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 23.0] [Reference Citation Analysis]
13 Qin J, Zhu Y, Zheng D, Zhao Q. pH-sensitive polymeric nanocarriers for antitumor biotherapeutic molecules targeting delivery. Bio-des Manuf 2021;4:612-26. [DOI: 10.1007/s42242-020-00105-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Liu Y, Li Q, Bai Q, Jiang W. Advances of smart nano-drug delivery systems in osteosarcoma treatment. J Mater Chem B 2021;9:5439-50. [PMID: 34155495 DOI: 10.1039/d1tb00566a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
15 Ma W, Chen Q, Xu W, Yu M, Yang Y, Zou B, Zhang YS, Ding J, Yu Z. Self-targeting visualizable hyaluronate nanogel for synchronized intracellular release of doxorubicin and cisplatin in combating multidrug-resistant breast cancer. Nano Res 2021;14:846-57. [DOI: 10.1007/s12274-020-3124-y] [Cited by in Crossref: 69] [Cited by in F6Publishing: 52] [Article Influence: 34.5] [Reference Citation Analysis]
16 Huang L, Zhao S, Fang F, Xu T, Lan M, Zhang J. Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 2021;268:120557. [PMID: 33260095 DOI: 10.1016/j.biomaterials.2020.120557] [Cited by in Crossref: 64] [Cited by in F6Publishing: 71] [Article Influence: 32.0] [Reference Citation Analysis]
17 Coluccini C, Ng YM, Reyes YIA, Chen HT, Khung YL. Functionalization of Polyethyleneimine with Hollow Cyclotriveratrylene and Its Subsequent Supramolecular Interaction with Doxorubicin. Molecules 2020;25:5455. [DOI: 10.3390/molecules25225455] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Cao Z, Li W, Liu R, Li C, Song Y, Liu G, Chen Y, Lu C, Lu A, Liu Y. pH-Responsive Fluorescence Enhanced Nanogel for Targeted Delivery of AUR and CDDP Against Breast Cancer. Int J Nanomedicine 2020;15:8369-82. [PMID: 33149581 DOI: 10.2147/IJN.S274842] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Yu J, Wang Y, Zhou S, Li J, Wang J, Chi D, Wang X, Lin G, He Z, Wang Y. Remote loading paclitaxel-doxorubicin prodrug into liposomes for cancer combination therapy. Acta Pharm Sin B 2020;10:1730-40. [PMID: 33088692 DOI: 10.1016/j.apsb.2020.04.011] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 13.5] [Reference Citation Analysis]
20 Zhang S, Zhu P, He J, Dong S, Li P, Zhang CY, Ma T. TME-Responsive Polyprodrug Micelles for Multistage Delivery of Doxorubicin with Improved Cancer Therapeutic Efficacy in Rodents. Adv Healthc Mater 2020;9:e2000387. [PMID: 32815646 DOI: 10.1002/adhm.202000387] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
21 Li J, Li X, Pei M, Liu P. Acid-labile anhydride-linked doxorubicin-doxorubicin dimer nanoparticles as drug self-delivery system with minimized premature drug leakage and enhanced anti-tumor efficacy. Colloids Surf B Biointerfaces 2020;192:111064. [PMID: 32387860 DOI: 10.1016/j.colsurfb.2020.111064] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
22 Bao YW, Hua XW, Zeng J, Wu FG. Bacterial Template Synthesis of Multifunctional Nanospindles for Glutathione Detection and Enhanced Cancer-Specific Chemo-Chemodynamic Therapy. Research (Wash D C) 2020;2020:9301215. [PMID: 32529190 DOI: 10.34133/2020/9301215] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 15.0] [Reference Citation Analysis]
23 Yan J, Xu X, Zhou J, Liu C, Zhang L, Wang D, Yang F, Zhang H. Fabrication of a pH/Redox-Triggered Mesoporous Silica-Based Nanoparticle with Microfluidics for Anticancer Drugs Doxorubicin and Paclitaxel Codelivery. ACS Appl Bio Mater 2020;3:1216-25. [DOI: 10.1021/acsabm.9b01111] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
24 Emami J, Kazemi M, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A. Novel pH-triggered biocompatible polymeric micelles based on heparin-α-tocopherol conjugate for intracellular delivery of docetaxel in breast cancer. Pharm Dev Technol 2020;25:492-509. [PMID: 31903817 DOI: 10.1080/10837450.2019.1711395] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
25 Curcio M, Cirillo G, Paolì A, Naimo GD, Mauro L, Amantea D, Leggio A, Nicoletta FP, Iemma F. Self-assembling Dextran prodrug for redox- and pH-responsive co-delivery of therapeutics in cancer cells. Colloids and Surfaces B: Biointerfaces 2020;185:110537. [DOI: 10.1016/j.colsurfb.2019.110537] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
26 Wang Y, Wang J, Yang L, Wei W, Sun B, Na K, Song Y, Zhang H, He Z, Sun J, Wang Y. Redox dual-responsive paclitaxel-doxorubicin heterodimeric prodrug self-delivery nanoaggregates for more effective breast cancer synergistic combination chemotherapy. Nanomedicine: Nanotechnology, Biology and Medicine 2019;21:102066. [DOI: 10.1016/j.nano.2019.102066] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
27 Zhu YH, Ye N, Tang XF, Khan MI, Liu HL, Shi N, Hang LF. Synergistic Effect of Retinoic Acid Polymeric Micelles and Prodrug for the Pharmacodynamic Evaluation of Tumor Suppression. Front Pharmacol 2019;10:447. [PMID: 31156425 DOI: 10.3389/fphar.2019.00447] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
28 Li C, Dai J, Zheng D, Zhao J, Tao Y, Lei J, Xi X, Liu J. An efficient prodrug-based nanoscale delivery platform constructed by water soluble eight-arm-polyethylene glycol-diosgenin conjugate. Materials Science and Engineering: C 2019;98:153-60. [DOI: 10.1016/j.msec.2018.12.078] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
29 Duan B, Zou S, Sun Y, Xu X. Nanoplatform Constructed from a β-Glucan and Polydeoxyadenylic Acid for Cancer Chemotherapy and Imaging. Biomacromolecules 2019;20:1567-77. [PMID: 30799607 DOI: 10.1021/acs.biomac.8b01780] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
30 Wang J, Hu S, Mao W, Xiang J, Zhou Z, Liu X, Tang J, Shen Y. Assemblies of Peptide-Cytotoxin Conjugates for Tumor-Homing Chemotherapy. Adv Funct Mater 2019;29:1807446. [DOI: 10.1002/adfm.201807446] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 11.3] [Reference Citation Analysis]
31 Zhu Y, Ma Y, Zhao Y, Yang M, Li L. Preparation and evaluation of highly biocompatible nanogels with pH-sensitive charge-convertible capability based on doxorubicin prodrug. Mater Sci Eng C Mater Biol Appl 2019;98:161-76. [PMID: 30813016 DOI: 10.1016/j.msec.2018.12.095] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
32 Eom T, Yoo W, Kim S, Khan A. Biologically activatable azobenzene polymers targeted at drug delivery and imaging applications. Biomaterials 2018;185:333-47. [DOI: 10.1016/j.biomaterials.2018.09.020] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 10.8] [Reference Citation Analysis]
33 Li N, Lu W, Yu J, Xiao Y, Liu S, Gan L, Huang J. Rod-like cellulose nanocrystal/cis-aconityl-doxorubicin prodrug: A fluorescence-visible drug delivery system with enhanced cellular uptake and intracellular drug controlled release. Materials Science and Engineering: C 2018;91:179-89. [DOI: 10.1016/j.msec.2018.04.099] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 8.3] [Reference Citation Analysis]
34 Wang Y, Yang P, Zhao X, Gao D, Sun N, Tian Z, Ma T, Yang Z. Multifunctional Cargo-Free Nanomedicine for Cancer Therapy. Int J Mol Sci 2018;19:E2963. [PMID: 30274177 DOI: 10.3390/ijms19102963] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
35 Hu Y, He L, Ma W, Chen L. Reduced graphene oxide-based bortezomib delivery system for photothermal chemotherapy with enhanced therapeutic efficacy: Reduced GO-based delivery system for photo-chemotherapy. Polym Int 2018;67:1648-54. [DOI: 10.1002/pi.5689] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
36 Zhang Y, Zhang J, Xu W, Xiao G, Ding J, Chen X. Tumor microenvironment-labile polymer-doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma. Acta Biomater 2018;77:63-73. [PMID: 30006312 DOI: 10.1016/j.actbio.2018.07.021] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 13.8] [Reference Citation Analysis]
37 Han L, Wang T, Mu S, Yin X, Liang S, Fang H, Liu Y, Zhang N. Unified D-α-Tocopherol 5-Fu/SAHA bioconjugates self-assemble as complex nanodrug for optimized combination therapy. Nanomedicine 2018;13:1285-301. [DOI: 10.2217/nnm-2017-0316] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
38 Zhang Y, Cai L, Li D, Lao Y, Liu D, Li M, Ding J, Chen X. Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. Nano Res 2018;11:4806-22. [DOI: 10.1007/s12274-018-2066-0] [Cited by in Crossref: 73] [Cited by in F6Publishing: 51] [Article Influence: 18.3] [Reference Citation Analysis]
39 Duan X, Chen J, Wu Y, Wu S, Shao D, Kong J. Drug Self-Delivery Systems Based on Hyperbranched Polyprodrugs towards Tumor Therapy. Chem Asian J 2018;13:939-43. [DOI: 10.1002/asia.201701697] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
40 Zhang Y, Wang F, Li M, Yu Z, Qi R, Ding J, Zhang Z, Chen X. Self-Stabilized Hyaluronate Nanogel for Intracellular Codelivery of Doxorubicin and Cisplatin to Osteosarcoma. Adv Sci 2018;5:1700821. [DOI: 10.1002/advs.201700821] [Cited by in Crossref: 104] [Cited by in F6Publishing: 114] [Article Influence: 26.0] [Reference Citation Analysis]
41 Liu R, Zhang J, Zhang D, Wang K, Luan Y. Self-assembling nanoparticles based on cytarabine prodrug for enhanced leukemia treatment. Journal of Molecular Liquids 2018;251:178-84. [DOI: 10.1016/j.molliq.2017.12.086] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
42 Li D, Feng X, Chen L, Ding J, Chen X. One-Step Synthesis of Targeted Acid-Labile Polysaccharide Prodrug for Efficiently Intracellular Drug Delivery. ACS Biomater Sci Eng 2018;4:539-46. [PMID: 33418743 DOI: 10.1021/acsbiomaterials.7b00856] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
43 Lan C, Zhao S. Self-assembled nanomaterials for synergistic antitumour therapy. J Mater Chem B 2018;6:6685-704. [DOI: 10.1039/c8tb01978a] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
44 Niu L, Zhu F, Li B, Zhao L, Liang H, Yan Y, Tan H. Folate-conjugated and pH-triggered doxorubicin and paclitaxel co-delivery micellar system for targeted anticancer drug delivery. Mater Chem Front 2018;2:1529-38. [DOI: 10.1039/c8qm00217g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
45 Duan X, Bai T, Du J, Kong J. One-pot synthesis of glutathione-responsive amphiphilic drug self-delivery micelles of doxorubicin–disulfide–methoxy polyethylene glycol for tumor therapy. J Mater Chem B 2018;6:39-43. [DOI: 10.1039/c7tb02817b] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 11.0] [Reference Citation Analysis]
46 Ding G, Sun J, Yang P, Li B, Gao Y, Li Z. A Novel Doxorubicin Prodrug with GRP78 Recognition and Nucleus-Targeting Ability for Safe and Effective Cancer Therapy. Mol Pharmaceutics 2018;15:238-46. [DOI: 10.1021/acs.molpharmaceut.7b00830] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
47 Kong L, Poulcharidis D, Schneider GF, Campbell F, Kros A. Spatiotemporal Control of Doxorubicin Delivery from "Stealth-Like" Prodrug Micelles. Int J Mol Sci 2017;18:E2033. [PMID: 28937592 DOI: 10.3390/ijms18102033] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
48 Feng X, Li D, Han J, Zhuang X, Ding J. Schiff base bond-linked polysaccharide–doxorubicin conjugate for upregulated cancer therapy. Materials Science and Engineering: C 2017;76:1121-8. [DOI: 10.1016/j.msec.2017.03.201] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 10.0] [Reference Citation Analysis]
49 Li D, Han J, Ding J, Chen L, Chen X. Acid-sensitive dextran prodrug: A higher molecular weight makes a better efficacy. Carbohydrate Polymers 2017;161:33-41. [DOI: 10.1016/j.carbpol.2016.12.070] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
50 Yu C, Zhou Q, Xiao F, Li Y, Hu H, Wan Y, Li Z, Yang X. Enhancing Doxorubicin Delivery toward Tumor by Hydroxyethyl Starch- g -Polylactide Partner Nanocarriers. ACS Appl Mater Interfaces 2017;9:10481-93. [DOI: 10.1021/acsami.7b00048] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
51 Hu Y, Zeng F. A theranostic prodrug based on FRET for real-time drug release monitoring in response to biothiols. Materials Science and Engineering: C 2017;72:77-85. [DOI: 10.1016/j.msec.2016.11.056] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
52 Hu Y, Deng M, Yang H, Chen L, Xiao C, Zhuang X, Chen X. Multi-responsive core-crosslinked poly (thiolether ester) micelles for smart drug delivery. Polymer 2017;110:235-41. [DOI: 10.1016/j.polymer.2017.01.019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
53 Zhao K, Li D, Xu W, Ding J, Jiang W, Li M, Wang C, Chen X. Targeted hydroxyethyl starch prodrug for inhibiting the growth and metastasis of prostate cancer. Biomaterials 2017;116:82-94. [DOI: 10.1016/j.biomaterials.2016.11.030] [Cited by in Crossref: 78] [Cited by in F6Publishing: 83] [Article Influence: 15.6] [Reference Citation Analysis]
54 Li S, Cai Y, Cao J, Cai M, Chen Y, Luo X. Phosphorylcholine micelles decorated by hyaluronic acid for enhancing antitumor efficiency. Polym Chem 2017;8:2472-83. [DOI: 10.1039/c6py02032a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
55 Liu G, Gao H, Zuo Y, Zeng X, Tao W, Tsai HI, Mei L. DACHPt-Loaded Unimolecular Micelles Based on Hydrophilic Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Appl Mater Interfaces 2017;9:112-9. [PMID: 27966356 DOI: 10.1021/acsami.6b11917] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 5.5] [Reference Citation Analysis]
56 Rozga-wijas K, Michalski A. An efficient synthetic route for a soluble silsesquioxane-daunorubicin conjugate. European Polymer Journal 2016;84:490-501. [DOI: 10.1016/j.eurpolymj.2016.09.058] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
57 Hou W, Zhao X, Qian X, Pan F, Zhang C, Yang Y, de la Fuente JM, Cui D. pH-Sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy. Nanoscale 2016;8:104-16. [PMID: 26607263 DOI: 10.1039/c5nr06842h] [Cited by in Crossref: 105] [Cited by in F6Publishing: 114] [Article Influence: 17.5] [Reference Citation Analysis]
58 Mao X, Si J, Huang Q, Sun X, Zhang Q, Shen Y, Tang J, Liu X, Sui M. Self-Assembling Doxorubicin Prodrug Forming Nanoparticles and Effectively Reversing Drug Resistance In Vitro and In Vivo. Adv Healthc Mater 2016;5:2517-27. [PMID: 27529558 DOI: 10.1002/adhm.201600345] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
59 Nie J, Wang Y, Wang W. In vitro and in vivo evaluation of stimuli-responsive vesicle from PEGylated hyperbranched PAMAM-doxorubicin conjugate for gastric cancer therapy. International Journal of Pharmaceutics 2016;509:168-77. [DOI: 10.1016/j.ijpharm.2016.05.021] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
60 Lu S, Ding J, Chen J, Wang W, Zhuang X, Chen X. Enzymatically Synthesized Polyesters for Drug Delivery. Handbook of Polyester Drug Delivery Systems 2016. [DOI: 10.1201/b20045-4] [Reference Citation Analysis]
61 Teo PY, Cheng W, Hedrick JL, Yang YY. Co-delivery of drugs and plasmid DNA for cancer therapy. Adv Drug Deliv Rev 2016;98:41-63. [PMID: 26529199 DOI: 10.1016/j.addr.2015.10.014] [Cited by in Crossref: 152] [Cited by in F6Publishing: 145] [Article Influence: 25.3] [Reference Citation Analysis]
62 Hu Y, He L, Ding J, Sun D, Chen L, Chen X. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy. Carbohydr Polym 2016;144:223-9. [PMID: 27083812 DOI: 10.1016/j.carbpol.2016.02.062] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 5.8] [Reference Citation Analysis]
63 Ma Y, Fan X, Li L. pH-sensitive polymeric micelles formed by doxorubicin conjugated prodrugs for co-delivery of doxorubicin and paclitaxel. Carbohydrate Polymers 2016;137:19-29. [DOI: 10.1016/j.carbpol.2015.10.050] [Cited by in Crossref: 81] [Cited by in F6Publishing: 88] [Article Influence: 13.5] [Reference Citation Analysis]
64 Hu Y, Sun D, Ding J, Chen L, Chen X. Decorated reduced graphene oxide for photo-chemotherapy. J Mater Chem B 2016;4:929-37. [PMID: 32263166 DOI: 10.1039/c5tb02359a] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
65 Hou W, Xia F, Alves CS, Qian X, Yang Y, Cui D. MMP2-Targeting and Redox-Responsive PEGylated Chlorin e6 Nanoparticles for Cancer Near-Infrared Imaging and Photodynamic Therapy. ACS Appl Mater Interfaces 2016;8:1447-57. [PMID: 26638778 DOI: 10.1021/acsami.5b10772] [Cited by in Crossref: 82] [Cited by in F6Publishing: 89] [Article Influence: 13.7] [Reference Citation Analysis]
66 Li D, Ding J, Zhuang X, Chen L, Chen X. Drug binding rate regulates the properties of polysaccharide prodrugs. J Mater Chem B 2016;4:5167-77. [DOI: 10.1039/c6tb00991c] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 6.3] [Reference Citation Analysis]
67 Song H, Zhang J, Wang W, Huang P, Zhang Y, Liu J, Li C, Kong D. Acid-responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin-1 receptor-mediated targeted drug delivery. Colloids Surf B Biointerfaces 2015;136:365-74. [PMID: 26433349 DOI: 10.1016/j.colsurfb.2015.09.030] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
68 Wang J, Shen K, Xu W, Ding J, Wang X, Liu T, Wang C, Chen X. Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug. Nanoscale Res Lett 2015;10:907. [PMID: 26058504 DOI: 10.1186/s11671-015-0907-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
69 Sun D, Ding J, Xiao C, Chen J, Zhuang X, Chen X. pH-Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent. Adv Healthc Mater 2015;4:844-55. [PMID: 25645303 DOI: 10.1002/adhm.201400736] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
70 Wang J, Xu W, Ding J, Lu S, Wang X, Wang C, Chen X. Cholesterol-Enhanced Polylactide-Based Stereocomplex Micelle for Effective Delivery of Doxorubicin. Materials (Basel) 2015;8:216-30. [PMID: 28787934 DOI: 10.3390/ma8010216] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
71 Xu W, Ding J, Li L, Xiao C, Zhuang X, Chen X. Acid-labile boronate-bridged dextran–bortezomib conjugate with up-regulated hypoxic tumor suppression. Chem Commun 2015;51:6812-5. [DOI: 10.1039/c5cc01371b] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 7.0] [Reference Citation Analysis]