BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Z, Chen X, Chen L, Yu S, Cao Y, He C, Chen X. Intracellular pH-Sensitive PEG- block -Acetalated-Dextrans as Efficient Drug Delivery Platforms. ACS Appl Mater Interfaces 2013;5:10760-6. [DOI: 10.1021/am402840f] [Cited by in Crossref: 79] [Cited by in F6Publishing: 81] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Hu X, Zhang D, Zeng Z, Huang L, Lin X, Hong S. Aptamer-Based Probes for Cancer Diagnostics and Treatment. Life 2022;12:1937. [DOI: 10.3390/life12111937] [Reference Citation Analysis]
2 Zhou W, Jia Y, Liu Y, Chen Y, Zhao P. Tumor Microenvironment-Based Stimuli-Responsive Nanoparticles for Controlled Release of Drugs in Cancer Therapy. Pharmaceutics 2022;14:2346. [DOI: 10.3390/pharmaceutics14112346] [Reference Citation Analysis]
3 Tao X, Shi H, Cao A, Cai L. Understanding of physicochemical properties and antioxidant activity of ovalbumin-sodium alginate composite nanoparticle-encapsulated kaempferol/tannin acid. RSC Adv 2022;12:18115-26. [PMID: 35874031 DOI: 10.1039/d2ra02708a] [Reference Citation Analysis]
4 Yi Li. Multifunctional Polymeric Nanoparticles in Targeted and Controlled Delivery for Cancer Therapy. Nanoengineering of Biomaterials 2022. [DOI: 10.1002/9783527832095.ch6] [Reference Citation Analysis]
5 Das M, Joshi A, Devkar R, Seshadri S, Thakore S. Vitamin-H Channeled Self-Therapeutic P-gp Inhibitor Curcumin-Derived Nanomicelles for Targeting the Tumor Milieu by pH- and Enzyme-Triggered Hierarchical Disassembly. Bioconjug Chem 2022. [PMID: 35015523 DOI: 10.1021/acs.bioconjchem.1c00614] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Xu W, Zheng S, Sun H, Li Z, Xi R, Luo D, Li Y, Shah BR. Green-step fabrication of gliadin/sodium caseinate nanogels for methotrexate release, cytotoxicity and cell phagocytosis. Journal of Drug Delivery Science and Technology 2022;67:103028. [DOI: 10.1016/j.jddst.2021.103028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Liu P, Huang P, Kang ET. pH-Sensitive Dextran-Based Micelles from Copper-Free Click Reaction for Antitumor Drug Delivery. Langmuir 2021;37:12990-9. [PMID: 34714094 DOI: 10.1021/acs.langmuir.1c02049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Wang S, Fontana F, Shahbazi MA, Santos HA. Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chem Commun (Camb) 2021;57:4212-29. [PMID: 33913978 DOI: 10.1039/d1cc00811k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
9 Cheng C, Huang S, Fan W, Lee A, Chiu C, Lee D, Lai J. Water-Soluble Single-Chain Polymeric Nanoparticles for Highly Selective Cancer Chemotherapy. ACS Appl Polym Mater 2021;3:474-84. [DOI: 10.1021/acsapm.0c01220] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
10 Huang L, Zhao S, Fang F, Xu T, Lan M, Zhang J. Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 2021;268:120557. [PMID: 33260095 DOI: 10.1016/j.biomaterials.2020.120557] [Cited by in Crossref: 64] [Cited by in F6Publishing: 71] [Article Influence: 32.0] [Reference Citation Analysis]
11 Asgher M, Qamar SA, Iqbal HMN. Microbial exopolysaccharide-based nano-carriers with unique multi-functionalities for biomedical sectors. Biologia 2021;76:673-85. [DOI: 10.2478/s11756-020-00588-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
12 Ilhami FB, Alemayehu YA, Fan WL, Tsai HC, Kao CY, Cheng CC. Adenine-Functionalized Supramolecular Micelles for Selective Cancer Chemotherapy. Macromol Biosci 2020;20:e2000233. [PMID: 32869957 DOI: 10.1002/mabi.202000233] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Feng Z, Xu J, Ni C. Preparation of redox responsive modified xanthan gum nanoparticles and the drug controlled release. International Journal of Polymeric Materials and Polymeric Biomaterials 2021;70:994-1001. [DOI: 10.1080/00914037.2020.1767618] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
14 Li F, Fu X, Huo Q, Chen W. Research Progress on the Nano-Delivery Systems of Antitumor Drugs. Nano LIFE 2020;10:2040006. [DOI: 10.1142/s1793984420400061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Bintang Ilhami F, Huang S, Chen J, Kao C, Cheng C. Multifunctional adenine-functionalized supramolecular micelles for highly selective and effective cancer chemotherapy. Polym Chem 2020;11:849-56. [DOI: 10.1039/c9py01557d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
16 Jazani AM, Oh JK. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym Chem 2020;11:2934-54. [DOI: 10.1039/d0py00234h] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
17 Yazdian-Robati R, Bayat P, Oroojalian F, Zargari M, Ramezani M, Taghdisi SM, Abnous K. Therapeutic applications of AS1411 aptamer, an update review. Int J Biol Macromol 2020;155:1420-31. [PMID: 31734366 DOI: 10.1016/j.ijbiomac.2019.11.118] [Cited by in Crossref: 82] [Cited by in F6Publishing: 89] [Article Influence: 27.3] [Reference Citation Analysis]
18 Wang Y, Khan A, Liu Y, Feng J, Dai L, Wang G, Alam N, Tong L, Ni Y. Chitosan oligosaccharide-based dual pH responsive nano-micelles for targeted delivery of hydrophobic drugs. Carbohydrate Polymers 2019;223:115061. [DOI: 10.1016/j.carbpol.2019.115061] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 13.3] [Reference Citation Analysis]
19 Saini A, Kisley L. Fluorescence microscopy of biophysical protein dynamics in nanoporous hydrogels. Journal of Applied Physics 2019;126:081101. [DOI: 10.1063/1.5110299] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
20 T. S. A, V. CS, F. S, Thomas JP. Effect of dual stimuli responsive dextran/nanocellulose polyelectrolyte complexes for chemophotothermal synergistic cancer therapy. International Journal of Biological Macromolecules 2019;135:776-89. [DOI: 10.1016/j.ijbiomac.2019.05.218] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
21 Guin D, Gruebele M. Weak Chemical Interactions That Drive Protein Evolution: Crowding, Sticking, and Quinary Structure in Folding and Function. Chem Rev 2019;119:10691-717. [PMID: 31356058 DOI: 10.1021/acs.chemrev.8b00753] [Cited by in Crossref: 70] [Cited by in F6Publishing: 71] [Article Influence: 23.3] [Reference Citation Analysis]
22 Luan T, Cheng L, Cheng J, Zhang X, Cao Y, Zhang X, Cui H, Zhao G. Tailored Design of an ROS-Responsive Drug Release Platform for Enhanced Tumor Therapy via "Sequential Induced Activation Processes". ACS Appl Mater Interfaces 2019;11:25654-63. [PMID: 31246402 DOI: 10.1021/acsami.9b01433] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
23 Massoumi B, Sarvari R, Khanizadeh L, Agbolaghi S, Beygi-khosrowshahi Y. pH-responsive nanosystems based on reduced graphene oxide grafted with polycaprolactone-block-poly(succinyloxyethylmethacrylate) for doxorubicin release. J IRAN CHEM SOC 2019;16:2031-43. [DOI: 10.1007/s13738-019-01675-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
24 Graham ET, Broaders KE. Spirocyclic Acetal-Modified Dextran as a Flexible pH-Sensitive Solubility-Switching Material. Biomacromolecules 2019;20:2008-14. [DOI: 10.1021/acs.biomac.9b00215] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
25 Zhang P, Hu J, Bu L, Zhang H, Du B, Zhu C, Li Y. Facile Preparation of Reduction-Responsive Micelles Based on Biodegradable Amphiphilic Polyurethane with Disulfide Bonds in the Backbone. Polymers (Basel) 2019;11:E262. [PMID: 30960245 DOI: 10.3390/polym11020262] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
26 Breitenbach BB, Steiert E, Konhäuser M, Vogt L, Wang Y, Parekh SH, Wich PR. Double stimuli-responsive polysaccharide block copolymers as green macrosurfactants for near-infrared photodynamic therapy. Soft Matter 2019;15:1423-34. [DOI: 10.1039/c8sm02204f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
27 Pandey V, Tiwari N, Pandey V, Rao A, Das I. Targeted drug delivery and gene therapy through natural biodegradable nanostructures in pharmaceuticals. Nanoarchitectonics in Biomedicine 2019. [DOI: 10.1016/b978-0-12-816200-2.00012-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
28 曾 晨. Research Progress of Tumor Microenvironment-Sensitive Nano Drug Delivery Systems. MS 2019;09:218-224. [DOI: 10.12677/ms.2019.93029] [Reference Citation Analysis]
29 Guo Z, Zhao K, Liu R, Guo X, He B, Yan J, Ren J. pH-sensitive polymeric micelles assembled by stereocomplexation between PLLA- b -PLys and PDLA- b -mPEG for drug delivery. J Mater Chem B 2019;7:334-45. [DOI: 10.1039/c8tb02313a] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
30 Wang J, Lu Y, Li S, Wang X, Huang Y, Tang R. pH-sensitive amphiphilic triblock copolymers containing ortho ester main-chains as efficient drug delivery platforms. Materials Science and Engineering: C 2019;94:169-78. [DOI: 10.1016/j.msec.2018.09.029] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
31 Jafarzadeh-Holagh S, Hashemi-Najafabadi S, Shaki H, Vasheghani-Farahani E. Self-assembled and pH-sensitive mixed micelles as an intracellular doxorubicin delivery system. J Colloid Interface Sci 2018;523:179-90. [PMID: 29621645 DOI: 10.1016/j.jcis.2018.02.076] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 10.3] [Reference Citation Analysis]
32 Prasitnok K. Coarse-grained modelling of self-assembling poly(ethylene glycol)/poly(lactic acid) diblock copolymers. J Polym Res 2018;25. [DOI: 10.1007/s10965-018-1457-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
33 Cheng L, Luan T, Liu D, Cheng J, Li H, Wei H, Zhang L, Lan J, Liu Y, Zhao G. Diblock copolymer glyco-nanomicelles constructed by a maltoheptaose-based amphiphile for reduction- and pH-mediated intracellular drug delivery. Polym Chem 2018;9:1337-47. [DOI: 10.1039/c7py01601h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
34 Xu C, Guan X, Lin L, Wang Q, Gao B, Zhang S, Li Y, Tian H. pH-Responsive Natural Polymeric Gene Delivery Shielding System Based on Dynamic Covalent Chemistry. ACS Biomater Sci Eng 2018;4:193-9. [PMID: 33418689 DOI: 10.1021/acsbiomaterials.7b00869] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
35 Liu X, Li Y, Tan X, Rao R, Ren Y, Liu L, Yang X, Liu W. Multifunctional hybrid micelles with tunable active targeting and acid/phosphatase-stimulated drug release for enhanced tumor suppression. Biomaterials 2018;157:136-48. [PMID: 29268144 DOI: 10.1016/j.biomaterials.2017.12.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
36 Farshbaf M, Davaran S, Zarebkohan A, Annabi N, Akbarzadeh A, Salehi R. Significant role of cationic polymers in drug delivery systems. Artif Cells Nanomed Biotechnol 2018;46:1872-91. [PMID: 29103306 DOI: 10.1080/21691401.2017.1395344] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
37 Neumann K, Lilienkampf A, Bradley M. Responsive polymeric nanoparticles for controlled drug delivery: Responsive polymeric nanoparticles for controlled drug delivery. Polym Int 2017;66:1756-64. [DOI: 10.1002/pi.5471] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
38 Breitenbach BB, Schmid I, Wich PR. Amphiphilic Polysaccharide Block Copolymers for pH-Responsive Micellar Nanoparticles. Biomacromolecules 2017;18:2839-48. [DOI: 10.1021/acs.biomac.7b00771] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 7.2] [Reference Citation Analysis]
39 Nejabat M, Charbgoo F, Ramezani M. Graphene as multifunctional delivery platform in cancer therapy: GRAPHENE IN CANCER THERAPY. J Biomed Mater Res 2017;105:2355-67. [DOI: 10.1002/jbm.a.36080] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
40 Kisley L, Miller KA, Guin D, Kong X, Gruebele M, Leckband DE. Direct Imaging of Protein Stability and Folding Kinetics in Hydrogels. ACS Appl Mater Interfaces 2017;9:21606-17. [DOI: 10.1021/acsami.7b01371] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
41 Liang H, He L, Zhou B, Li B, Li J. Folate-functionalized assembly of low density lipoprotein/sodium carboxymethyl cellulose nanoparticles for targeted delivery. Colloids Surf B Biointerfaces 2017;156:19-28. [PMID: 28499201 DOI: 10.1016/j.colsurfb.2017.05.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
42 Cui H, Huan M, Ye W, Liu D, Teng Z, Mei Q, Zhou S. Mitochondria and Nucleus Dual Delivery System To Overcome DOX Resistance. Mol Pharmaceutics 2017;14:746-56. [DOI: 10.1021/acs.molpharmaceut.6b01016] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 5.8] [Reference Citation Analysis]
43 Shi Y, Li H, Cheng J, Luan T, Liu D, Cao Y, Zhang X, Wei H, Liu Y, Zhao G. Entirely oligosaccharide-based supramolecular amphiphiles constructed via host–guest interactions as efficient drug delivery platforms. Chem Commun 2017;53:12302-5. [DOI: 10.1039/c7cc06553a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
44 Huang Y, Mao K, Zhang B, Zhao Y. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Materials Science and Engineering: C 2017;70:763-71. [DOI: 10.1016/j.msec.2016.09.052] [Cited by in Crossref: 132] [Cited by in F6Publishing: 134] [Article Influence: 26.4] [Reference Citation Analysis]
45 Alibolandi M, Mohammadi M, Taghdisi SM, Ramezani M, Abnous K. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydrate Polymers 2017;155:218-29. [DOI: 10.1016/j.carbpol.2016.08.046] [Cited by in Crossref: 93] [Cited by in F6Publishing: 94] [Article Influence: 18.6] [Reference Citation Analysis]
46 Teranishi R, Matsuki R, Yuba E, Harada A, Kono K. Doxorubicin Delivery Using pH and Redox Dual-Responsive Hollow Nanocapsules with a Cationic Electrostatic Barrier. Pharmaceutics 2016;9:E4. [PMID: 28042818 DOI: 10.3390/pharmaceutics9010004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
47 Bachelder EM, Pino EN, Ainslie KM. Acetalated Dextran: A Tunable and Acid-Labile Biopolymer with Facile Synthesis and a Range of Applications. Chem Rev 2017;117:1915-26. [PMID: 28032507 DOI: 10.1021/acs.chemrev.6b00532] [Cited by in Crossref: 78] [Cited by in F6Publishing: 71] [Article Influence: 13.0] [Reference Citation Analysis]
48 Zhuang Y, Wang D, Yin C, Deng H, Sun M, He L, Su Y, Zhu X. Tracing drug release process with dual-modal hyperbranched polymer-gold nanoparticle complexes. Sci China Chem 2016;59:1600-8. [DOI: 10.1007/s11426-016-0228-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
49 Ghamkhari A, Massoumi B, Jaymand M. Novel 'schizophrenic' diblock copolymer synthesized via RAFT polymerization: poly(2-succinyloxyethyl methacrylate)-b-poly[(N-4-vinylbenzyl),N,N-diethylamine]. Des Monomers Polym 2017;20:190-200. [PMID: 29491792 DOI: 10.1080/15685551.2016.1239165] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
50 Wu Y, Zhou D, Zhang Q, Xie Z, Chen X, Jing X, Huang Y. Dual-Sensitive Charge-Conversional Polymeric Prodrug for Efficient Codelivery of Demethylcantharidin and Doxorubicin. Biomacromolecules 2016;17:2650-61. [DOI: 10.1021/acs.biomac.6b00705] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
51 Liu S, Li X, Guang N, Tian L, Mao H, Ning W. Novel amphiphilic temperature responsive graft copolymers PCL-g-P(MEO2MA-co-OEGMA) via a combination of ROP and ATRP: synthesis, characterization, and sol-gel transition. J Polym Res 2016;23. [DOI: 10.1007/s10965-016-1036-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
52 Wang Z, Chen Y, Wu F. Oligo-polyethene glycol (PEG)-modified 14-deoxy-11,12-didehydroandrographolide derivatives: synthesis, solubility and anti-bacterial activity. Tetrahedron 2016;72:2265-70. [DOI: 10.1016/j.tet.2016.03.025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
53 Cui Y, Sui J, He M, Xu Z, Sun Y, Liang J, Fan Y, Zhang X. Reduction-Degradable Polymeric Micelles Decorated with PArg for Improving Anticancer Drug Delivery Efficacy. ACS Appl Mater Interfaces 2016;8:2193-203. [DOI: 10.1021/acsami.5b10867] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 5.5] [Reference Citation Analysis]
54 Wang Y, Li QY, Liu XB, Zhang CY, Wu ZM, Guo XD. Mesoscale Simulations and Experimental Studies of pH-Sensitive Micelles for Controlled Drug Delivery. ACS Appl Mater Interfaces 2015;7:25592-600. [DOI: 10.1021/acsami.5b08366] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.7] [Reference Citation Analysis]
55 Fu Y, Li X, Sun C, Ren Z, Weng W, Mao C, Han G. pH-Triggered SrTiO 3 :Er Nanofibers with Optically Monitored and Controlled Drug Delivery Functionality. ACS Appl Mater Interfaces 2015;7:25514-21. [DOI: 10.1021/acsami.5b08953] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
56 Song YF, Liu DZ, Cheng Y, Liu M, Ye WL, Zhang BL, Liu XY, Zhou SY. Dual subcellular compartment delivery of doxorubicin to overcome drug resistant and enhance antitumor activity. Sci Rep 2015;5:16125. [PMID: 26530454 DOI: 10.1038/srep16125] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 4.3] [Reference Citation Analysis]
57 Qi X, Wei W, Li J, Liu Y, Hu X, Zhang J, Bi L, Dong W. Fabrication and Characterization of a Novel Anticancer Drug Delivery System: Salecan/Poly(methacrylic acid) Semi-interpenetrating Polymer Network Hydrogel. ACS Biomater Sci Eng 2015;1:1287-99. [PMID: 33429676 DOI: 10.1021/acsbiomaterials.5b00346] [Cited by in Crossref: 107] [Cited by in F6Publishing: 112] [Article Influence: 15.3] [Reference Citation Analysis]
58 Zhu Y, Yao X, Chen X, Chen L. pH-sensitive hydroxyethyl starch-doxorubicin conjugates as antitumor prodrugs with enhanced anticancer efficacy. J Appl Polym Sci 2015;132:n/a-n/a. [DOI: 10.1002/app.42778] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
59 Panja S, Maji S, Maiti T, Chattopadhyay S. A branched polymer as a pH responsive nanocarrier: Synthesis, characterization and targeted delivery. Polymer 2015;61:75-86. [DOI: 10.1016/j.polymer.2015.01.075] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
60 He L, Liang H, Lin L, Shah BR, Li Y, Chen Y, Li B. Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin. Colloids and Surfaces B: Biointerfaces 2015;126:288-96. [DOI: 10.1016/j.colsurfb.2014.12.024] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 9.1] [Reference Citation Analysis]
61 Li Y, Shen Y, Wang S, Zhu D, Du B, Jiang J. Disulfide cross-linked cholic-acid modified PEG–poly(amino acid) block copolymer micelles for controlled drug delivery of doxorubicin. RSC Adv 2015;5:30380-8. [DOI: 10.1039/c5ra02553b] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
62 Wu Y, Zhou D, Qi Y, Xie Z, Chen X, Jing X, Huang Y. Novel multi-sensitive pseudo-poly(amino acid) for effective intracellular drug delivery. RSC Adv 2015;5:31972-83. [DOI: 10.1039/c5ra03423j] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
63 Zhang Z, Chen X, Gao X, Yao X, Chen L, He C, Chen X. Targeted dextran-b-poly(ε-caprolactone) micelles for cancer treatments. RSC Adv 2015;5:18593-600. [DOI: 10.1039/c4ra15696j] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
64 Li Y, Wang S, Zhu D, Shen Y, Du B, Liu X, Zheng Y. Reversibly cross-linked poly(ethylene glycol)–poly(amino acid)s copolymer micelles: a promising approach to overcome the extracellular stability versus intracellular drug release challenge. RSC Adv 2015;5:20025-34. [DOI: 10.1039/c4ra12255k] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
65 Kuang H, Wu Y, Zhang Z, Li J, Chen X, Xie Z, Jing X, Huang Y. Double pH-responsive supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases and acetalated dextran for drug delivery. Polym Chem 2015;6:3625-33. [DOI: 10.1039/c5py00042d] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
66 Wang W, Liu S, Huang Y, Jing X, Xie Z. Biodegradable dextran vesicles for effective haemoglobin encapsulation. J Mater Chem B 2015;3:5753-9. [DOI: 10.1039/c5tb00847f] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
67 Selestin Raja I, Nishad Fathima N. Thermoporometry and impedance analysis to study dynamics of water and polymer present in hydrogel. International Journal of Biological Macromolecules 2015;72:437-44. [DOI: 10.1016/j.ijbiomac.2014.08.049] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
68 Liu F, Ma Y, Xu L, Liu L, Zhang W. Redox-responsive supramolecular amphiphiles constructed via host–guest interactions for photodynamic therapy. Biomater Sci 2015;3:1218-27. [DOI: 10.1039/c5bm00045a] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 5.7] [Reference Citation Analysis]
69 Sun C, Ma Y, Cao Z, Li D, Fan F, Wang J, Tao W, Yang X. Effect of Hydrophobicity of Core on the Anticancer Efficiency of Micelles as Drug Delivery Carriers. ACS Appl Mater Interfaces 2014;6:22709-18. [DOI: 10.1021/am5068723] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 4.5] [Reference Citation Analysis]
70 Sun D, Ding J, Xiao C, Chen J, Zhuang X, Chen X. Preclinical Evaluation of Antitumor Activity of Acid-Sensitive PEGylated Doxorubicin. ACS Appl Mater Interfaces 2014;6:21202-14. [DOI: 10.1021/am506178c] [Cited by in Crossref: 72] [Cited by in F6Publishing: 72] [Article Influence: 9.0] [Reference Citation Analysis]
71 Chen X, Yao X, Chen L. Intracellular pH-sensitive dextran-based micelles as efficient drug delivery platforms: Intracellular pH-sensitive dextran-based micelles. Polym Int 2015;64:430-6. [DOI: 10.1002/pi.4809] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
72 Nie SY, Lin WJ, Yao N, Guo XD, Zhang LJ. Drug release from pH-sensitive polymeric micelles with different drug distributions: insight from coarse-grained simulations. ACS Appl Mater Interfaces 2014;6:17668-78. [PMID: 25275994 DOI: 10.1021/am503920m] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 6.5] [Reference Citation Analysis]
73 Hao Y, Zheng M, Chen Y. A highly stable and water-soluble fluorescent dye for fluorescence imaging of living cells. J Mater Chem B 2014;2:7369-74. [DOI: 10.1039/c4tb01210k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
74 Bondalapati S, Ruvinov E, Kryukov O, Cohen S, Brik A. Rapid End-Group Modification of Polysaccharides for Biomaterial Applications in Regenerative Medicine. Macromol Rapid Commun 2014;35:1754-62. [DOI: 10.1002/marc.201400354] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
75 Yao X, Chen L, Chen X, He C, Zhang J, Chen X. Metallo-Supramolecular Nanogels for Intracellular pH-Responsive Drug Release. Macromol Rapid Commun 2014;35:1697-705. [DOI: 10.1002/marc.201400291] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
76 Yao X, Chen L, Chen X, He C, Zheng H, Chen X. Intercellular pH-responsive histidine modified dextran-g-cholesterol micelle for anticancer drug delivery. Colloids and Surfaces B: Biointerfaces 2014;121:36-43. [DOI: 10.1016/j.colsurfb.2014.05.032] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
77 Raja IS, Fathima NN. Porosity and dielectric properties as tools to predict drug release trends from hydrogels. Springerplus 2014;3:393. [PMID: 25105090 DOI: 10.1186/2193-1801-3-393] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
78 Wang S, Zhang S, Liu J, Liu Z, Su L, Wang H, Chang J. pH- and Reduction-Responsive Polymeric Lipid Vesicles for Enhanced Tumor Cellular Internalization and Triggered Drug Release. ACS Appl Mater Interfaces 2014;6:10706-13. [DOI: 10.1021/am502579e] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 6.9] [Reference Citation Analysis]
79 Zhu F, Yang Q, Zhuang Y, Zhang Y, Shao Z, Gong B, Shen Y. Self-assembled polymeric micelles based on THP and THF linkage for pH-responsive drug delivery. Polymer 2014;55:2977-85. [DOI: 10.1016/j.polymer.2014.05.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
80 Yao X, Chen L, Chen X, Zhang Z, Zheng H, He C, Zhang J, Chen X. Intracellular pH-Sensitive Metallo-Supramolecular Nanogels for Anticancer Drug Delivery. ACS Appl Mater Interfaces 2014;6:7816-22. [DOI: 10.1021/am501093a] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 6.1] [Reference Citation Analysis]
81 Chen X, Chen L, Yao X, Zhang Z, He C, Zhang J, Chen X. Dual responsive supramolecular nanogels for intracellular drug delivery. Chem Commun 2014;50:3789. [DOI: 10.1039/c4cc00016a] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 8.1] [Reference Citation Analysis]