BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liang A, Li C, Wang X, Luo Y, Wen G, Jiang Z. Immunocontrolling Graphene Oxide Catalytic Nanogold Reaction and Its Application to SERS Quantitative Analysis. ACS Omega 2017;2:7349-58. [PMID: 30023549 DOI: 10.1021/acsomega.7b01335] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Li D, Xia L, Li G. Recent Progress on the Applications of Nanozyme in Surface-Enhanced Raman Scattering. Chemosensors 2022;10:462. [DOI: 10.3390/chemosensors10110462] [Reference Citation Analysis]
2 Chang W, Hsiao C, Chen Y, Kuo CJ, Chiu C. Au Nanorods on Carbon-Based Nanomaterials as Nanohybrid Substrates for High-Efficiency Dynamic Surface-Enhanced Raman Scattering. ACS Omega 2022. [DOI: 10.1021/acsomega.2c06485] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Zhang W, Zhu X, Chen Z, Belotelov VI, Song Y. Silver Nanopillar Arrayed Thin Films with Highly Surface-Enhanced Raman Scattering for Ultrasensitive Detection. ACS Omega. [DOI: 10.1021/acsomega.2c03022] [Reference Citation Analysis]
4 Mu M, Wen S, Hu S, Zhao B, Song W. Putting surface-enhanced Raman spectroscopy to work for nanozyme research: methods, materials and applications. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116603] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Poornima Parvathi V, Parimaladevi R, Sathe V, Umadevi M. Graphene-based surface-enhanced Raman scattering as an efficient tool in the detection of toxic organic dyes in real industrial effluents. Carbon Nanomaterials-Based Sensors 2022. [DOI: 10.1016/b978-0-323-91174-0.00013-5] [Reference Citation Analysis]
6 Han Q, Pang J, Li Y, Sun B, Ibarlucea B, Liu X, Gemming T, Cheng Q, Zhang S, Liu H, Wang J, Zhou W, Cuniberti G, Rümmeli MH. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens 2021;6:3841-81. [PMID: 34696585 DOI: 10.1021/acssensors.1c01172] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
7 Mombeshora ET, Stark A. Graphene oxide applications in biorefinery catalysis to chemical commodities: critical review, prospects and challenges. Biomass Conv Bioref . [DOI: 10.1007/s13399-021-01499-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zhang J, Kolhatkar G, Ruediger A. Localized surface plasmon resonance shift and its application in scanning near-field optical microscopy. J Mater Chem C 2021;9:6960-9. [DOI: 10.1039/d1tc00877c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
9 Lin T, Song YL, Liao J, Liu F, Zeng TT. Applications of surface-enhanced Raman spectroscopy in detection fields. Nanomedicine (Lond) 2020;15:2971-89. [PMID: 33140686 DOI: 10.2217/nnm-2020-0361] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
10 Li D, Yao D, Li C, Luo Y, Liang A, Wen G, Jiang Z. Nanosol SERS quantitative analytical method: A review. TrAC Trends in Analytical Chemistry 2020;127:115885. [DOI: 10.1016/j.trac.2020.115885] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
11 Yao D, Liu Q, Jiang Z. Graphene oxide nanoribbon catalysis of gold nanoreaction and its application to SERS quantitative analysis of ultratrace glucose. Chem Pap 2020;74:1059-69. [DOI: 10.1007/s11696-019-00947-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
12 Yao D, Li C, Liang A, Jiang Z. A facile SERS strategy for quantitative analysis of trace glucose coupling glucose oxidase and nanosilver catalytic oxidation of tetramethylbenzidine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019;216:146-53. [DOI: 10.1016/j.saa.2019.03.026] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
13 Li C, Peng Y, Wang H, Liang A, Jiang Z. A nanosol SERS method for quantitative analysis of trace potassium based on aptamer recognition and silver nanorod catalysis of Ag(I)-glucose reaction. Sensors and Actuators B: Chemical 2019;281:53-9. [DOI: 10.1016/j.snb.2018.10.079] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
14 Poornima Parvathi V, Parimaladevi R, Sathe V, Umadevi M. Application of G-SERS for the efficient detection of toxic dye contaminants in textile effluents using gold/graphene oxide substrates. Journal of Molecular Liquids 2019;273:203-14. [DOI: 10.1016/j.molliq.2018.10.027] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
15 Wang Z, Wu S, Colombi Ciacchi L, Wei G. Graphene-based nanoplatforms for surface-enhanced Raman scattering sensing. Analyst 2018;143:5074-89. [PMID: 30280724 DOI: 10.1039/c8an01266k] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
16 Wen G, Jing Q, Liang A, Jiang Z. A new SERS strategy for quantitative analysis of trace microalbuminuria based on immunorecognition and graphene oxide nanoribbon catalysis. Int J Nanomedicine 2018;13:6099-107. [PMID: 30323597 DOI: 10.2147/IJN.S174765] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
17 Jia M, Li S, Zang L, Lu X, Zhang H. Analysis of Biomolecules Based on the Surface Enhanced Raman Spectroscopy. Nanomaterials (Basel) 2018;8:E730. [PMID: 30223597 DOI: 10.3390/nano8090730] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]