BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xie J, Gonzalez-Carter D, Tockary TA, Nakamura N, Xue Y, Nakakido M, Akiba H, Dirisala A, Liu X, Toh K, Yang T, Wang Z, Fukushima S, Li J, Quader S, Tsumoto K, Yokota T, Anraku Y, Kataoka K. Dual-Sensitive Nanomicelles Enhancing Systemic Delivery of Therapeutically Active Antibodies Specifically into the Brain. ACS Nano 2020;14:6729-42. [PMID: 32431145 DOI: 10.1021/acsnano.9b09991] [Cited by in Crossref: 32] [Cited by in F6Publishing: 39] [Article Influence: 10.7] [Reference Citation Analysis]
Number Citing Articles
1 Ailioaie LM, Ailioaie C, Litscher G. Photobiomodulation in Alzheimer’s Disease—A Complementary Method to State-of-the-Art Pharmaceutical Formulations and Nanomedicine? Pharmaceutics 2023;15:916. [DOI: 10.3390/pharmaceutics15030916] [Reference Citation Analysis]
2 Wang W, Hassan MM, Mao G. Colloidal Perspective on Targeted Drug Delivery to the Central Nervous System. Langmuir 2023;39:3235-45. [PMID: 36825490 DOI: 10.1021/acs.langmuir.2c02949] [Reference Citation Analysis]
3 Zhong X, Na Y, Yin S, Yan C, Gu J, Zhang N, Geng F. Cell Membrane Biomimetic Nanoparticles with Potential in Treatment of Alzheimer's Disease. Molecules 2023;28. [PMID: 36903581 DOI: 10.3390/molecules28052336] [Reference Citation Analysis]
4 Zhong Y, Du S, Dong Y. mRNA delivery in cancer immunotherapy. Acta Pharmaceutica Sinica B 2023. [DOI: 10.1016/j.apsb.2023.03.001] [Reference Citation Analysis]
5 Xu L, Huang F, Shi L. Polymeric Nanotherapeutics for Alzheimer’s Disease: Summary and Outlook. Chin J Polym Sci 2023. [DOI: 10.1007/s10118-023-2949-8] [Reference Citation Analysis]
6 Liu H, Guo H, Fang Y, Wang L, Li P. Rational Design of Nitrogen-Doped Carbon Dots for Inhibiting β-Amyloid Aggregation. Molecules 2023;28. [PMID: 36771112 DOI: 10.3390/molecules28031451] [Reference Citation Analysis]
7 Amano A, Sanjo N, Araki W, Anraku Y, Nakakido M, Matsubara E, Tomiyama T, Nagata T, Tsumoto K, Kataoka K, Yokota T. Peripheral administration of nanomicelle-encapsulated anti-Aβ oligomer fragment antibody reduces various toxic Aβ species in the brain. J Nanobiotechnology 2023;21:36. [PMID: 36721182 DOI: 10.1186/s12951-023-01772-y] [Reference Citation Analysis]
8 Gyimesi G, Hediger MA. Transporter-Mediated Drug Delivery. Molecules 2023;28. [PMID: 36770817 DOI: 10.3390/molecules28031151] [Reference Citation Analysis]
9 Lamptey RNL, Sun C, Layek B, Singh J. Neurogenic Hypertension, the Blood-Brain Barrier, and the Potential Role of Targeted Nanotherapeutics. Int J Mol Sci 2023;24. [PMID: 36768536 DOI: 10.3390/ijms24032213] [Reference Citation Analysis]
10 Liang M, Cheng Y, Wang H. A Cu(+) /Thiourea Dendrimer Achieves Excellent Cytosolic Protein Delivery via Enhanced Cell Uptake and Endosome Escape. Chemistry 2023;:e202300131. [PMID: 36662543 DOI: 10.1002/chem.202300131] [Reference Citation Analysis]
11 Goswami R, Lehot V, Çiçek YA, Nagaraj H, Jeon T, Nguyen T, Fedeli S, Rotello VM. Direct Cytosolic Delivery of Citraconylated Proteins. Pharmaceutics 2023;15. [PMID: 36678847 DOI: 10.3390/pharmaceutics15010218] [Reference Citation Analysis]
12 Koch KC, Tew GN. Functional antibody delivery: Advances in cellular manipulation. Adv Drug Deliv Rev 2023;192:114586. [PMID: 36280179 DOI: 10.1016/j.addr.2022.114586] [Reference Citation Analysis]
13 Hoque M, Samanta A, Alam SSM, Zughaibi TA, Kamal MA, Tabrez S. Nanomedicine-based immunotherapy for Alzheimer's disease. Neurosci Biobehav Rev 2023;144:104973. [PMID: 36435391 DOI: 10.1016/j.neubiorev.2022.104973] [Reference Citation Analysis]
14 Melodia D, Di Pietro Z, Cao C, Stenzel MH, Chapman R. Traceless pH-Sensitive Antibody Conjugation Inspired by Citraconic Anhydride. Biomacromolecules 2022;23:5322-9. [PMID: 36395470 DOI: 10.1021/acs.biomac.2c01125] [Reference Citation Analysis]
15 Gu Z, Chen H, Zhao H, Yang W, Song Y, Li X, Wang Y, Du D, Liao H, Pan W, Li X, Gao Y, Han H, Tong Z. New insight into brain disease therapy: nanomedicines-crossing blood-brain barrier and extracellular space for drug delivery. Expert Opin Drug Deliv 2022;19:1618-35. [PMID: 36285632 DOI: 10.1080/17425247.2022.2139369] [Reference Citation Analysis]
16 Han Y, Yi H, Wang Y, Li Z, Chu X, Jiang JH. Ultrathin Zinc Selenide Nanoplatelets Boosting Photoacoustic Imaging of In Situ Copper Exchange in Alzheimer's Disease Mice. ACS Nano 2022;16:19053-66. [PMID: 36349982 DOI: 10.1021/acsnano.2c08094] [Reference Citation Analysis]
17 Malhotra M, Pardasani M, Srika P, Abraham N, jayakannan M. Star-Polymer Unimolecular Micelles for Brain Specific Delivery of Anticancer Drug.. [DOI: 10.21203/rs.3.rs-2251762/v1] [Reference Citation Analysis]
18 Yan C, Wang C, Shao X, Teng Y, Chen P, Hu X, Guan P, Wu H. Multifunctional Carbon-Dot-Photosensitizer Nanoassemblies for Inhibiting Amyloid Aggregates, Suppressing Microbial Infection, and Overcoming the Blood-Brain Barrier. ACS Appl Mater Interfaces 2022;14:47432-44. [PMID: 36254877 DOI: 10.1021/acsami.2c14118] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Zhou Q, Li J, Xiang J, Shao S, Zhou Z, Tang J, Shen Y. Transcytosis-enabled active extravasation of tumor nanomedicine. Adv Drug Deliv Rev 2022;189:114480. [PMID: 35952830 DOI: 10.1016/j.addr.2022.114480] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Moon H, Hwang K, Nam KM, Kim Y, Ko MJ, Kim HR, Lee HJ, Kim MJ, Kim TH, Kang K, Kim NG, Choi SW, Kim C. Enhanced delivery to brain using sonosensitive liposome and microbubble with focused ultrasound. Biomaterials Advances 2022;141:213102. [DOI: 10.1016/j.bioadv.2022.213102] [Reference Citation Analysis]
21 Hou T, Zhang N, Yan C, Ding M, Niu H, Guan P, Hu X. Curcumin-loaded protein imprinted mesoporous nanosphere for inhibiting amyloid aggregation. Int J Biol Macromol 2022;221:334-45. [PMID: 36084870 DOI: 10.1016/j.ijbiomac.2022.08.185] [Reference Citation Analysis]
22 Quader S, Van Guyse JFR. Bioresponsive Polymers for Nanomedicine-Expectations and Reality! Polymers (Basel) 2022;14:3659. [PMID: 36080733 DOI: 10.3390/polym14173659] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Qian K, Bao X, Li Y, Wang P, Guo Q, Yang P, Xu S, Yu F, Meng R, Cheng Y, Sheng D, Cao J, Xu M, Wu J, Wang T, Wang Y, Xie Q, Lu W, Zhang Q. Cholinergic Neuron Targeting Nanosystem Delivering Hybrid Peptide for Combinatorial Mitochondrial Therapy in Alzheimer's Disease. ACS Nano 2022. [PMID: 35839463 DOI: 10.1021/acsnano.2c05795] [Reference Citation Analysis]
24 Sonoda H, Takahashi K, Minami K, Hirato T, Yamamoto T, So S, Tanizawa K, Schmidt M, Sato Y. Treatment of Neuronopathic Mucopolysaccharidoses with Blood-Brain Barrier-Crossing Enzymes: Clinical Application of Receptor-Mediated Transcytosis. Pharmaceutics 2022;14:1240. [PMID: 35745811 DOI: 10.3390/pharmaceutics14061240] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Ding H, Tan P, Fu S, Tian X, Zhang H, Ma X, Gu Z, Luo K. Preparation and application of pH-responsive drug delivery systems. J Control Release 2022:S0168-3659(22)00327-3. [PMID: 35660634 DOI: 10.1016/j.jconrel.2022.05.056] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 25.0] [Reference Citation Analysis]
26 Pardo-moreno T, González-acedo A, Rivas-domínguez A, García-morales V, García-cozar FJ, Ramos-rodríguez JJ, Melguizo-rodríguez L. Therapeutic Approach to Alzheimer’s Disease: Current Treatments and New Perspectives. Pharmaceutics 2022;14:1117. [DOI: 10.3390/pharmaceutics14061117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
27 Kim D, Han S, Ji Y, Moon S, Nam H, Lee JB. Multimeric RNAs for efficient RNA-based therapeutics and vaccines. J Control Release 2022;345:770-85. [PMID: 35367477 DOI: 10.1016/j.jconrel.2022.03.052] [Reference Citation Analysis]
28 Taliyan R, Kakoty V, Sarathlal KC, Kharavtekar SS, Karennanavar CR, Choudhary YK, Singhvi G, Riadi Y, Dubey SK, Kesharwani P. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer's disease. J Control Release 2022:S0168-3659(22)00058-X. [PMID: 35114208 DOI: 10.1016/j.jconrel.2022.01.044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
29 Ge K, Mu Y, Liu M, Bai Z, Liu Z, Geng D, Gao F. Gold Nanorods with Spatial Separation of CeO2 Deposition for Plasmonic-Enhanced Antioxidant Stress and Photothermal Therapy of Alzheimer's Disease. ACS Appl Mater Interfaces 2022;14:3662-74. [PMID: 35023712 DOI: 10.1021/acsami.1c17861] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
30 Yang Y, Alencar LMR, Pijeira MSO, Batista BDS, França ARS, Rates ERD, Lima RC, Gemini-piperni S, Santos-oliveira R. [ 223 Ra] RaCl 2 nanomicelles showed potent effect against osteosarcoma: targeted alpha therapy in the nanotechnology era. Drug Delivery 2022;29:186-91. [DOI: 10.1080/10717544.2021.2005719] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
31 Yan C, Wang C, Shao X, Shu Q, Hu X, Guan P, Teng Y, Cheng Y. Dual-targeted carbon-dot-drugs nanoassemblies for modulating Alzheimer's related amyloid-β aggregation and inhibiting fungal infection. Mater Today Bio 2021;12:100167. [PMID: 34901820 DOI: 10.1016/j.mtbio.2021.100167] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
32 Nance E, Pun SH, Saigal R, Sellers DL. Drug delivery to the central nervous system. Nat Rev Mater. [DOI: 10.1038/s41578-021-00394-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
33 Md S, Alhakamy NA, Alfaleh MA, Afzal O, Altamimi ASA, Iqubal A, Shaik RA. Mechanisms Involved in Microglial-Interceded Alzheimer's Disease and Nanocarrier-Based Treatment Approaches. J Pers Med 2021;11:1116. [PMID: 34834468 DOI: 10.3390/jpm11111116] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
34 Karayianni M, Pispas S. Block copolymer solution self‐assembly: Recent advances, emerging trends, and applications. Journal of Polymer Science 2021;59:1874-98. [DOI: 10.1002/pol.20210430] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
35 Marras AE, Ting JM, Stevens KC, Tirrell MV. Advances in the Structural Design of Polyelectrolyte Complex Micelles. J Phys Chem B 2021;125:7076-89. [PMID: 34160221 DOI: 10.1021/acs.jpcb.1c01258] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
36 Shah S, Leon L. Structural dynamics, phase behavior, and applications of polyelectrolyte complex micelles. Current Opinion in Colloid & Interface Science 2021;53:101424. [DOI: 10.1016/j.cocis.2021.101424] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
37 Ouyang Q, Meng Y, Zhou W, Tong J, Cheng Z, Zhu Q. New advances in brain-targeting nano-drug delivery systems for Alzheimer's disease. J Drug Target 2021;:1-21. [PMID: 33983096 DOI: 10.1080/1061186X.2021.1927055] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
38 Sun ZT, Ma C, Li GJ, Zheng XY, Hao YT, Yang Y, Wang X. Application of Antibody Fragments Against Aβ With Emphasis on Combined Application With Nanoparticles in Alzheimer's Disease. Front Pharmacol 2021;12:654611. [PMID: 33967797 DOI: 10.3389/fphar.2021.654611] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
39 Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY. A review on advances of treatment modalities for Alzheimer's disease. Life Sci 2021;276:119129. [PMID: 33515559 DOI: 10.1016/j.lfs.2021.119129] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
40 Wei R, Liu Y, Gao J, Yong VW, Xue M. Small functionalized iron oxide nanoparticles for dual brain magnetic resonance imaging and fluorescence imaging. RSC Adv 2021;11:12867-75. [DOI: 10.1039/d0ra10392f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
41 Li J, Kataoka K. Chemo-physical Strategies to Advance the in Vivo Functionality of Targeted Nanomedicine: The Next Generation. J Am Chem Soc 2021;143:538-59. [PMID: 33370092 DOI: 10.1021/jacs.0c09029] [Cited by in Crossref: 65] [Cited by in F6Publishing: 73] [Article Influence: 21.7] [Reference Citation Analysis]
42 Fan Z, Jiang B, Shi D, Yang L, Yin W, Zheng K, Zhang X, Xin C, Su G, Hou Z. Selective antitumor activity of drug-free TPGS nanomicelles with ROS-induced mitochondrial cell death. Int J Pharm 2021;594:120184. [PMID: 33340597 DOI: 10.1016/j.ijpharm.2020.120184] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
43 Dutta K, Kanjilal P, Das R, Thayumanavan S. Synergistic Interplay of Covalent and Non‐Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. Angew Chem 2021;133:1849-58. [DOI: 10.1002/ange.202010412] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
44 Dutta K, Kanjilal P, Das R, Thayumanavan S. Synergistic Interplay of Covalent and Non-Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. Angew Chem Int Ed Engl 2021;60:1821-30. [PMID: 33034131 DOI: 10.1002/anie.202010412] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
45 Tan Y, He K, Tang B, Chen H, Zhao Z, Zhang C, Lin L, Liu J. Precisely Regulated Luminescent Gold Nanoparticles for Identification of Cancer Metastases. ACS Nano 2020;14:13975-85. [PMID: 32865989 DOI: 10.1021/acsnano.0c06388] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
46 Wang X, Gao B, Zhou J, Ren XK, Guo J, Xia S, Zhang W, Feng Y. Unexpected Amplification of Synergistic Gene Expression to Boom Vascular Flow in Advantageous Dual-Gene Co-expression Plasmid Delivery Systems over Physically Mixed Strategy. ACS Appl Bio Mater 2020;3:7228-35. [PMID: 35019381 DOI: 10.1021/acsabm.0c01023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
47 Zhou Y, Zhu F, Liu Y, Zheng M, Wang Y, Zhang D, Anraku Y, Zou Y, Li J, Wu H, Pang X, Tao W, Shimoni O, Bush AI, Xue X, Shi B. Blood-brain barrier-penetrating siRNA nanomedicine for Alzheimer's disease therapy. Sci Adv 2020;6:eabc7031. [PMID: 33036977 DOI: 10.1126/sciadv.abc7031] [Cited by in Crossref: 66] [Cited by in F6Publishing: 70] [Article Influence: 22.0] [Reference Citation Analysis]
48 Duro-Castano A, Moreira Leite D, Forth J, Deng Y, Matias D, Noble Jesus C, Battaglia G. Designing peptide nanoparticles for efficient brain delivery. Adv Drug Deliv Rev 2020;160:52-77. [PMID: 33031897 DOI: 10.1016/j.addr.2020.10.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
49 Melnyk T, Đorđević S, Conejos-Sánchez I, Vicent MJ. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv Drug Deliv Rev 2020;160:136-69. [PMID: 33091502 DOI: 10.1016/j.addr.2020.10.007] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
50 Wang X, Su B, Gao B, Zhou J, Ren X, Guo J, Xia S, Zhang W, Feng Y. Cascaded bio-responsive delivery of eNOS gene and ZNF 580 gene to collaboratively treat hindlimb ischemia via pro-angiogenesis and anti-inflammation. Biomater Sci 2020;8:6545-60. [DOI: 10.1039/d0bm01573c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]