BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yu W, Liu T, Zhang M, Wang Z, Ye J, Li CX, Liu W, Li R, Feng J, Zhang XZ. O2 Economizer for Inhibiting Cell Respiration To Combat the Hypoxia Obstacle in Tumor Treatments. ACS Nano 2019;13:1784-94. [PMID: 30698953 DOI: 10.1021/acsnano.8b07852] [Cited by in Crossref: 31] [Cited by in F6Publishing: 47] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 He L, Yu X, Li W. Recent Progress and Trends in X-ray-Induced Photodynamic Therapy with Low Radiation Doses. ACS Nano 2022. [DOI: 10.1021/acsnano.2c07286] [Reference Citation Analysis]
2 Han X, Jeong Y, Irudayaraj J. Nanocatalase-Based Oxygen-Generating Nanocarriers for Active Oxygen Delivery to Relieve Hypoxia in Pancreatic Cancer. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c04241] [Reference Citation Analysis]
3 Guo S, Yang X, Guan S, Lu J, Zhou S. Bioinspired Construction of an Enzyme-Mimetic Supramolecular Nanoagent for RNS-Augmented Cascade Chemodynamic Therapy. ACS Appl Mater Interfaces 2022. [PMID: 36197447 DOI: 10.1021/acsami.2c12823] [Reference Citation Analysis]
4 Tao Y, Liu Y, Dong Z, Chen X, Wang Y, Li T, Li J, Zang S, He X, Chen D, Zhao Z, Li M. Cellular Hypoxia Mitigation by Dandelion-like Nanoparticles for Synergistic Photodynamic Therapy of Oral Squamous Cell Carcinoma. ACS Appl Mater Interfaces 2022. [PMID: 36153957 DOI: 10.1021/acsami.2c10021] [Reference Citation Analysis]
5 Luo Y, Qiao B, Yang C, Zhang P, Xie Z, Cao J, Yang A, Xiang Q, Ran H, Wang Z, Hao L, Cao Y, Zhou Z, Ren J. . IJN 2022;Volume 17:4547-65. [DOI: 10.2147/ijn.s361648] [Reference Citation Analysis]
6 Wang J, Ye J, Lv W, Liu S, Zhang Z, Xu J, Xu M, Zhao C, Yang P, Fu Y. Biomimetic Nanoarchitectonics of Hollow Mesoporous Copper Oxide-Based Nanozymes with Cascade Catalytic Reaction for Near Infrared-II Reinforced Photothermal-Catalytic Therapy. ACS Appl Mater Interfaces 2022. [PMID: 36040363 DOI: 10.1021/acsami.2c11634] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Du Y, Han J, Jin F, Du Y. Recent Strategies to Address Hypoxic Tumor Environments in Photodynamic Therapy. Pharmaceutics 2022;14:1763. [DOI: 10.3390/pharmaceutics14091763] [Reference Citation Analysis]
8 Liang B, Qiao B, Yu K, Cao J, Zhou H, Jiang Q, Zhong Y, Cao Y, Wang Z, Zheng Y. Mitochondrial Glutathione Depletion Nanoshuttles for Oxygen-Irrelevant Free Radicals Generation: A Cascaded Hierarchical Targeting and Theranostic Strategy Against Hypoxic Tumor. ACS Appl Mater Interfaces 2022;14:13038-55. [PMID: 35266691 DOI: 10.1021/acsami.1c24708] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
9 Jiang Q, Qiao B, Lin X, Cao J, Zhang N, Guo H, Liu W, Zhu L, Xie X, Wan L, Tang R, Liang B, Wang D, Wang Z, Zhou Y, Ran H, Li P. A hydrogen peroxide economizer for on-demand oxygen production-assisted robust sonodynamic immunotherapy. Theranostics 2022;12:59-75. [PMID: 34987634 DOI: 10.7150/thno.64862] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
10 Wang K, Jiang M, Zhou J, Liu Y, Zong Q, Yuan Y. Tumor-Acidity and Bioorthogonal Chemistry-Mediated On-Site Size Transformation Clustered Nanosystem to Overcome Hypoxic Resistance and Enhance Chemoimmunotherapy. ACS Nano 2022. [PMID: 34978422 DOI: 10.1021/acsnano.1c08232] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
11 Wen J, Luo Y, Gao H, Zhang L, Wang X, Huang J, Shang T, Zhou D, Wang D, Wang Z, Li P, Wang Z. Mitochondria-targeted nanoplatforms for enhanced photodynamic therapy against hypoxia tumor. J Nanobiotechnology 2021;19:440. [PMID: 34930284 DOI: 10.1186/s12951-021-01196-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
12 Zou W, Hao J, Wu J, Cai X, Hu B, Wang Z, Zheng Y. Biodegradable reduce expenditure bioreactor for augmented sonodynamic therapy via regulating tumor hypoxia and inducing pro-death autophagy. J Nanobiotechnology 2021;19:418. [PMID: 34903226 DOI: 10.1186/s12951-021-01166-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
13 Zhao Y, Ouyang X, Peng Y, Peng S. Stimuli Responsive Nitric Oxide-Based Nanomedicine for Synergistic Therapy. Pharmaceutics 2021;13:1917. [PMID: 34834332 DOI: 10.3390/pharmaceutics13111917] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
14 Yang J, Zhou J, Zhao Y, Zhu L, Luo G, Ge B. Hollow CeO2 with ROS-Scavenging Activity to Alleviate Colitis in Mice. Int J Nanomedicine 2021;16:6889-904. [PMID: 34675513 DOI: 10.2147/IJN.S317261] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Li Y, Liu Z, Zeng W, Wang Z, Liu C, Zeng N, Zhong K, Jiang D, Wu Y. A Novel H2O2 Generator for Tumor Chemotherapy-Enhanced CO Gas Therapy. Front Oncol 2021;11:738567. [PMID: 34631573 DOI: 10.3389/fonc.2021.738567] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Zeng W, Jiang D, Liu Z, Suo W, Wang Z, Zhu D, Huang Q. An Injectable Hydrogel for Enhanced FeGA-Based Chemodynamic Therapy by Increasing Intracellular Acidity. Front Oncol 2021;11:750855. [PMID: 34631588 DOI: 10.3389/fonc.2021.750855] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zai W, Kang L, Dong T, Wang H, Yin L, Gan S, Lai W, Ding Y, Hu Y, Wu J. E. coli Membrane Vesicles as a Catalase Carrier for Long-Term Tumor Hypoxia Relief to Enhance Radiotherapy. ACS Nano 2021;15:15381-94. [PMID: 34520168 DOI: 10.1021/acsnano.1c07621] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
18 Sun X, Su F, Luo X, Ning Y. The Use of Bionic Prodrugs for the Enhancement of Low Dose Radiotherapy. Front Chem 2021;9:710250. [PMID: 34458237 DOI: 10.3389/fchem.2021.710250] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Zhu D, Zhang J, Luo G, Duo Y, Tang BZ. Bright Bacterium for Hypoxia-Tolerant Photodynamic Therapy Against Orthotopic Colon Tumors by an Interventional Method. Adv Sci (Weinh) 2021;8:e2004769. [PMID: 34145986 DOI: 10.1002/advs.202004769] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 25.0] [Reference Citation Analysis]
20 Chen Y, Li ZH, Pan P, Zeng RY, Zhang XZ. Tumor-Specific ONOO- Nanogenerator for Improved Drug Delivery and Enhanced Chemotherapy of Tumor. ACS Nano 2021. [PMID: 34275285 DOI: 10.1021/acsnano.1c01312] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
21 Fu X, Yin W, Shi D, Yang Y, He S, Hai J, Hou Z, Fan Z, Zhang D. Shuttle-Shape Carrier-Free Platinum-Coordinated Nanoreactors with O2 Self-Supply and ROS Augment for Enhanced Phototherapy of Hypoxic Tumor. ACS Appl Mater Interfaces 2021;13:32690-702. [PMID: 34229434 DOI: 10.1021/acsami.1c06668] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
22 Ding S, Liu Z, Huang C, Zeng N, Jiang W, Li Q. Novel Engineered Bacterium/Black Phosphorus Quantum Dot Hybrid System for Hypoxic Tumor Targeting and Efficient Photodynamic Therapy. ACS Appl Mater Interfaces 2021;13:10564-73. [PMID: 33605723 DOI: 10.1021/acsami.0c20254] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 20.0] [Reference Citation Analysis]
23 Deng X, Shao Z, Zhao Y. Solutions to the Drawbacks of Photothermal and Photodynamic Cancer Therapy. Adv Sci (Weinh) 2021;8:2002504. [PMID: 33552860 DOI: 10.1002/advs.202002504] [Cited by in Crossref: 106] [Cited by in F6Publishing: 118] [Article Influence: 106.0] [Reference Citation Analysis]
24 Shih CY, Wang PT, Su WC, Teng H, Huang WL. Nanomedicine-Based Strategies Assisting Photodynamic Therapy for Hypoxic Tumors: State-of-the-Art Approaches and Emerging Trends. Biomedicines 2021;9:137. [PMID: 33535466 DOI: 10.3390/biomedicines9020137] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
25 Zhang C, Yan Q, Li J, Zhu Y, Zhang Y. Nanoenabled Tumor Oxygenation Strategies for Overcoming Hypoxia-Associated Immunosuppression. ACS Appl Bio Mater 2021;4:277-94. [PMID: 35014284 DOI: 10.1021/acsabm.0c01328] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Hu T, Wang Z, Shen W, Liang R, Yan D, Wei M. Recent advances in innovative strategies for enhanced cancer photodynamic therapy. Theranostics 2021;11:3278-300. [PMID: 33537087 DOI: 10.7150/thno.54227] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 43.0] [Reference Citation Analysis]
27 Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021;121:1746-803. [PMID: 33445874 DOI: 10.1021/acs.chemrev.0c00779] [Cited by in Crossref: 89] [Cited by in F6Publishing: 105] [Article Influence: 89.0] [Reference Citation Analysis]
28 Li WP, Yen CJ, Wu BS, Wong TW. Recent Advances in Photodynamic Therapy for Deep-Seated Tumors with the Aid of Nanomedicine. Biomedicines 2021;9:69. [PMID: 33445690 DOI: 10.3390/biomedicines9010069] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 18.0] [Reference Citation Analysis]
29 Xiang Q, Qiao B, Luo Y, Cao J, Fan K, Hu X, Hao L, Cao Y, Zhang Q, Wang Z. Increased photodynamic therapy sensitization in tumors using a nitric oxide-based nanoplatform with ATP-production blocking capability. Theranostics 2021;11:1953-69. [PMID: 33408791 DOI: 10.7150/thno.52997] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 23.0] [Reference Citation Analysis]
30 Luo L, Li L, Cong C, He Y, Hao Z, Gao D. Catalase-like nanosystem for interlocking trimodal cancer therapy with hypoxia relief. Sci China Mater 2021;64:1021-34. [DOI: 10.1007/s40843-020-1492-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
31 Ming L, Cheng K, Chen Y, Yang R, Chen D. Enhancement of tumor lethality of ROS in photodynamic therapy. Cancer Med 2021;10:257-68. [PMID: 33141513 DOI: 10.1002/cam4.3592] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 16.0] [Reference Citation Analysis]
32 Huang C, Zhu C, Chen J, Huang K, Li F, Ding S, Xia L, Jiang W, Li Y. Nano-Platelets as an Oxygen Regulator for Augmenting Starvation Therapy Against Hypoxic Tumor. Front Bioeng Biotechnol 2020;8:571993. [PMID: 33015023 DOI: 10.3389/fbioe.2020.571993] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
33 Yang B, Shi J. Chemistry of Advanced Nanomedicines in Cancer Cell Metabolism Regulation. Adv Sci (Weinh) 2020;7:2001388. [PMID: 32999845 DOI: 10.1002/advs.202001388] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
34 Cheng K, Zhang RY, Yang XQ, Zhang XS, Zhang F, An J, Wang ZY, Dong Y, Liu B, Zhao YD, Liu TC. One-for-All Nanoplatform for Synergistic Mild Cascade-Potentiated Ultrasound Therapy Induced with Targeting Imaging-Guided Photothermal Therapy. ACS Appl Mater Interfaces 2020;12:40052-66. [PMID: 32806885 DOI: 10.1021/acsami.0c10475] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
35 Deng Y, Song P, Chen X, Huang Y, Hong L, Jin Q, Ji J. 3-Bromopyruvate-Conjugated Nanoplatform-Induced Pro-Death Autophagy for Enhanced Photodynamic Therapy against Hypoxic Tumor. ACS Nano 2020;14:9711-27. [PMID: 32806075 DOI: 10.1021/acsnano.0c01350] [Cited by in Crossref: 56] [Cited by in F6Publishing: 64] [Article Influence: 28.0] [Reference Citation Analysis]
36 Fan Z, Jiang B, Zhu Q, Xiang S, Tu L, Yang Y, Zhao Q, Huang D, Han J, Su G, Ge D, Hou Z. Tumor-Specific Endogenous FeII-Activated, MRI-Guided Self-Targeting Gadolinium-Coordinated Theranostic Nanoplatforms for Amplification of ROS and Enhanced Chemodynamic Chemotherapy. ACS Appl Mater Interfaces 2020;12:14884-904. [PMID: 32167740 DOI: 10.1021/acsami.0c00970] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
37 Li M, Shao Y, Kim JH, Pu Z, Zhao X, Huang H, Xiong T, Kang Y, Li G, Shao K, Fan J, Foley JW, Kim JS, Peng X. Unimolecular Photodynamic O2-Economizer To Overcome Hypoxia Resistance in Phototherapeutics. J Am Chem Soc 2020;142:5380-8. [PMID: 32105455 DOI: 10.1021/jacs.0c00734] [Cited by in Crossref: 131] [Cited by in F6Publishing: 145] [Article Influence: 65.5] [Reference Citation Analysis]
38 Liu H, Cheng R, Dong X, Zhu S, Zhou R, Yan L, Zhang C, Wang Q, Gu Z, Zhao Y. BiO 2– x Nanosheets as Radiosensitizers with Catalase-Like Activity for Hypoxia Alleviation and Enhancement of the Radiotherapy of Tumors. Inorg Chem 2020;59:3482-93. [DOI: 10.1021/acs.inorgchem.9b03280] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 18.5] [Reference Citation Analysis]
39 Zhang M, Ye JJ, Xia Y, Wang ZY, Li CX, Wang XS, Yu W, Song W, Feng J, Zhang XZ. Platelet-Mimicking Biotaxis Targeting Vasculature-Disrupted Tumors for Cascade Amplification of Hypoxia-Sensitive Therapy. ACS Nano 2019;13:14230-40. [PMID: 31714733 DOI: 10.1021/acsnano.9b07330] [Cited by in Crossref: 42] [Cited by in F6Publishing: 48] [Article Influence: 14.0] [Reference Citation Analysis]
40 Zhao J, Sun S, Li X, Zhang W, Gou S. Enhancing Photodynamic Therapy Efficacy of Upconversion-Based Nanoparticles Conjugated with a Long-Lived Triplet Excited State Iridium(III)-Naphthalimide Complex: Toward Highly Enhanced Hypoxia-Inducible Factor-1. ACS Appl Bio Mater 2020;3:252-62. [DOI: 10.1021/acsabm.9b00774] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
41 Liu P, Xie X, Shi X, Peng Y, Ding J, Zhou W. Oxygen-Self-Supplying and HIF-1α-Inhibiting Core-Shell Nanosystem for Hypoxia-Resistant Photodynamic Therapy. ACS Appl Mater Interfaces 2019;11:48261-70. [PMID: 31763809 DOI: 10.1021/acsami.9b18112] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 19.0] [Reference Citation Analysis]
42 Zhu C, Guo X, Luo L, Wu Z, Luo Z, Jiang M, Zhang J, Qin B, Shi Y, Lou Y, Qiu Y, You J. Extremely Effective Chemoradiotherapy by Inducing Immunogenic Cell Death and Radio-Triggered Drug Release under Hypoxia Alleviation. ACS Appl Mater Interfaces 2019;11:46536-47. [PMID: 31751119 DOI: 10.1021/acsami.9b16837] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
43 Larue L, Myrzakhmetov B, Ben-Mihoub A, Moussaron A, Thomas N, Arnoux P, Baros F, Vanderesse R, Acherar S, Frochot C. Fighting Hypoxia to Improve PDT. Pharmaceuticals (Basel) 2019;12:E163. [PMID: 31671658 DOI: 10.3390/ph12040163] [Cited by in Crossref: 67] [Cited by in F6Publishing: 70] [Article Influence: 22.3] [Reference Citation Analysis]
44 Li Y, An L, Lin J, Tian Q, Yang S. Smart nanomedicine agents for cancer, triggered by pH, glutathione, H2O2, or H2S. Int J Nanomedicine 2019;14:5729-49. [PMID: 31440046 DOI: 10.2147/IJN.S210116] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]