BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang X, Liu Y, Yung B, Xiong Y, Chen X. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS Nano 2017;11:5238-92. [PMID: 28590117 DOI: 10.1021/acsnano.7b02618] [Cited by in Crossref: 165] [Cited by in F6Publishing: 170] [Article Influence: 27.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhu L, Mei X, Peng Z, Liu J, Yang J, Li Y. A rotating paper-based microfluidic sensor array combining Michael acceptors and carbon quantum dots for discrimination of biothiols. Chemical Engineering Journal 2023;454:140065. [DOI: 10.1016/j.cej.2022.140065] [Reference Citation Analysis]
2 Sohrabi H, Ghasemzadeh S, Shakib S, Majidi MR, Razmjou A, Yoon Y, Khataee A. Metal–Organic Framework-Based Biosensing Platforms for the Sensitive Determination of Trace Elements and Heavy Metals: A Comprehensive Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03011] [Reference Citation Analysis]
3 Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Medicinal Research Reviews 2022. [DOI: 10.1002/med.21931] [Reference Citation Analysis]
4 Fang B, Xiong Q, Duan H, Xiong Y, Lai W. Tailored quantum dots for enhancing sensing performance of lateral flow immunoassay. TrAC Trends in Analytical Chemistry 2022;157:116754. [DOI: 10.1016/j.trac.2022.116754] [Reference Citation Analysis]
5 Guo Y, Guo L, Su Y, Xiong Y. CRISPR‐Cas system manipulating nanoparticles signal transduction for cancer diagnosis. WIREs Nanomed Nanobiotechnol 2022. [DOI: 10.1002/wnan.1851] [Reference Citation Analysis]
6 . Introduction to Nanomaterials. Polymer Nanocomposites for Energy Applications 2022. [DOI: 10.1002/9783527838554.ch5] [Reference Citation Analysis]
7 Zhan S, Fang H, Chen Q, Xiong S, Guo Y, Huang T, Li X, Leng Y, Huang X, Xiong Y. M13 bacteriophage as biometric component for orderly assembly of dynamic light scattering immunosensor. Biosens Bioelectron 2022;217:114693. [PMID: 36108584 DOI: 10.1016/j.bios.2022.114693] [Reference Citation Analysis]
8 Tang X, Zhu Y, Guan W, Zhou W, Wei P. Advances in nanosensors for cardiovascular disease detection. Life Sciences 2022;305:120733. [DOI: 10.1016/j.lfs.2022.120733] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Liu Y, Wang C, Zhang C, Chen R, Liu B, Zhang K. Nonenzymatic Multiamplified Electrochemical Detection of Medulloblastoma-Relevant MicroRNAs from Cerebrospinal Fluid. ACS Sens 2022;7:2320-7. [PMID: 35925869 DOI: 10.1021/acssensors.2c00956] [Reference Citation Analysis]
10 Bagihalli GB, Shaikh NM, Unki SN. Role of Graphene and Graphene Oxide Applications as Optical Biosensors in Pandemic. AMM 2022;908:29-49. [DOI: 10.4028/p-20z89t] [Reference Citation Analysis]
11 Chen Q, Meng M, Li W, Xiong Y, Fang Y, Lin Q. Emerging biosensors to detect aflatoxin M1 in milk and dairy products. Food Chemistry 2022. [DOI: 10.1016/j.foodchem.2022.133848] [Reference Citation Analysis]
12 Liu G, Guan X, Li B, Zhou H, Kong N, Wang H. Hemin-graphene oxide-gold nanoflower-assisted enhanced electrochemiluminescence immunosensor for determination of prostate-specific antigen. Mikrochim Acta 2022;189:297. [PMID: 35900602 DOI: 10.1007/s00604-022-05387-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Han YD, Kim KR, Lee KW, Yoon HC. Retroreflection-based optical biosensing: From concept to applications. Biosensors and Bioelectronics 2022;207:114202. [DOI: 10.1016/j.bios.2022.114202] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Wang X, Yang J, Xie Y, Lai G. Dual DNAzyme-catalytic assembly of G-quadruplexes for inducing the aggregation of gold nanoparticles and developing a novel antibiotic assay method. Mikrochim Acta 2022;189:262. [PMID: 35727378 DOI: 10.1007/s00604-022-05362-x] [Reference Citation Analysis]
15 Guo Y, Li J. Sandwich-type homogeneous chemiluminescence immunoassay based on nanoparticle toward detection of Aspergillus galactomannan antigen. Talanta 2022;243:123392. [DOI: 10.1016/j.talanta.2022.123392] [Reference Citation Analysis]
16 Anand U, Chandel AKS, Oleksak P, Mishra A, Krejcar O, Raval IH, Dey A, Kuca K. Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors. Appl Microbiol Biotechnol 2022. [PMID: 35384450 DOI: 10.1007/s00253-022-11901-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Retout M, Mantri Y, Jin Z, Zhou J, Noël G, Donovan B, Yim W, Jokerst JV. Peptide-Induced Fractal Assembly of Silver Nanoparticles for Visual Detection of Disease Biomarkers. ACS Nano 2022. [PMID: 35377141 DOI: 10.1021/acsnano.1c11643] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
18 Tauseef A, Hisam F, Hussain T, Caruso A, Hussain K, Châtel A, Chénais B. Nanomicrobiology: Emerging Trends in Microbial Synthesis of Nanomaterials and Their Applications. J Clust Sci. [DOI: 10.1007/s10876-022-02256-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Arshad F, Nabi F, Iqbal S, Khan RH. Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloids Surf B Biointerfaces 2022;212:112356. [PMID: 35123193 DOI: 10.1016/j.colsurfb.2022.112356] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
20 Sena‐torralba A, Torné‐morató H, Parolo C, Ranjbar S, Farahmand Nejad MA, Álvarez‐diduk R, Idili A, Hormozi‐nezhad MR, Merkoçi A. A Novel Ratiometric Fluorescent Approach for the Modulation of the Dynamic Range of Lateral Flow Immunoassays. Adv Materials Technologies. [DOI: 10.1002/admt.202101450] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
21 Yang Y, Huang Q, Xiao Z, Liu M, Zhu Y, Chen Q, Li Y, Ai K. Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100218] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
22 Alenichev M, Levin A, Yushina A, Kostrikina E, Lebedin Y, Andreeva I, Grigorenko V, Krylov V, Nifantiev N. Nano-biosensor based on the combined use of the dynamic and static light scattering for Aspergillus galactomannan analysis. Sensing and Bio-Sensing Research 2022. [DOI: 10.1016/j.sbsr.2022.100475] [Reference Citation Analysis]
23 Wang Y, Li B, Tian T, Liu Y, Zhang J, Qian K. Advanced on-site and in vitro signal amplification biosensors for biomolecule analysis. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116565] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Arghavani P, Badiei A, Ghadami SA, Habibi-Rezaei M, Moosavi-Movahedi F, Delphi L, Moosavi-Movahedi AA. Inhibiting mTTR Aggregation/Fibrillation by a Chaperone-like Hydrophobic Amino Acid-Conjugated SPION. J Phys Chem B 2022. [PMID: 35090112 DOI: 10.1021/acs.jpcb.1c08796] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Basu B, Prajapati BG, Mukherjee S, Roy TK, Roy A, Hossain CM, Prajapati JB, Patel J. Therapeutic Drug Monitoring (TDM) and Toxicological Studies in Alternative Biological Matrices. Recent Advances in Therapeutic Drug Monitoring and Clinical Toxicology 2022. [DOI: 10.1007/978-3-031-12398-6_7] [Reference Citation Analysis]
26 Menon S, Sam S, Keerthi K, Girish Kumar K. Carbon nanomaterial-based sensors: Emerging trends, markets, and concerns. Carbon Nanomaterials-Based Sensors 2022. [DOI: 10.1016/b978-0-323-91174-0.00008-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Choudhary M, Arora K. Electrochemical biosensors for early detection of cancer. Biosensor Based Advanced Cancer Diagnostics 2022. [DOI: 10.1016/b978-0-12-823424-2.00024-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 李 航. Recent Research Progress in Detection Methods of Aflatoxin B1 in Corn. HJFNS 2022;11:119-130. [DOI: 10.12677/hjfns.2022.112015] [Reference Citation Analysis]
29 Nazari M, Saljooghi AS, Ramezani M, Alibolandi M, Mirzaei M. Current status and future prospects of nanoscale metal–organic frameworks in bioimaging. J Mater Chem B 2022. [DOI: 10.1039/d2tb01787c] [Reference Citation Analysis]
30 Hernández SNH, Chauhan G. Nanofibers for cancer sensing and diagnostics. Materials Today: Proceedings 2022;48:66-70. [DOI: 10.1016/j.matpr.2020.10.164] [Reference Citation Analysis]
31 Ranjan P, Singhal A, Sadique MA, Yadav S, Parihar A, Khan R. Scope of biosensors, commercial aspects, and miniaturized devices for point-of-care testing from lab to clinics applications. Biosensor Based Advanced Cancer Diagnostics 2022. [DOI: 10.1016/b978-0-12-823424-2.00004-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Xie X, Wang Z, Zhou M, Xing Y, Chen Y, Huang J, Cai K, Zhang J. Redox Host-Guest Nanosensors Installed with DNA Gatekeepers for Immobilization-Free and Ratiometric Electrochemical Detection of miRNA. Small Methods 2021;5:e2101072. [PMID: 34928007 DOI: 10.1002/smtd.202101072] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
33 Arshad R, Fatima I, Sargazi S, Rahdar A, Karamzadeh-Jahromi M, Pandey S, Díez-Pascual AM, Bilal M. Novel Perspectives towards RNA-Based Nano-Theranostic Approaches for Cancer Management. Nanomaterials (Basel) 2021;11:3330. [PMID: 34947679 DOI: 10.3390/nano11123330] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
34 Li B, Zhang Y, Ren X, Ma H, Wu D, Wei Q. No-wash point-of-care biosensing assay for rapid and sensitive detection of aflatoxin B1. Talanta 2021;235:122772. [PMID: 34517631 DOI: 10.1016/j.talanta.2021.122772] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
35 Li C, Wang F, Liu T, Yang Y. A highly sensitive, dual-readout assay based on self-assembly of two functional nanoparticles for homogeneous detection of protein biomarkers. Sensors and Actuators B: Chemical 2021;348:130710. [DOI: 10.1016/j.snb.2021.130710] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
36 Nie X, Yu C, Wei H. Precise modulation of spatially distributed inorganic nanoparticles in block copolymers-based self-assemblies with diverse morphologies. Materials Today Chemistry 2021;22:100616. [DOI: 10.1016/j.mtchem.2021.100616] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Wu Y, Fu C, Shi W, Chen J. Recent advances in catalytic hairpin assembly signal amplification-based sensing strategies for microRNA detection. Talanta 2021;235:122735. [PMID: 34517602 DOI: 10.1016/j.talanta.2021.122735] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
38 Lee JS, Song IH, Warkad SD, Yeom GS, Nimse SB. An abiotic fluorescent probe for the detection and quantification of carcinoembryonic antigen. Bioorg Chem 2021;:105490. [PMID: 34836645 DOI: 10.1016/j.bioorg.2021.105490] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
39 Mazzarotta A, Caputo TM, Battista E, Netti PA, Causa F. Hydrogel Microparticles for Fluorescence Detection of miRNA in Mix-Read Bioassay. Sensors (Basel) 2021;21:7671. [PMID: 34833752 DOI: 10.3390/s21227671] [Reference Citation Analysis]
40 Kalimuthu K, Arivalagan J, Mohan M, Samuel Selvan Christyraj JR, Arockiaraj J, Muthusamy R, Ju HJ. Point of care diagnosis of plant virus: Current trends and prospects. Mol Cell Probes 2021;61:101779. [PMID: 34798294 DOI: 10.1016/j.mcp.2021.101779] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Marimuthu M, Arumugam SS, Sabarinathan D, Li H, Chen Q. Metal organic framework based fluorescence sensor for detection of antibiotics. Trends in Food Science & Technology 2021;116:1002-28. [DOI: 10.1016/j.tifs.2021.08.022] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
42 Retout M, Jabin I, Bruylants G. Synthesis of Ultrastable and Bioconjugable Ag, Au, and Bimetallic Ag_Au Nanoparticles Coated with Calix[4]arenes. ACS Omega 2021;6:19675-84. [PMID: 34368555 DOI: 10.1021/acsomega.1c02327] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
43 Yang J, Fu S, Luo F, Guo L, Qiu B, Lin Z. Homogeneous photoelectrochemical biosensor for microRNA based on target-responsive hydrogel coupled with exonuclease III and nicking endonuclease Nb.BbvCI assistant cascaded amplification strategy. Mikrochim Acta 2021;188:267. [PMID: 34296354 DOI: 10.1007/s00604-021-04935-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
44 Huang M, Gu Z, Zhang J, Zhang D, Zhang H, Yang Z, Qu J. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: progress and perspectives. J Mater Chem B 2021;9:5195-220. [PMID: 34128039 DOI: 10.1039/d1tb00410g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
45 Li B, Zhang Y, Ren X, Li Y, Wang H, Ma H, Wu D, Wei Q. A No‐washing Point‐of‐Care Electrochemical Biosensor Based on CuS Nanoparticles for Rapid and Sensitive Detection of Neuron‐specific Enolase. Electroanalysis 2022;34:338-44. [DOI: 10.1002/elan.202100275] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Zhang S, Rong F, Guo C, Duan F, He L, Wang M, Zhang Z, Kang M, Du M. Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coordination Chemistry Reviews 2021;439:213948. [DOI: 10.1016/j.ccr.2021.213948] [Cited by in Crossref: 44] [Cited by in F6Publishing: 54] [Article Influence: 22.0] [Reference Citation Analysis]
47 Liang M, Zhang Q, Li P. Advances in Visual Immunoassays for Sensitive Detection of Mycotoxins in Food—A Review. The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry 2021. [DOI: 10.3390/csac2021-10443] [Reference Citation Analysis]
48 Chen X, Ning Y, Pan S, Liu B, Chang Y, Pang W, Duan X. Mixing during Trapping Enabled a Continuous-Flow Microfluidic Smartphone Immunoassay Using Acoustic Streaming. ACS Sens 2021;6:2386-94. [PMID: 34102847 DOI: 10.1021/acssensors.1c00602] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
49 Singh K, Nalabotala R, Koo KM, Bose S, Nayak R, Shiddiky MJA. Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges. Analyst 2021;146:3731-49. [PMID: 33988193 DOI: 10.1039/d1an00024a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
50 Kong W, Wang L, Zhao Y, Chen H, Liu Y, Han X, Yang Y, Wang J, You C, Liu Y. Sequential module coordination-driven programmable function switch of metal-molecule nanoframeworks for cancer theranostics. Nano Today 2021;38:101126. [DOI: 10.1016/j.nantod.2021.101126] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
51 Kim K, Jo E, Hong D, Oh H, Lee KJ, Shin Y, Kim M. One-Pot, Solid-Phase Immunosensing Platform Consisting of a Nanometer-Thick Au/TiO 2 Photocatalytic Film and Cy5/Capture Antibody/Gold Nanorod Conjugates. ACS Appl Nano Mater 2021;4:5454-60. [DOI: 10.1021/acsanm.1c00672] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
52 Gautam M, Kim JO, Yong CS. Fabrication of aerosol-based nanoparticles and their applications in biomedical fields. J Pharm Investig 2021;:1-15. [PMID: 33996174 DOI: 10.1007/s40005-021-00523-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
53 Cheng N, Chen D, Lou B, Fu J, Wang H. A biosensing method for the direct serological detection of liver diseases by integrating a SERS-based sensor and a CNN classifier. Biosens Bioelectron 2021;186:113246. [PMID: 33965791 DOI: 10.1016/j.bios.2021.113246] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
54 Dou X, Sun K, Chen H, Jiang Y, Wu L, Mei J, Ding Z, Xie J. Nanoscale Metal-Organic Frameworks as Fluorescence Sensors for Food Safety. Antibiotics (Basel) 2021;10:358. [PMID: 33800674 DOI: 10.3390/antibiotics10040358] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
55 Yu Z, Jiang F, Hu C, Tang B. Functionalized nanoprobes for in situ detection of telomerase. Chem Commun (Camb) 2021;57:3736-48. [PMID: 33876119 DOI: 10.1039/d0cc08412c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
56 Chen F, Fu X, Meng Y, Jiang M, Wang J, Zhou YL, Zhang DW. A novel miniaturized homogeneous label-free electrochemical biosensing platform combining integrated microelectrode and functional nucleic acids. Anal Chim Acta 2021;1158:338415. [PMID: 33863408 DOI: 10.1016/j.aca.2021.338415] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
57 Ma F, He L, Lindner E, Wu D. Highly porous poly(l-lactic) acid nanofibers as a dual-signal paper-based bioassay platform for in vitro diagnostics. Applied Surface Science 2021;542:148732. [DOI: 10.1016/j.apsusc.2020.148732] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Li M, Cheng J, Yuan Z, Shen Q, Fan Q. DNAzyme-catalyzed etching process of Au/Ag nanocages visualized via dark-field imaging with time elapse for ultrasensitive detection of microRNA. Sensors and Actuators B: Chemical 2021;330:129347. [DOI: 10.1016/j.snb.2020.129347] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
59 Li P, Lee GH, Kim SY, Kwon SY, Kim HR, Park S. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano 2021;15:1960-2004. [PMID: 33534541 DOI: 10.1021/acsnano.0c06688] [Cited by in Crossref: 63] [Cited by in F6Publishing: 73] [Article Influence: 31.5] [Reference Citation Analysis]
60 Fan Z, Yao B, Ding Y, Xie M, Zhao J, Zhang K, Huang W. Electrochemiluminescence aptasensor for Siglec-5 detection based on MoS2@Au nanocomposites emitter and exonuclease III-powered DNA walker. Sens Actuators B Chem 2021;334:129592. [PMID: 33584010 DOI: 10.1016/j.snb.2021.129592] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
61 Liu F, Chen R, Song W, Li L, Lei C, Nie Z. Modular Combination of Proteolysis-Responsive Transcription and Spherical Nucleic Acids for Smartphone-Based Colorimetric Detection of Protease Biomarkers. Anal Chem 2021;93:3517-25. [DOI: 10.1021/acs.analchem.0c04894] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
62 Wang H, Ruan Y, Zhu L, Shi X, Zhao W, Chen H, Xu J. An Integrated Electrochemical Nanodevice for Intracellular RNA Collection and Detection in Single Living Cell. Angew Chem 2021;133:13352-8. [DOI: 10.1002/ange.202014798] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
63 Wang HY, Ruan YF, Zhu LB, Shi XM, Zhao WW, Chen HY, Xu JJ. An Integrated Electrochemical Nanodevice for Intracellular RNA Collection and Detection in Single Living Cell. Angew Chem Int Ed Engl 2021;60:13244-50. [PMID: 33340231 DOI: 10.1002/anie.202014798] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 15.5] [Reference Citation Analysis]
64 Zhao C, Liu Q, Cheung KM, Liu W, Yang Q, Xu X, Man T, Weiss PS, Zhou C, Andrews AM. Narrower Nanoribbon Biosensors Fabricated by Chemical Lift-off Lithography Show Higher Sensitivity. ACS Nano 2021;15:904-15. [PMID: 33337135 DOI: 10.1021/acsnano.0c07503] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
65 Zhao Y, Zeng H, Zhu X, Lu W, Li D. Metal–organic frameworks as photoluminescent biosensing platforms: mechanisms and applications. Chem Soc Rev 2021;50:4484-513. [DOI: 10.1039/d0cs00955e] [Cited by in Crossref: 114] [Cited by in F6Publishing: 131] [Article Influence: 57.0] [Reference Citation Analysis]
66 Filice M, Marchal JA, Gamiz F. Biosensors based on two-dimensional materials. 2D Materials for Nanophotonics 2021. [DOI: 10.1016/b978-0-12-818658-9.00004-1] [Reference Citation Analysis]
67 Yang J, Yang Y. Diagnosis Employing MOFs (Fluorescence, MRI). Metal-Organic Frameworks in Biomedical and Environmental Field 2021. [DOI: 10.1007/978-3-030-63380-6_13] [Reference Citation Analysis]
68 Su D, Li H, Yan X, Lin Y, Lu G. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC Trends in Analytical Chemistry 2021;134:116126. [DOI: 10.1016/j.trac.2020.116126] [Cited by in Crossref: 58] [Cited by in F6Publishing: 62] [Article Influence: 29.0] [Reference Citation Analysis]
69 Kusat K, Akgöl S. Nanobiosensors: Usability of Imprinted Nanopolymers. Molecular Imprinting for Nanosensors and Other Sensing Applications 2021. [DOI: 10.1016/b978-0-12-822117-4.00007-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
70 Heo JH, Lee JW, Kannappan S, Lee JH. Optical DNA Based Sensors for Cervical Cancers. Biomarkers and Biosensors for Cervical Cancer Diagnosis 2021. [DOI: 10.1007/978-981-16-2586-2_6] [Reference Citation Analysis]
71 Huang X, Zhang R, Chen C, Kwok RTK, Tang BZ. Wash-free detection and bioimaging by AIEgens. Mater Chem Front 2021;5:723-43. [DOI: 10.1039/d0qm00586j] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
72 Chen K, Han H, Tuguntaev RG, Wang P, Guo W, Huang J, Gong X, Liang X. Applications and regulatory of nanotechnology‐based innovative in vitro diagnostics. View 2021;2:20200091. [DOI: 10.1002/viw.20200091] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
73 Bao J, Qiu X, Wang D, Yang H, Zhao J, Qi Y, Zhang L, Chen X, Yang M, Gu W, Huo D, Luo Y, Hou C. Carbon Nanomaze for Biomolecular Detection with Zeptomolar Sensitivity. Adv Funct Mater 2021;31:2006521. [DOI: 10.1002/adfm.202006521] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
74 Huang H, Feng W, Chen Y, Shi J. Inorganic nanoparticles in clinical trials and translations. Nano Today 2020;35:100972. [DOI: 10.1016/j.nantod.2020.100972] [Cited by in Crossref: 63] [Cited by in F6Publishing: 73] [Article Influence: 21.0] [Reference Citation Analysis]
75 Wang L, Zhang Y, Li Y, Chen J, Lin W. Recent advances in engineered nanomaterials for acute kidney injury theranostics. Nano Res 2021;14:920-33. [DOI: 10.1007/s12274-020-3067-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
76 Lin X, Li S, Zhang B, Yang H, Zhang K, Huang H. An enzyme-free fluorescent biosensor for highly sensitive detection of carcinoembryonic antigen based on aptamer-induced entropy-driven circuit. Anal Methods 2020;12:5496-502. [PMID: 33150889 DOI: 10.1039/d0ay01326a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
77 Zhan S, Hu J, Li Y, Huang X, Xiong Y. Direct competitive ELISA enhanced by dynamic light scattering for the ultrasensitive detection of aflatoxin B1 in corn samples. Food Chem 2021;342:128327. [PMID: 33069525 DOI: 10.1016/j.foodchem.2020.128327] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
78 Sivan SK, Shankar SS, N S, Kandambath Padinjareveetil A, Pilankatta R, Kumar VBS, Mathew B, George B, Makvandi P, Černík M, Padil VVT, Varma RS. Fabrication of a Greener TiO2@Gum Arabic-Carbon Paste Electrode for the Electrochemical Detection of Pb2+ Ions in Plastic Toys. ACS Omega 2020;5:25390-9. [PMID: 33043219 DOI: 10.1021/acsomega.0c03781] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
79 Alafeef M, Moitra P, Pan D. Nano-enabled sensing approaches for pathogenic bacterial detection. Biosens Bioelectron 2020;165:112276. [PMID: 32729465 DOI: 10.1016/j.bios.2020.112276] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 18.0] [Reference Citation Analysis]
80 Ortiz-riaño EJ, Avila-huerta MD, Mancera-zapata DL, Morales-narváez E. Microwell plates coated with graphene oxide enable advantageous real-time immunosensing platform. Biosensors and Bioelectronics 2020;165:112319. [DOI: 10.1016/j.bios.2020.112319] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
81 Li B, Pan W, Liu C, Guo J, Shen J, Feng J, Luo T, Situ B, Zhang Y, An T, Xu C, Zheng W, Zheng L. Homogenous Magneto-Fluorescent Nanosensor for Tumor-Derived Exosome Isolation and Analysis. ACS Sens 2020;5:2052-60. [PMID: 32594744 DOI: 10.1021/acssensors.0c00513] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 8.7] [Reference Citation Analysis]
82 Xiang H, Chen Y. Materdicine: Interdiscipline of materials and medicine. View 2020;1:20200016. [DOI: 10.1002/viw.20200016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
83 Huang X, Guo Q, Zhang R, Zhao Z, Leng Y, Lam JWY, Xiong Y, Tang BZ. AIEgens: An emerging fluorescent sensing tool to aid food safety and quality control. Compr Rev Food Sci Food Saf 2020;19:2297-329. [PMID: 33337082 DOI: 10.1111/1541-4337.12591] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
84 Yang J, Yang Y. Metal‐organic framework‐based cancer theranostic nanoplatforms. View 2020;1. [DOI: 10.1002/viw2.20] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
85 Xiong Y, Leng Y, Li X, Huang X, Xiong Y. Emerging strategies to enhance the sensitivity of competitive ELISA for detection of chemical contaminants in food samples. TrAC Trends in Analytical Chemistry 2020;126:115861. [DOI: 10.1016/j.trac.2020.115861] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 14.7] [Reference Citation Analysis]
86 Antonacci A, Scognamiglio V, Mazzaracchio V, Caratelli V, Fiore L, Moscone D, Arduini F. Paper-Based Electrochemical Devices for the Pharmaceutical Field: State of the Art and Perspectives. Front Bioeng Biotechnol 2020;8:339. [PMID: 32391344 DOI: 10.3389/fbioe.2020.00339] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
87 Levin AD, Ringaci A, Alenichev MK, Drozhzhennikova EB, Shevchenko KG, Cherkasov VR, Nikitin MP, Nikitin PI. Dynamic light scattering biosensing based on analyte-induced inhibition of nanoparticle aggregation. Anal Bioanal Chem 2020;412:3423-31. [DOI: 10.1007/s00216-020-02605-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 6.7] [Reference Citation Analysis]
88 Ates HC, Roberts JA, Lipman J, Cass AEG, Urban GA, Dincer C. On-Site Therapeutic Drug Monitoring. Trends Biotechnol 2020;38:1262-77. [PMID: 33058758 DOI: 10.1016/j.tibtech.2020.03.001] [Cited by in Crossref: 64] [Cited by in F6Publishing: 48] [Article Influence: 21.3] [Reference Citation Analysis]
89 Yan Y, Ding L, Liu L, Abualrejal MMA, Chen H, Wang Z. Renal-clearable hyaluronic acid functionalized NaGdF4 nanodots with enhanced tumor accumulation. RSC Adv 2020;10:13872-8. [PMID: 35492986 DOI: 10.1039/c9ra08974h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
90 Du H, Li Z, Wang Y, Yang Q, Wu W. Nanomaterial-based Optical Biosensors for the Detection of Foodborne Bacteria. Food Reviews International. [DOI: 10.1080/87559129.2020.1740733] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
91 Liu Z, Zhang Y, Li B, Ren X, Ma H, Wei Q. Novel ratiometric electrochemical sensor for no-wash detection of fluorene-9-bisphenol based on combining CoN nanoarrays with molecularly imprinted polymers. Analyst 2020;145:3320-8. [PMID: 32202270 DOI: 10.1039/d0an00345j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
92 Guo Q, Wang Y, Chen C, Wei D, Fu J, Xu H, Gu H. Multiplexed Luminescence Oxygen Channeling Immunoassay Based on Dual‐Functional Barcodes with a Host–Guest Structure: A Facile and Robust Suspension Array Platform. Small 2020;16:1907521. [DOI: 10.1002/smll.201907521] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
93 Tao Y, Luo F, Guo L, Qiu B, Lin Z. Target-triggered aggregation of gold nanoparticles for photothermal quantitative detection of adenosine using a thermometer as readout. Anal Chim Acta 2020;1110:151-7. [PMID: 32278390 DOI: 10.1016/j.aca.2020.03.023] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
94 Shrivastava S, Trung TQ, Lee NE. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem Soc Rev 2020;49:1812-66. [PMID: 32100760 DOI: 10.1039/c9cs00319c] [Cited by in Crossref: 165] [Cited by in F6Publishing: 176] [Article Influence: 55.0] [Reference Citation Analysis]
95 Teng X, Chen F, Gao Y, Meng R, Wu Y, Wang F, Ying Y, Liu X, Guo X, Sun Y, Lin P, Wen Y, Yang H. Enzyme-Assist-Interference-Free Strategy for Raman Selective Determination of Sialic Acid. Anal Chem 2020;92:3332-9. [PMID: 31965784 DOI: 10.1021/acs.analchem.9b05264] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
96 Zhang W, Liang J, Lu X, Ren W, Liu C. Nanoparticle Tracking Analysis-Based In Vitro Detection of Critical Biomarkers. ACS Appl Nano Mater 2020;3:2881-8. [DOI: 10.1021/acsanm.0c00154] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
97 Yang J, Yang YW. Metal-Organic Frameworks for Biomedical Applications. Small 2020;16:e1906846. [PMID: 32026590 DOI: 10.1002/smll.201906846] [Cited by in Crossref: 234] [Cited by in F6Publishing: 244] [Article Influence: 78.0] [Reference Citation Analysis]
98 Matys J, Gieroba B, Jóźwiak K. Recent developments of bioanalytical methods in determination of neurotransmitters in vivo. Journal of Pharmaceutical and Biomedical Analysis 2020;180:113079. [DOI: 10.1016/j.jpba.2019.113079] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
99 Chen C, Tian R, Zeng Y, Chu C, Liu G. Activatable Fluorescence Probes for “Turn-On” and Ratiometric Biosensing and Bioimaging: From NIR-I to NIR-II. Bioconjugate Chem 2020;31:276-92. [DOI: 10.1021/acs.bioconjchem.9b00734] [Cited by in Crossref: 86] [Cited by in F6Publishing: 91] [Article Influence: 28.7] [Reference Citation Analysis]
100 Fu J, Zhou Y, Huang X, Zhang W, Wu Y, Fang H, Zhang C, Xiong Y. Dramatically Enhanced Immunochromatographic Assay Using Cascade Signal Amplification for Ultrasensitive Detection of Escherichia coli O157:H7 in Milk. J Agric Food Chem 2020;68:1118-25. [DOI: 10.1021/acs.jafc.9b07076] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 15.0] [Reference Citation Analysis]
101 Ören Varol T. Electrochemical Sensors and Biosensors for the Detection of Cancer Biomarkers and Drugs. Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models 2020. [DOI: 10.1007/978-981-15-7586-0_2] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
102 Song X, Hou T, Lu F, Wang Y, Liu J, Li F. Homogeneous photoelectrochemical biosensing via synergy of G-quadruplex/hemin catalysed reactions and the inner filter effect. Chem Commun 2020;56:1811-4. [DOI: 10.1039/c9cc09280c] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
103 Hao L, Leng Y, Zeng L, Chen X, Chen J, Duan H, Huang X, Xiong Y, Chen X. Core-Shell-Heterostructured Magnetic-Plasmonic Nanoassemblies with Highly Retained Magnetic-Plasmonic Activities for Ultrasensitive Bioanalysis in Complex Matrix. Adv Sci (Weinh) 2020;7:1902433. [PMID: 31993296 DOI: 10.1002/advs.201902433] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
104 Fang H, Li X, Leng Y, Huang X, Xiong Y. Amphiphilic ligand modified gold nanocarriers to amplify lanthanide loading for ultrasensitive DELFIA detection ofCronobacter. Analyst 2020;145:249-256. [DOI: 10.1039/c9an01945f] [Reference Citation Analysis]
105 Parlak O, Curto VF, Ojeda E, Basabe-desmonts L, Benito-lopez F, Salleo A. Wearable biosensors and sample handling strategies. Wearable Bioelectronics 2020. [DOI: 10.1016/b978-0-08-102407-2.00004-7] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
106 Wu J, Ren N, Lu Y, Jia M, Wang R, Zhang J. A poly (diallyldimethylammonium chloride)-mediated R-phycoerythrin/DNA hybrid system as a fluorescent biosensor for DNA detection. Microchemical Journal 2020;152:104314. [DOI: 10.1016/j.microc.2019.104314] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
107 Geng W, Yang R. A triple-helix molecular switch photoelectrochemical biosensor for ultrasensitive microRNA detection based on position-controllable CdS//CdTe signal enhancement and switching. Chem Commun 2020;56:2909-12. [DOI: 10.1039/c9cc09877a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
108 Maduraiveeran G, Jin W. Functional nanomaterial-derived electrochemical sensor and biosensor platforms for biomedical applications. Handbook of Nanomaterials in Analytical Chemistry 2020. [DOI: 10.1016/b978-0-12-816699-4.00012-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
109 Maduraiveeran G. Bionanomaterial-based electrochemical biosensing platforms for biomedical applications. Anal Methods 2020;12:1688-701. [DOI: 10.1039/d0ay00171f] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
110 Yi C, Yang Y, Liu B, He J, Nie Z. Polymer-guided assembly of inorganic nanoparticles. Chem Soc Rev 2020;49:465-508. [PMID: 31845685 DOI: 10.1039/c9cs00725c] [Cited by in Crossref: 122] [Cited by in F6Publishing: 129] [Article Influence: 30.5] [Reference Citation Analysis]
111 Liu J, Abdullah MAA, Yang L, Wang J. Fast Affinity Induced Reaction Sensor Based on a Fluorogenic Click Reaction for Quick Detection of Protein Biomarkers. Anal Chem 2020;92:647-53. [PMID: 31790589 DOI: 10.1021/acs.analchem.9b04502] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
112 Huang X, Zhou Y, Ding L, Yu G, Leng Y, Lai W, Xiong Y, Chen X. Supramolecular Recognition-Mediated Layer-by-Layer Self-Assembled Gold Nanoparticles for Customized Sensitivity in Paper-Based Strip Nanobiosensors. Small 2019;15:e1903861. [PMID: 31736250 DOI: 10.1002/smll.201903861] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
113 Hu S, Tong L, Wang J, Yi X, Liu J. NIR Light-Responsive Hollow Porous Gold Nanospheres for Controllable Pressure-Based Sensing and Photothermal Therapy of Cancer Cells. Anal Chem 2019;91:15418-24. [DOI: 10.1021/acs.analchem.9b02871] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
114 Hasantabar V, Tashakkorian H, Golpour M. Fabrication of chitosan based magnetic nanocomposite by click reaction strategy; evaluation of nanometric and cytotoxic characteristics. Carbohydrate Polymers 2019;224:115163. [DOI: 10.1016/j.carbpol.2019.115163] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
115 Sepehri S, Zardán Gómez de la Torre T, Schneiderman JF, Blomgren J, Jesorka A, Johansson C, Nilsson M, Albert J, Strømme M, Winkler D, Kalaboukhov A. Homogeneous Differential Magnetic Assay. ACS Sens 2019;4:2381-8. [PMID: 31397152 DOI: 10.1021/acssensors.9b00969] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
116 Tian Y, Zhang L, Wang L. DNA-Functionalized Plasmonic Nanomaterials for Optical Biosensing. Biotechnol J 2020;15:e1800741. [PMID: 31464360 DOI: 10.1002/biot.201800741] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
117 Levin AD, Alenichev MK, Nagaev AI, Drozhzhennikova EB, Grigorenko VG, Andreeva IP, Kostrikina ES. Depolarized dynamic light scattering nanosensing based on aggregation-induced slowing-down of nanoparticles rotational diffusion. Laser Phys Lett 2019;16:106001. [DOI: 10.1088/1612-202x/ab3f9f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
118 Cheng H, Li W, Duan S, Peng J, Liu J, Ma W, Wang H, He X, Wang K. Mesoporous Silica Containers and Programmed Catalytic Hairpin Assembly/Hybridization Chain Reaction Based Electrochemical Sensing Platform for MicroRNA Ultrasensitive Detection with Low Background. Anal Chem 2019;91:10672-8. [PMID: 31355629 DOI: 10.1021/acs.analchem.9b01947] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 10.5] [Reference Citation Analysis]
119 Zhan S, Fang H, Fu J, Lai W, Leng Y, Huang X, Xiong Y. Gold Nanoflower-Enhanced Dynamic Light Scattering Immunosensor for the Ultrasensitive No-Wash Detection of Escherichia coli O157:H7 in Milk. J Agric Food Chem 2019;67:9104-11. [DOI: 10.1021/acs.jafc.9b03400] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
120 Levin A, Nikitin M, Alenichev M, Drozhzhennikova E, Grigorenko V, Ringaci A, Andreeva I. Nano-biosensors based on dynamic light scattering. Optical Methods for Inspection, Characterization, and Imaging of Biomaterials IV 2019. [DOI: 10.1117/12.2526055] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
121 Huang X, Cui B, Ma Y, Yan X, Xia L, Zhou N, Wang M, He L, Zhang Z. Three-dimensional nitrogen-doped mesoporous carbon nanomaterials derived from plant biomass: Cost-effective construction of label-free electrochemical aptasensor for sensitively detecting alpha-fetoprotein. Anal Chim Acta 2019;1078:125-34. [PMID: 31358210 DOI: 10.1016/j.aca.2019.06.009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
122 Harvey JD, Baker HA, Ortiz MV, Kentsis A, Heller DA. HIV Detection via a Carbon Nanotube RNA Sensor. ACS Sens 2019;4:1236-44. [PMID: 31056899 DOI: 10.1021/acssensors.9b00025] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 12.3] [Reference Citation Analysis]
123 Zhou H, Liu J, Xu JJ, Zhang S, Chen HY. Advances in DNA/RNA detection using nanotechnology. Adv Clin Chem 2019;91:31-98. [PMID: 31331490 DOI: 10.1016/bs.acc.2019.03.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
124 Hu S, Fang B, Huang Z, Chen Y, Liu D, Xing K, Peng J, Lai W. Using molecular descriptors for assisted screening of heterologous competitive antigens to improve the sensitivity of ELISA for detection of enrofloxacin in raw milk. J Dairy Sci 2019;102:6037-46. [PMID: 31056338 DOI: 10.3168/jds.2018-16048] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
125 Zeglio E, Rutz AL, Winkler TE, Malliaras GG, Herland A. Conjugated Polymers for Assessing and Controlling Biological Functions. Adv Mater 2019;31:e1806712. [PMID: 30861237 DOI: 10.1002/adma.201806712] [Cited by in Crossref: 105] [Cited by in F6Publishing: 109] [Article Influence: 26.3] [Reference Citation Analysis]
126 Liu Z, Zhang Y, Feng J, Han Q, Wei Q. Ni(OH)2 nanoarrays based molecularly imprinted polymer electrochemical sensor for sensitive detection of sulfapyridine. Sensors and Actuators B: Chemical 2019;287:551-6. [DOI: 10.1016/j.snb.2019.02.079] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
127 Chen Z, Wang C, Hao L, Gao R, Li F, Liu S. Proximity recognition and polymerase-powered DNA walker for one-step and amplified electrochemical protein analysis. Biosensors and Bioelectronics 2019;128:104-12. [DOI: 10.1016/j.bios.2018.12.053] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
128 Hu S, Huang Z, Chen W, Xing K, Peng J, Lai W. Dual signal insight: field-efficient qualitative/quantitative detection of sulphamethazine in raw milk. Food and Agricultural Immunology 2019;30:163-77. [DOI: 10.1080/09540105.2018.1557600] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
129 Ma B, Guo H, Wang M, Li L, Jia X, Chen H, Xue R, Yang W. Electrocatalysis of Cu−MOF/Graphene Composite and its Sensing Application for Electrochemical Simultaneous Determination of Dopamine and Paracetamol. Electroanalysis 2019;31:1002-8. [DOI: 10.1002/elan.201800890] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 9.8] [Reference Citation Analysis]
130 Nishat S, Awan FR, Bajwa SZ. Nanoparticle-based Point of Care Immunoassays for in vitro Biomedical Diagnostics. Anal Sci 2019;35:123-31. [PMID: 30224569 DOI: 10.2116/analsci.18R001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
131 Gu H, Tang H, Xiong P, Zhou Z. Biomarkers-based Biosensing and Bioimaging with Graphene for Cancer Diagnosis. Nanomaterials (Basel) 2019;9:E130. [PMID: 30669634 DOI: 10.3390/nano9010130] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
132 Manzanares Palenzuela CL, Pourrahimi AM, Sofer Z, Pumera M. Mix-and-Read No-Wash Fluorescence DNA Sensing System Using Graphene Oxide: Analytical Performance of Fresh Versus Aged Dispersions. ACS Omega 2019;4:1611-6. [DOI: 10.1021/acsomega.8b02885] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
133 Wang Y, Xia Y. Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: a review. Microchim Acta 2019;186. [DOI: 10.1007/s00604-018-3110-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
134 Zhao J, Chen G. Introduction. Nano-Inspired Biosensors for Protein Assay with Clinical Applications. Elsevier; 2019. pp. xvii-xlvii. [DOI: 10.1016/b978-0-12-815053-5.00016-7] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
135 Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 2019;9:8778-881. [DOI: 10.1039/c8ra09577a] [Cited by in Crossref: 351] [Cited by in F6Publishing: 361] [Article Influence: 87.8] [Reference Citation Analysis]
136 Zhang Y, Chen X. Nanotechnology and nanomaterial-based no-wash electrochemical biosensors: from design to application. Nanoscale 2019;11:19105-18. [DOI: 10.1039/c9nr05696c] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
137 Zhou N, Su F, Guo C, He L, Jia Z, Wang M, Jia Q, Zhang Z, Lu S. Two-dimensional oriented growth of Zn-MOF-on-Zr-MOF architecture: A highly sensitive and selective platform for detecting cancer markers. Biosensors and Bioelectronics 2019;123:51-8. [DOI: 10.1016/j.bios.2018.09.079] [Cited by in Crossref: 105] [Cited by in F6Publishing: 108] [Article Influence: 26.3] [Reference Citation Analysis]
138 Hu Z, Yin Y, Liu Q, Zheng X. A functional FePt@MOFs (MIL-101(Fe)) nano-platform for high efficient colorimetric determination of H 2 O 2. Analyst 2019;144:2716-24. [DOI: 10.1039/c9an00307j] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
139 Cai L, Bian F, Sun L, Wang H, Zhao Y. Condensing-enriched magnetic photonic barcodes on superhydrophobic surface for ultrasensitive multiple detection. Lab Chip 2019;19:1783-9. [DOI: 10.1039/c9lc00223e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
140 Russo L, Leva Bueno J, Bergua JF, Costantini M, Giannetto M, Puntes V, de la Escosura-muñiz A, Merkoçi A. Low-Cost Strategy for the Development of a Rapid Electrochemical Assay for Bacteria Detection Based on AuAg Nanoshells. ACS Omega 2018;3:18849-56. [DOI: 10.1021/acsomega.8b02458] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
141 Ding C, Li Y, Wang L, Luo X. Ratiometric Electrogenerated Chemiluminescence Cytosensor Based on Conducting Polymer Hydrogel Loaded with Internal Standard Molecules. Anal Chem 2019;91:983-9. [PMID: 30499299 DOI: 10.1021/acs.analchem.8b04116] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 9.0] [Reference Citation Analysis]
142 Yin J, Liu F, Fan T, Ren Y, Jiang Y. Rapid detection of methyltransferases utilizing dumbbell DNA-templated copper nanoparticles. Sensors and Actuators B: Chemical 2018;276:499-506. [DOI: 10.1016/j.snb.2018.08.140] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
143 Guo Z, Cui K, Zeng G, Wang J, Guo X. Silver nanomaterials in the natural environment: An overview of their biosynthesis and kinetic behavior. Science of The Total Environment 2018;643:1325-36. [DOI: 10.1016/j.scitotenv.2018.06.302] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
144 Yang P, Pang J, Hu F, Peng J, Jiang D, Chu Z, Jin W. An ultrasensitive biosensing flexible chip using a novel silver@Prussian blue core-shell nanocube composite. Sensors and Actuators B: Chemical 2018;276:31-41. [DOI: 10.1016/j.snb.2018.08.070] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
145 Xing H, Wei T, Lin X, Dai Z. Near-infrared MnCuInS/ZnS@BSA and urchin-like Au nanoparticle as a novel donor-acceptor pair for enhanced FRET biosensing. Analytica Chimica Acta 2018;1042:71-8. [DOI: 10.1016/j.aca.2018.05.048] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
146 Xi Z, Ye H, Xia X. Engineered Noble-Metal Nanostructures for in Vitro Diagnostics. Chem Mater 2018;30:8391-414. [DOI: 10.1021/acs.chemmater.8b04152] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
147 Wang C, Peng J, Liu D, Xing K, Zhang G, Huang Z, Cheng S, Zhu F, Duan M, Zhang K, Yuan M, Lai W. Lateral flow immunoassay integrated with competitive and sandwich models for the detection of aflatoxin M1 and Escherichia coli O157:H7 in milk. Journal of Dairy Science 2018;101:8767-77. [DOI: 10.3168/jds.2018-14655] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
148 Mohamad A, Teo H, Keasberry NA, Ahmed MU. Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles. Critical Reviews in Biotechnology 2019;39:50-66. [DOI: 10.1080/07388551.2018.1496063] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 8.6] [Reference Citation Analysis]
149 Tian Y, Xin C, Liu S, Liu Y, Liu S. Affinity Binding-Induced Hg2+ Release and Quantum Dot Doping for General, Label-Free, and Homogenous Fluorescence Protein Assay. ACS Sens 2018;3:1401-8. [PMID: 29905068 DOI: 10.1021/acssensors.8b00316] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
150 Bao B, Su P, Zhu J, Chen J, Xu Y, Gu B, Liu Y, Wang L. Rapid aptasensor capable of simply detect tumor markers based on conjugated polyelectrolytes. Talanta 2018;190:204-9. [PMID: 30172500 DOI: 10.1016/j.talanta.2018.07.072] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
151 Ye H, Xia X. Enhancing the sensitivity of colorimetric lateral flow assay (CLFA) through signal amplification techniques. J Mater Chem B 2018;6:7102-11. [PMID: 32254626 DOI: 10.1039/c8tb01603h] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 9.0] [Reference Citation Analysis]
152 Yuan P, Ding X, Yang YY, Xu QH. Metal Nanoparticles for Diagnosis and Therapy of Bacterial Infection. Adv Healthc Mater 2018;7:e1701392. [PMID: 29582578 DOI: 10.1002/adhm.201701392] [Cited by in Crossref: 99] [Cited by in F6Publishing: 101] [Article Influence: 19.8] [Reference Citation Analysis]
153 Tian B, Liao X, Svedlindh P, Strömberg M, Wetterskog E. Ferromagnetic Resonance Biosensor for Homogeneous and Volumetric Detection of DNA. ACS Sens 2018;3:1093-101. [PMID: 29847920 DOI: 10.1021/acssensors.8b00048] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
154 Lu Y, Lu D, You R, Liu J, Huang L, Su J, Feng S. Diazotization-Coupling Reaction-Based Determination of Tyrosine in Urine Using Ag Nanocubes by Surface-Enhanced Raman Spectroscopy. Nanomaterials (Basel) 2018;8:E400. [PMID: 29865274 DOI: 10.3390/nano8060400] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
155 Pan G, Jia H, Zhu Y, Sun W, Cheng X, Wu F. Cyanine-Containing Polymeric Nanoparticles with Imaging/Therapy-Switchable Capability for Mitochondria-Targeted Cancer Theranostics. ACS Appl Nano Mater 2018;1:2885-97. [DOI: 10.1021/acsanm.8b00527] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 6.8] [Reference Citation Analysis]
156 Huang X, He Z, Guo D, Liu Y, Song J, Yung BC, Lin L, Yu G, Zhu JJ, Xiong Y, Chen X. "Three-in-one" Nanohybrids as Synergistic Nanoquenchers to Enhance No-Wash Fluorescence Biosensors for Ratiometric Detection of Cancer Biomarkers. Theranostics 2018;8:3461-73. [PMID: 30026859 DOI: 10.7150/thno.25179] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 11.2] [Reference Citation Analysis]
157 Harvey JD, Zerze GH, Tully KM, Mittal J, Heller DA. Electrostatic Screening Modulates Analyte Binding and Emission of Carbon Nanotubes. J Phys Chem C 2018;122:10592-9. [DOI: 10.1021/acs.jpcc.8b01239] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
158 Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 2018;47:2873-920. [PMID: 29568836 DOI: 10.1039/C7CS00612H] [Cited by in Crossref: 418] [Cited by in F6Publishing: 440] [Article Influence: 83.6] [Reference Citation Analysis]
159 Gao ZF, Sann EE, Lou X, Liu R, Dai J, Zuo X, Xia F, Jiang L. Naked-eye point-of-care testing platform based on a pH-responsive superwetting surface: toward the non-invasive detection of glucose. NPG Asia Mater 2018;10:177-89. [DOI: 10.1038/s41427-018-0024-7] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 8.6] [Reference Citation Analysis]
160 Wang Y, Sun S, Zhang Z, Shi D. Nanomaterials for Cancer Precision Medicine. Adv Mater 2018;30:e1705660. [PMID: 29504159 DOI: 10.1002/adma.201705660] [Cited by in Crossref: 99] [Cited by in F6Publishing: 99] [Article Influence: 19.8] [Reference Citation Analysis]
161 Yang Y, Yang X, Yang Y, Yuan Q. Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon 2018;129:380-95. [DOI: 10.1016/j.carbon.2017.12.013] [Cited by in Crossref: 103] [Cited by in F6Publishing: 105] [Article Influence: 20.6] [Reference Citation Analysis]
162 Maduraiveeran G, Sasidharan M, Ganesan V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors and Bioelectronics 2018;103:113-29. [DOI: 10.1016/j.bios.2017.12.031] [Cited by in Crossref: 462] [Cited by in F6Publishing: 472] [Article Influence: 92.4] [Reference Citation Analysis]
163 Chen C, Luo J, Li C, Ma M, Yu W, Shen J, Wang Z. Molecularly Imprinted Polymer as an Antibody Substitution in Pseudo-immunoassays for Chemical Contaminants in Food and Environmental Samples. J Agric Food Chem 2018;66:2561-71. [DOI: 10.1021/acs.jafc.7b05577] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
164 Zhou H, Liu J, Xu JJ, Zhang SS, Chen HY. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application. Chem Soc Rev 2018;47:1996-2019. [PMID: 29446429 DOI: 10.1039/c7cs00573c] [Cited by in Crossref: 108] [Cited by in F6Publishing: 112] [Article Influence: 21.6] [Reference Citation Analysis]
165 Xu S, Nasr SH, Chen D, Zhang X, Sun L, Huang X, Qian C. MiRNA extraction from cell-free biofluid using protein corona formed around carboxyl magnetic nanoparticles. ACS Biomater Sci Eng 2018;4:654-62. [PMID: 29623292 DOI: 10.1021/acsbiomaterials.7b00668] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
166 Ye C, Wang MQ, Luo HQ, Li NB. Label-Free Photoelectrochemical "Off-On" Platform Coupled with G-Wire-Enhanced Strategy for Highly Sensitive MicroRNA Sensing in Cancer Cells. Anal Chem 2017;89:11697-702. [PMID: 29019243 DOI: 10.1021/acs.analchem.7b03150] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 7.3] [Reference Citation Analysis]
167 Vial S, Wenger J. Single-step homogeneous immunoassay for detecting prostate-specific antigen using dual-color light scattering of metal nanoparticles. Analyst 2017;142:3484-91. [DOI: 10.1039/c7an01066d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
168 Huang X, Wei J, Liu T, Zhang X, Bai S, Yang H. Silk fibroin-assisted exfoliation and functionalization of transition metal dichalcogenide nanosheets for antibacterial wound dressings. Nanoscale 2017;9:17193-8. [DOI: 10.1039/c7nr06807g] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 8.3] [Reference Citation Analysis]