BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Z, Li B, Xie L, Sang W, Tian H, Li J, Wang G, Dai Y. Metal-Phenolic Network-Enabled Lactic Acid Consumption Reverses Immunosuppressive Tumor Microenvironment for Sonodynamic Therapy. ACS Nano 2021;15:16934-45. [PMID: 34661387 DOI: 10.1021/acsnano.1c08026] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Chu Z, Yang J, Zheng W, Sun J, Wang W, Qian H. Recent advances on modulation of H2O2 in tumor microenvironment for enhanced cancer therapeutic efficacy. Coordination Chemistry Reviews 2023;481:215049. [DOI: 10.1016/j.ccr.2023.215049] [Reference Citation Analysis]
2 Du JR, Wang Y, Yue ZH, Zhang HY, Wang H, Sui GQ, Sun ZX. Recent advances in sonodynamic immunotherapy. J Cancer Res Clin Oncol 2023;149:1645-56. [PMID: 35831762 DOI: 10.1007/s00432-022-04190-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Li W, Yan J, Tian H, Li B, Wang G, Sang W, Zhang Z, Zhang X, Dai Y. A platinum@polymer-catechol nanobraker enables radio-immunotherapy for crippling melanoma tumorigenesis, angiogenesis, and radioresistance. Bioactive Materials 2023;22:34-46. [DOI: 10.1016/j.bioactmat.2022.09.006] [Reference Citation Analysis]
4 Lei L, Nan B, Yang F, Xu L, Guan G, Xu J, Yue R, Wang Y, Huan S, Yin X, Zhang XB, Song G. Zinc-Carnosine Metallodrug Network as Dual Metabolism Inhibitor Overcoming Metabolic Reprogramming for Efficient Cancer Therapy. Nano Lett 2023. [PMID: 36940420 DOI: 10.1021/acs.nanolett.2c05029] [Reference Citation Analysis]
5 Cao X, Wang Y, Song X, Lou W, Li X, Lu W, Chen K, Chen L, Chen Y, Huang B. Defect‐Engineering Bismuth‐Based Homologous Schottky Heterojunction for Metabolic Regulation‐Augmented Sonodynamic Tumor Therapy. Adv Funct Materials 2023. [DOI: 10.1002/adfm.202300777] [Reference Citation Analysis]
6 Wang W, Jia R, Qu F, Lin H. Defect-Rich Ni-CoO@PEG Porous Hexagonal Nanosheets: Multi-enzyme and Ultrasound Catalysis for Synergistic Anticancer Treatment. ACS Appl Mater Interfaces 2023. [PMID: 36912634 DOI: 10.1021/acsami.2c20999] [Reference Citation Analysis]
7 Lu Y, Wang Y, Liu W, Ma H, Yang B, Shao K, Long S, Sun W, Du J, Fan J, Liu B, Wang L, Peng X. Photothermal "nano-dot" reactivate "immune-hot" for tumor treatment via reprogramming cancer cells metabolism. Biomaterials 2023;296:122089. [PMID: 36898223 DOI: 10.1016/j.biomaterials.2023.122089] [Reference Citation Analysis]
8 Yuan M, Liang S, Yang L, Li F, Liu B, Yang C, Yang Z, Bian Y, Ma P, Cheng Z, Lin J. Rational Design of Platinum-Bismuth Sulfide Schottky Heterostructure for Sonocatalysis-Mediated Hydrogen Therapy. Adv Mater 2023;35:e2209589. [PMID: 36528782 DOI: 10.1002/adma.202209589] [Reference Citation Analysis]
9 Zhou S, Tian H, Yan J, Zhang Z, Wang G, Yu X, Sang W, Li B, Mok GS, Song J, Dai Y. IR780/Gemcitabine-conjugated metal-phenolic network enhanced photodynamic cancer therapy. Chinese Chemical Letters 2023. [DOI: 10.1016/j.cclet.2023.108312] [Reference Citation Analysis]
10 Chen J, Zhu Y, Wu C, Shi J. Engineering lactate-modulating nanomedicines for cancer therapy. Chem Soc Rev 2023;52:973-1000. [PMID: 36597879 DOI: 10.1039/d2cs00479h] [Reference Citation Analysis]
11 Hu X, Yu L, Bian Y, Zeng X, Luo S, Wen Q, Chen P. Paclitaxel-loaded tumor cell-derived microparticles improve radiotherapy efficacy in triple-negative breast cancer by enhancing cell killing and stimulating immunity. Int J Pharm 2023;632:122560. [PMID: 36586632 DOI: 10.1016/j.ijpharm.2022.122560] [Reference Citation Analysis]
12 Chen B, Cai L, Fan R, Mu M, Chuan D, Ren Y, Chen H, Guo G. Multifunctional Ce6-loaded MnO2 as an Oxygen-Elevated Nanoplatform for Synergistic Photodynamic/Photothermal therapy. Materials & Design 2023. [DOI: 10.1016/j.matdes.2023.111702] [Reference Citation Analysis]
13 Jia Y, Hu J, Zhu C, Li Z, Yang X, Liu R, Zeng L, Zhang L. Engineered NanoAlum from aluminum turns cold tumor hot for potentiating cancer metalloimmunotherapy. J Control Release 2023;354:770-83. [PMID: 36702259 DOI: 10.1016/j.jconrel.2023.01.043] [Reference Citation Analysis]
14 Feng C, Hu J, Xiao C, Yang J, Xin B, Jia Z, Zhang S, Tian G, Zhang D, Geng L, Yan L, Wang L, Geng B. Shell-core COF@Co3O4 Z-scheme heterojunctions for triple amplification of oxidative stress to enhance nanocatalytic-sonodynamic tumor therapy. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141874] [Reference Citation Analysis]
15 Li Z, Xie H, Shi H, Li D, Zhang Z, Chen H, Gao Y. Triterpenoids and ultrasound dual-catalytic nanoreactor ignites long-lived hypertoxic reactive species storm for deep tumor treatment. Chemical Engineering Journal 2023;453:139938. [DOI: 10.1016/j.cej.2022.139938] [Reference Citation Analysis]
16 Choi H, Yeo M, Kang Y, Kim HJ, Park SG, Jang E, Park SH, Kim E, Kang S. Lactate oxidase/catalase-displaying nanoparticles efficiently consume lactate in the tumor microenvironment to effectively suppress tumor growth. J Nanobiotechnology 2023;21:5. [PMID: 36597089 DOI: 10.1186/s12951-022-01762-6] [Reference Citation Analysis]
17 Huang Y. Targeting glycolysis for cancer therapy using drug delivery systems. J Control Release 2023;353:650-62. [PMID: 36493949 DOI: 10.1016/j.jconrel.2022.12.003] [Reference Citation Analysis]
18 Chang Y, Cui P, Zhou S, Qiu L, Jiang P, Chen S, Wang C, Wang J. Metal-phenolic network for cancer therapy. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104194] [Reference Citation Analysis]
19 Zhao J, Tian Z, Zhao S, Feng D, Guo Z, Wen L, Zhu Y, Xu F, Zhu J, Ma S, Hu J, Jiang T, Qu Y, Chen D, Liu L. Insights into the Effect of Catalytic Intratumoral Lactate Depletion on Metabolic Reprogramming and Immune Activation for Antitumoral Activity. Adv Sci (Weinh) 2023;10:e2204808. [PMID: 36479819 DOI: 10.1002/advs.202204808] [Reference Citation Analysis]
20 Fu Z, Zhang Y, Chen X, Wang N, Ma R, Luo X, Pan X, Yang Y, Xue W. A Versatile Nanoplatform Based on Metal‐Phenolic Networks Inhibiting Tumor Growth and Metastasis by Combined Starvation/Chemodynamic/Immunotherapy. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202211869] [Reference Citation Analysis]
21 Liu S, Xu X, Ye J, Wang J, Wang Q, Liu Z, Xu J, Fu Y. Metal-coordinated nanodrugs based on natural products for cancer theranostics. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140892] [Reference Citation Analysis]
22 Yang L, Zhu H, Zhao R, Zhang Z, Liu B, Gong H, Zhu Y, Ding H, Gai S, Feng L. Tumor microenvironment activated glutathione self-depletion theranostic nanocapsules for imaging-directed synergistic cancer therapy. Chemical Engineering Journal 2022;450:138137. [DOI: 10.1016/j.cej.2022.138137] [Reference Citation Analysis]
23 Jung W, Lee DY, Moon E, Jon S. Nanoparticles derived from naturally occurring metal chelators for theranostic applications. Adv Drug Deliv Rev 2022;191:114620. [PMID: 36379406 DOI: 10.1016/j.addr.2022.114620] [Reference Citation Analysis]
24 Xie L, Li J, Wang L, Dai Y. Engineering metal‐phenolic networks for enhancing cancer therapy by tumor microenvironment modulation. WIREs Nanomed Nanobiotechnol 2022. [DOI: 10.1002/wnan.1864] [Reference Citation Analysis]
25 Zhang Y, Li M, Zhang X, Zhang P, Liu Z, Feng M, Ren G, Liu J. Tumor microenvironment-activated Nb2C quantum dots/lactate oxidase nanocatalyst mediates lactate consumption and macrophage repolarization for enhanced chemodynamic therapy. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.113005] [Reference Citation Analysis]
26 Lu H, Xu J, Yang J, Wang Z, Xu P, Hao Q, Luo W, Li S, Li Z, Xue X, Zheng H, Zhou Z, Wu H, Ma X, Li Y. On-demand targeting nanotheranostics with stimuli-responsive releasing property to improve delivery efficiency to cancer. Biomaterials 2022;290:121852. [DOI: 10.1016/j.biomaterials.2022.121852] [Reference Citation Analysis]
27 Shen L, Zhang Y, Feng J, Xu W, Chen Y, Li K, Yang X, Zhao Y, Ge S, Li J. Microencapsulation of Ionic Liquid by Interfacial Self-Assembly of Metal-Phenolic Network for Efficient Gastric Absorption of Oral Drug Delivery. ACS Appl Mater Interfaces 2022. [PMID: 36173185 DOI: 10.1021/acsami.2c15599] [Reference Citation Analysis]
28 Dong Z, Wang C, Gong Y, Zhang Y, Fan Q, Hao Y, Li Q, Wu Y, Zhong X, Yang K, Feng L, Liu Z. Chemical Modulation of Glucose Metabolism with a Fluorinated CaCO(3) Nanoregulator Can Potentiate Radiotherapy by Programming Antitumor Immunity. ACS Nano 2022;16:13884-99. [PMID: 36075132 DOI: 10.1021/acsnano.2c02688] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Xiao Y, Chen P, Lei S, Bai F, Fu L, Lin J, Huang P. Biocatalytic Depletion of Tumorigenic Energy Sources Driven by Cascade Reactions for Efficient Antitumor Therapy. Angew Chem Int Ed 2022. [DOI: 10.1002/anie.202204584] [Reference Citation Analysis]
30 Ning S, Dai X, Tang W, Guo Q, Lyu M, Zhu D, Zhang W, Qian H, Yao X, Wang X. Cancer cell membrane-coated C-TiO2 hollow nanoshells for combined sonodynamic and hypoxia-activated chemotherapy. Acta Biomater 2022:S1742-7061(22)00550-5. [PMID: 36067874 DOI: 10.1016/j.actbio.2022.08.067] [Reference Citation Analysis]
31 Du H, Zhang D, Xu R, Xie J, Guan S, Chen S, Peng F, Qian S, Liu X. Ferric oxide nanosheet-engineered Mg alloy for synergetic osteosarcoma photothermal/chemodynamic therapy. Journal of Materials Science & Technology 2022. [DOI: 10.1016/j.jmst.2022.07.056] [Reference Citation Analysis]
32 Liu Q, Zhang W, Jiao R, Lv Z, Lin X, Xiao Y, Zhang K. Rational Nanomedicine Design Enhances Clinically Physical Treatment-Inspired or Combined Immunotherapy. Adv Sci (Weinh) 2022;:e2203921. [PMID: 36002305 DOI: 10.1002/advs.202203921] [Reference Citation Analysis]
33 Song L, Lu L, Pu Y, Yin H, Zhang K. Nanomaterials-Based Tumor Microenvironment Modulation for Magnifying Sonodynamic Therapy. Acc Mater Res . [DOI: 10.1021/accountsmr.2c00106] [Reference Citation Analysis]
34 Luo Y, Li Y, Huang Z, Li X, Wang Y, Hou J, Zhou S. A Nanounit Strategy Disrupts Energy Metabolism and Alleviates Immunosuppression for Cancer Therapy. Nano Lett 2022. [PMID: 35856800 DOI: 10.1021/acs.nanolett.2c02475] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
35 Gu J, Sun J, Liu Y, Chong G, Li Y, Dong H. Nanosystem-mediated lactate modulation in the tumor micro environment for enhanced cancer therapy. Nano Res . [DOI: 10.1007/s12274-022-4620-z] [Reference Citation Analysis]
36 Ren C, Xu X, Yan D, Gu M, Zhang J, Zhang H, Han C, Kong L. Dual-action nanoplatform with a synergetic strategy to promote oxygen accumulation for enhanced photodynamic therapy against hypoxic tumors. Acta Biomater 2022;146:465-77. [PMID: 35526738 DOI: 10.1016/j.actbio.2022.04.035] [Reference Citation Analysis]
37 Ling J, Chang Y, Yuan Z, Chen Q, He L, Chen T. Designing Lactate Dehydrogenase-Mimicking SnSe Nanosheets To Reprogram Tumor-Associated Macrophages for Potentiation of Photothermal Immunotherapy. ACS Appl Mater Interfaces 2022;14:27651-65. [PMID: 35675569 DOI: 10.1021/acsami.2c05533] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Zheng X, Liu Y, Liu Y, Zhang T, Zhao Y, Zang J, Yang Y, He R, Chong G, Ruan S, Xu D, Li Y, Dong H. Dual Closed-Loop of Catalyzed Lactate Depletion and Immune Response to Potentiate Photothermal Immunotherapy. ACS Appl Mater Interfaces 2022. [PMID: 35578899 DOI: 10.1021/acsami.2c07254] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
39 Yu M, Yu J, Yi Y, Chen T, Yu L, Zeng W, Ouyang XK, Huang C, Sun S, Wang Y, Liu Y, Lin C, Wu M, Mei L. Oxidative stress-amplified nanomedicine for intensified ferroptosis-apoptosis combined tumor therapy. J Control Release 2022:S0168-3659(22)00243-7. [PMID: 35513212 DOI: 10.1016/j.jconrel.2022.04.047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
40 Kim CJ, Ercole F, Chen J, Pan S, Ju Y, Quinn JF, Caruso F. Macromolecular Engineering of Thermoresponsive Metal-Phenolic Networks. J Am Chem Soc 2021. [PMID: 34958559 DOI: 10.1021/jacs.1c10979] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]